
The FormsVBT Reference Manual

Version 3.4

Marc H. Brown and James R. Meehan

April 26, 1996

i

c
Digital Equipment Corporation 1989,1990,1991,1992,1993,1994,1995,1996

This work may not be copied or reproduced in whole or in part except in accordance with this provi-
sion. Permission to copy in whole or in part without payment of fee is granted only to licensees under
(and is subject to the terms and conditions of) the Digital License Agreement for SRC Modula-3, as
it appears, for example, on the Internet at the URL

http://www.research.digital.com/SRC/m3sources/html/COPYRIGHT.html

All such whole or partial copies must include the following: a notice that such copying is by permis-
sion of the Systems Research Center of Digital Equipment Corporation in Palo Alto, California; an
acknowledgment of the authors and individual contributors to the work; and all applicable portions
of this copyright notice. All rights reserved.

http://www.research.digital.com/SRC/m3sources/html/COPYRIGHT.html

Contents

1 Introduction 7

Presents an overview to the system. Every user needs to read this chapter; read it first.

2 Tutorial 11

A gentle introductionto using FormsVBT for buildingsome simple, but real, applications.

2.1 Getting Started . 11
2.2 Resources . 13
2.3 The FormsVBT Language . 14
2.4 The Three-Cell Calculator Application . 16
2.5 Improving Readability . 19
2.6 Separating the UI from the Application . 21
2.7 Subwindows . 22
2.8 Modal Dialogs . 24
2.9 A File Viewer . 25

3 The FormsVBT Language 31

Describes the syntax and primitives of the language.

3.1 Basic Syntax . 31
3.2 Components . 31
3.3 Properties . 32

3.3.1 Varieties of Properties . 38
3.4 Syntactic Shortcuts . 41
3.5 Macros . 42
3.6 Layout . 46

3.6.1 How Sizes are Specified . 47
3.6.2 Precedence of Size Constraints . 48

3.7 Subwindows . 48
3.8 Catalog of Components . 52

1

2 CONTENTS

4 Programming with FormsVBT 57

Describes how to write a FormsVBT application and connect it to a “form.” Almost every
user needs to read this.

4.1 The FormsVBT Interface . 57
4.2 Creation, allocation, and initialization . 57
4.3 Events and Symbols . 60

4.3.1 Attaching event-handlers . 60
4.3.2 Access to the current event . 61
4.3.3 Symbol management . 61

4.4 Reading and Changing State . 62
4.4.1 Access to the Main and Value properties 62
4.4.2 Access to arbitrary properties . 63
4.4.3 Access to the underlying VBTs . 64
4.4.4 Radios and Choices . 65
4.4.5 Generic interactors . 65
4.4.6 Special controls for Filters . 65
4.4.7 Access to Subwindows . 66
4.4.8 Special controls for text-interactors . 67

4.5 Saving and restoring state . 67
4.6 Dynamic Alteration of Forms . 68
4.7 Subclasses of components . 69

5 FormsEdit 73

Tells how to useformsedit, the FormsVBT interface builder. Not necessary, but makes
using FormsVBT a lot more fun.

5.1 Getting started . 73
5.2 The menubar . 73

5.2.1 The quill-pen menu . 73
5.2.2 The File menu . 74
5.2.3 The Edit menu . 75
5.2.4 The Misc menu . 75
5.2.5 The “Do It” button . 75

5.3 Errors . 76

A Full Description of Components 79

This is an in-depth reference section; do not feel obliged to read it on your first reading
of this manual.

Bar . 81
Boolean . 82

CONTENTS 3

Border . 84
Browser . 85
Button . 87
Chisel . 88
Choice . 89
CloseButton . 90
DirMenu . 91
FileBrowser . 92
Fill . 95
Filter . 96
Frame . 97
Generic . 98
Glue . 99
Guard . 100
Help . 101
Helper . 102
HBox . 103
HPackSplit . 104
HTile . 105
Insert . 106
LinkButton . 107
LinkMButton . 108
MButton . 109
Menu . 110
MultiBrowser . 111
Numeric . 112
PageButton . 113
PageMButton . 114
Pixmap . 115
PopButton . 116
PopMButton . 117
Radio . 118
Ridge . 119
Rim . 120
Scale . 121
Scroller . 122
Shape . 124
Source . 125
Stable . 126
Target . 127
Text . 128
TextEdit . 129

4 CONTENTS

Texture . 130
TrillButton . 131
TSplit . 132
TypeIn . 133
Typescript . 135
VBox . 136
Viewport . 137
VPackSplit . 138
VTile . 139
ZBackground . 140
ZChassis . 141
ZChild . 143
ZGrow . 144
ZMove . 145
ZSplit . 146

B Miscellaneous Interfaces 147
B.1 The ColorName Interface . 148
B.2 The XTrestle Interface . 151
B.3 The XParam Interface . 152
B.4 The FVTypes Interface . 156
B.5 The Rsrc interface . 160

C An Annotated Example 163
C.1 The top-level filter . 165
C.2 Simple macros . 166
C.3 A recursive macro . 167
C.4 A macro for menu-items . 168
C.5 A macro for a Finder-dialog . 169
C.6 A macro for yes/no dialogs . 171
C.7 A macro for confirmation dialogs . 172
C.8 A macro for a file-chooser . 173
C.9 The background child . 176
C.10 The menubar . 177
C.11 The quill-pen menu . 178
C.12 The File menu . 180
C.13 The Edit Menu . 181
C.14 The Misc Menu . 182
C.15 The Finder-dialog . 183
C.16 The Help subwindow . 184
C.17 A disappearing subwindow . 185
C.18 The About... window . 186

CONTENTS 5

C.19 The error-message subwindow . 187
C.20 The pretty-print-width subwindow . 188
C.21 The snapshot subwindow . 190
C.22 The named-components subwindow . 191
C.23 The open-file dialog . 192
C.24 The save-as dialog . 193
C.25 The confirmation dialogs . 195
C.26 The yes/no dialogs . 196

6 CONTENTS

1. Introduction

FormsVBT is a system for building graphical user interfaces (GUIs). It consists of a language for de-
scribing an application’s user interface, a stand-alone application for constructing the user interface,
and a runtime library for communicating between an application’s code and its user interface.

A user interface in FormsVBT is a hierarchical arrangement of components. Components include
passive visual elements, basic interactors, modifiers that add interactive behavior to other compo-
nents, and layout operators that take groups of low-level components and organize them geometri-
cally. In the FormsVBT language, the arrangement is writtenas a symbolic expression (S-expression).
The outermost expression is the form or top-level component, and subexpressions are either proper-
ties that modify a component or other, subordinate components.

The FormsVBT interface builder,formsedit, provides a text editor and a result view of the user
interface, as shown in Fig. 1. The text editor displays the S-expression underlying the user interface,
while the result view shows the user interface as it will look at runtime, with proper reaction to mouse
and keyboard activity, as well as proper sizing and stretching. Of course, the result view cannot reveal
exactly how an application’s user interface will look and behave, since there is no application code
running, but it’s usually pretty close. The result view is updated as the user edits in the text view.
Interacting in the result view does not update the text view or change the underlying S-expression.

The runtime library provides the communication between an application and its user interface.
There are procedures to convert an S-expression into a window object, procedures to register event-
handlers that will be invoked in response to user actions, procedures to retrieve and modify the values
of the components, procedures to change the appearance (and even the hierarchy) of the components,
and so on.

Each component in FormsVBT is implemented by a window class (i.e., a VBT) provided by
VBTkit or Trestle. Most of the things that you’d want to do with a component can be done via
FormsVBT. However, there may be occasions when you would like direct access to the underlying
VBT. FormsVBT provides such access. (You’ll probably find it helpful to have a copy of the refer-
ence manuals for VBTkit [2] and Trestle [5], as well as the Trestle Tutorial [6].)

The FormsVBT system is implemented in Modula-3[3, 7]. It is based on an earlier system imple-
mented in Modula-2+[1]. That version was unique among user interface development environments
for its multi-view editor, and noteworthy for its extensibility and simplicity. In this implementation,
the editor is not multi-view; there is no graphical, direct-manipulation editor integrated with the text
view. Also, this implementation is not extensible by clients.

7

8 CHAPTER 1. INTRODUCTION

Figure 1.1: The FormsVBT interface builder, formsedit, in action. The Text View is on the right
and the Result View is on the left.

9

Indeed, one of the primary themes shaping the development of the system has been to deliver a
“95% solution.” By that, we mean that 95% of what clients do should be trivial to do; of the remaining
5%, 95% of that should be pretty easy to do; and the remaining things should be possible and no
harder to do than without FormsVBT.

10 CHAPTER 1. INTRODUCTION

2. Tutorial

To use FormsVBT, you need a copy of SRC Modula-3 (Version 3.3 or later) and an X server for your
system. If you have these, you may want to compile and run the example programs as you read this
chapter.

2.1 Getting Started

The first example program is in the file Hello.m3:

MODULE Hello EXPORTS Main;
IMPORT FormsVBT, Trestle;
VAR fv := FormsVBT.NewFromFile("Hello.fv"); BEGIN
Trestle.Install(fv);
Trestle.AwaitDelete(fv)

END Hello.

The program builds a form (sometimes called a “dialog box” or a “user interface”) whose description
is contained in a file named Hello.fv. It installs the form in a top-level window, and then waits
until that window is deleted by the user. The window installed by the program is shown in the left
half of Fig. 2.1.

The file Hello.fv contains the following S-expression:

(VBox
(Text "Hello FormsVBT!")
(Bar)
(HBox (Text "Left") (Bar) (Text "Right")))

The top-level component is aVBox. AVBox takes an arbitrary number of “children” (sub-components)
and arranges them vertically from top to bottom. This VBox has 3 children: Text, Bar, and HBox.
A Text displays a text string, a Bar draws a line orthogonal to the orientation of its parent, and an
HBox arranges its children horizontally, from left to right. The HBox has 3 children, two Texts and
one Bar.

The standard way that you compile and link your programs is to usem3build. Them3makefile
for the “Hello FormsVBT!” application is as follows:

11

12 CHAPTER 2. TUTORIAL

Figure 2.1: The “Hello FormsVBT!” example program. The initial version is on the left; the second
version on the right.

import (formsvbt)
implementation (Hello)
program (Hello)

Then you can compile and link the Hello program by typing the shell-command m3build -S in
the directory containing the source code.

Actually, most Modula-3 programmers follow the convention of storing all of the source files
for an application in a directory called src. The m3build command, when run from src’s parent
directory, stores all of its derived files (including the executable) in a subdirectory whose name de-
pends on the platform on which you are running. For example, on DECstations, the derived directory
is DS; on an Alpha running OSF, the directory is AOSF. When you follow this directory structure,
you should invoke m3build without any arguments.

Here’s a slightly fancier version of the interface (shown in the right half of Fig. 2.1):

(Rim (Pen 20)
(Border (Pen 1)

(Rim (Pen 2)
(Border (Pen 2)

(VTile
(Text "Hello FormsVBT!")
(HBox

(LabelFont (PointSize 240))
(Color "White")
(Text (BgColor "Pink") "Left")
(Bar)
(Text (BgColor "VividBlue") "Right")))))))

The top-level component is a Rim whose Pen property has a value of 20. A Rim must contain ex-
actly one child (a Border in this case), and it surrounds its child with some background space. Here,
the Rim provides 20 points of background space between each edge of the window manager’s win-
dow frame and the rest of the interface. A Border is just like a Rim, but draws with the foreground

2.2. RESOURCES 13

color instead of the background color. We replaced the VBox with a VTile, and deleted its Bar
child. A VTile is like a VBox, but it also automatically inserts a dividing bar between its children;
by dragging the dividing bar, the user can control the division of space among the children. In this
example, the HBox has been given two properties,Color and LabelFont. These control the fore-
ground color and font used by theHBox and all of its descendants. Similarly, theBgColor property
changes the background color used.

The fancy version of “Hello FormsVBT!” is in the file HelloFancy.fv. To run the application
using this file, either modify the application to useHelloFancy.fvor rename the fileHelloFancy.fv
to be Hello.fv. Alternatively, you might find it enjoyable to run the FormsVBT interactive UI
builder, formsedit. Just type the shell-command

formsedit HelloFancy.fv

Exercise 1: Write the FormsVBT S-expression for T 4, a Trestle Tiling Monster of Order 4. (See the
Trestle Tutorial, Fig. 2 on page 5.)

2.2 Resources

A resource is constant data needed by an applicationprogram at runtime; often it is “loaded” at startup
time. Almost all FormsVBT programs have resources, such as the .fv (pronounced “dot ef vee”)
files that specify the user interface. Other typical resources specific to an application include bitmaps,
cursors, and help-texts.

When an application is built, its resources can be “bundled” with the executable image. The pri-
mary benefit of this feature is that applications are self-contained with respect to the resources they
need. Thus, you can copy an executable to a remote site and you won’t need to copy the resource files
and install them in the same place as they were when the application was built. Also, your application
will be insulated against changes in library resources.

The easiest way to do this is to name the resources and the bundle in the m3makefile, as in
this example:

import (formsvbt)
resource (Hello.fv)
bundle (HelloBundle)
implementation (Hello)
program (Hello)

The second line declares that there is a resource named Hello.fv. The third line has the effect of
collecting all the named resources (only one in this case) and creating an interface calledHelloBundle
that provides access to them. The program would then be modified to look like this:

14 CHAPTER 2. TUTORIAL

MODULE Hello EXPORTS Main;
IMPORT FormsVBT, HelloBundle, Rsrc, Trestle;
VAR
path := Rsrc.BuildPath(HelloBundle.Get());
fv := NEW (FormsVBT.T).initFromRsrc ("Hello.fv", path);

BEGIN
Trestle.Install(fv);
Trestle.AwaitDelete(fv)

END Hello.

The call to HelloBundle.Get returns a bundle that is used to create a resource-path, which is
then searched by the initFromRsrc method.

But what if you want the application to use new resource files? For example, you might have
changed some details of the .fv file that don’t require any changes to the application code. Do you
have to rebuild the entire application?

Fortunately, the answer is no. However, you do need to tell FormsVBT that you want it to look for
those resources in the file system before it looks for them among the resources that were bundled into
the application. You do this by changing the resource-path so that it includes one or more directories
before the bundle.

The convention is to use environment variables whose names are spelled by combining the pro-
gram’s name with the string "PATH". This variable should be set to a list of directory-names, each
separated by a colon. So, if you want to run the Hello program using the Hello.fv file that’s in
Smith’s home directory instead of the one that’s bundled with the application, you would type some-
thing like this shell command:

setenv HelloPATH /user/smith

In the program, you would construct a resource-path that included this directory by adding the name
HelloPATH, prefixed with a dollar sign:

MODULE Hello EXPORTS Main;
IMPORT FormsVBT, HelloBundle, Rsrc, Trestle;
VAR
path := Rsrc.BuildPath("$HelloPATH", HelloBundle.Get());
fv := NEW (FormsVBT.T).initFromRsrc ("Hello.fv", path);

BEGIN
Trestle.Install(fv);
Trestle.AwaitDelete(fv)

END Hello.

2.3 The FormsVBT Language

Syntactically, there are three types of components in FormsVBT: leaves, filters, and splits. A leaf
has no children; a filter has exactly one child; and a split has any number of children.

2.3. THE FORMSVBT LANGUAGE 15

The FormsVBT leaf components include passive objects like texts and pixmaps, as well as in-
teractive objects like scrollbars and type-in fields.

A filter modifies its child’s looks or behavior in some way. We’ve seen how a Border draws
a border around its child. Another common filter is Boolean. It adds a check box to the left of
its child and makes the box and the child sensitive to mouse clicks. It’s important to realize that the
child may be any arbitrarily complex arrangement of components, although a Text component is
the most common.

The purpose of most splits is to divide the display area among its component-children (sub-components).
In addition to the horizontal and vertical splits that we’ve seen, FormsVBT provides a temporal split
(TSplit) to display exactly one child at any given time, and a z-axis split (ZSplit) to display
children as overlapping subwindows.

Components are written as lists containing the component’s type, followed by some number of
properties, followed by some number of sub-components. Properties are written as lists containing
a keyword and a value. For example, in the S-expression:

(HBox
(LabelFont (PointSize 240))
(Color "White")
(Text "Left")
(Bar)
(Text "Right")

the parent-component’s type is HBox. This component has two properties; the first property has the
keyword LabelFont and the value (PointSize 240); the second has the keyword Color
and the value "White". It has three sub-components: (Text "Left"), (Bar), and (Text
"Right").

The value of each property is type-checked when the description is parsed. The possible types
include strings, integers, and real numbers, as well as more complicated types like color and font
specifications.

So far, we have seen two kinds of properties. Class properties, like Pen, are defined in conjunc-
tion with specific components, and are allowed only on components of that class. Inherited proper-
ties, likeColor and LabelFont, may be specified for any component, though they are not relevant
to all component types. The inherited properties have the feature that a value specified for one com-
ponent becomes the default value for all descendants of that component. Thus an inherited property
applies not to one component, but to an entire subtree.

FormsVBT supports a third type of property, universal properties. A universal property can be
specified on any component, and its value applies only to that component.

Exercise 2: InHelloFancy.fv, wrap aScale component around the top-levelRim. TheScale
has two class properties: HScale and VScale. What happens when the values of both of these
properties are set to 1.75? What happens when you nest Scale filters?

16 CHAPTER 2. TUTORIAL

Figure 2.2: The three-cell calculator application.

2.4 The Three-Cell Calculator Application

A more interesting application is a three-cell calculator.1 The user can enter two numbers and an
arithmetic operation to perform on the two numbers. The result is computed and displayed whenever
the user selects a new arithmetic operation or types a new number. Fig. 2.2 shows the application in
action.

The user interface is described by the following FormsVBT expression:

(Shape (Width 300 + 100 - 50) (Height + 25)
(Rim (Pen 20)

(VBox
(HBox

(VBox Fill (Numeric %num1 =5) Fill)
(Radio %functions =add

(VBox
(Choice %div "divide")
(Choice %mul "multiply")
(Choice %sub "subtract")
(Choice %add "add")))

(VBox Fill (Numeric %num2 =2) Fill)
(Text "=")
(Text %result LeftAlign ""))

(Glue 10)
(HBox Fill (Guard (Button %exit "QUIT")) Fill))))

The tokens that start with percent signs are names assigned to components. For example, the Text
component where the application stores the result of each computation is named result. An ap-
plication can access only named components at runtime.

This form contains the following components that we have not seen before:

� A Shape is used to give a component explicit size constraints, typically as a function of its
child’s size. Here, theShape declares that its acceptable width is between 250 and 400 points,

1Readers may wish to compare the FormsVBT implementation of this example with that of SUIT [8].

2.4. THE THREE-CELL CALCULATOR APPLICATION 17

and its preferred width is 300 points. The preferred and minimum height of theShape are the
same as those of its child; its maximum height is 25 points more than the maximum of its child.

� Fill and Glue are used as children of an HBox or VBox. Fill displays as background
space that will “stretch” as needed in the orientation of its parent. It is used here to keep the
Numeric component centered vertically between the top of the stringdivide and the bottom
of the string add. Glue displays as background space that doesn’t stretch. In this form, it
provides 10 points of space. Judicious use of Fill and Glue will facilitate creating very
regular and pleasing-looking user interfaces.

� Numeric components are numerical widgets; in our example, the one on the left has an initial
value of 5, and the one on the right has an initial value of 2. A user can change the displayed
number by clicking on the plus or minus buttons, or by typing in the type-in field located be-
tween the buttons. To start typing, the user needs to move the keyboard focus to the type-in
region by clicking there with the mouse. Also, nothing about the typing is reported to the
application until a carriage return is typed. At that point, the application is notified that the
Numeric has a new value, but not what the user did to enter this new value. (If the applica-
tion really wants to find this out, it can inquire whether the user clicked on the plus or minus
buttons, or entered a new number in the type-in region.)

� The Radio unites all of the Choice components which are among its descendants into ra-
dio buttons. A Choice adds a diamond to the left of its child and causes the diamond of the
selected choice to appear dark and recessed. The application is notified whenever the user
changes the selected item. Note that a Radio does not impose any particular geometric ar-
rangement on the layout of its radio buttons.

� A Button adds the “look-and-feel” of a button to its child. The application is notified when
the user clicks on a button. Again, keep in mind that the contents of a button can be any arbi-
trary arrangement; here, it’s a simple text string.

� The Guard component requires that you click on it twice in a row before the program“quits”.
The first click removes the “guard” (shown visiblyby the diagonal lines) and allows subsequent
mouse activity to be reported to its descendant, aButton in this case. The second click causes
the Button to be invoked, and the guard to be reinstated. A Guard is usually put around a
Button, but it may also be put around any component. For example, if you wanted to protect
the “divide” radio button, you’d simply wrap a Guard component around the first Choice
expression.

In FormsVBT, as in most GUI toolkits, an application is structured as an initialization routine,
which runs in one thread, and a collection of event-handling procedures, which run in other threads.
When an application is run, it initializes dialogs and then transfers control to the toolkit. The main
thread waits until the toolkit returns control, which it does when all the dialogs have been deleted.

Here is the complete application for the three-cell calculator (see the file Calc3Cell.m3):

18 CHAPTER 2. TUTORIAL

MODULE Calc3Cell EXPORTS Main;
IMPORT Fmt, FormsVBT, Text, Trestle, VBT;
PROCEDURE NewForm (): FormsVBT.T =
VAR

fv := FormsVBT.NewFromFile ("Calc3Cell.fv");
qcl := NEW (FormsVBT.Closure, apply := Quit);
ccl := NEW (FormsVBT.Closure, apply := Compute);

BEGIN
FormsVBT.Attach (fv, "exit", qcl);
FormsVBT.Attach (fv, "num1", ccl);
FormsVBT.Attach (fv, "num2", ccl);
FormsVBT.Attach (fv, "functions", ccl);
RETURN fv

END NewForm;
PROCEDURE Quit (cl : FormsVBT.Closure;

fv : FormsVBT.T;
name: TEXT;
time: VBT.TimeStamp) =

BEGIN
Trestle.Delete (fv)

END Quit;
PROCEDURE Compute (cl : FormsVBT.Closure;

fv : FormsVBT.T;
name: TEXT;
time: VBT.TimeStamp) =

VAR
answer: REAL;
first := FLOAT (FormsVBT.GetInteger (fv, "num1"));
second := FLOAT (FormsVBT.GetInteger (fv, "num2"));
fn := FormsVBT.GetChoice (fv, "functions");

BEGIN
IF Text.Equal (fn, "add") THEN

answer := first + second
ELSIF Text.Equal (fn, "sub") THEN

answer := first - second
ELSIF Text.Equal (fn, "mul") THEN

answer := first * second
ELSIF Text.Equal (fn, "div") THEN

answer := first / second
END;
FormsVBT.PutText (fv, "result", Fmt.Real (answer))

END Compute;
BEGIN
VAR fv := NewForm(); BEGIN

Trestle.Install(fv);
Trestle.AwaitDelete(fv)

END
END Calc3Cell.

2.5. IMPROVING READABILITY 19

The parameters to an event-handler (e.g., Quit and Compute in theCalc3Cellprogram) identify
the dialog (fv) in which the event happened and the name of the interactor causing the event.

The event-handler’s first parameter, named cl in this example, is a FormsVBT.Closure that
is specified when the event-handler is attached. Itsapplymethod is the event-handler. The standard
way of passing additional information to the event-handler is to create a subtype ofFormsVBT.Closure,
with new fields, and possibly new methods, for handling the new information. The time parame-
ter is a timestamp associated with the user event that caused the event-handler to be invoked. The
timestamp is needed for certain operations, like acquiring the keyboard focus.

We say that a component “generates an event” when the user does something in a component
that causes the event-handler to be invoked. The semantics of what causes an event to be generated
is specific to each component.

The Three-Cell Calculator application creates a form and passes it to Trestle, the window man-
ager, which “installs” it, just as the “Hello FormsVBT!” application did. Here, as part of building
a form from the S-expression in file Calc3Cell.fv, we also attach event-handlers to the compo-
nents to which the application will respond. The Quit event-handler, which is attached to the com-
ponent named exit (the button labeled “QUIT”), deletes the window from Trestle. The Compute
event-handler, which is attached to both of the Numeric components as well as the radio buttons,
retrieves the values stored in both Numeric components, determines which arithmetic function the
user selected, performs the operation, and then displays the result.

Exercise 3: Add your favorite operator to the application and to the user interface. (If you’re unde-
cided about which operator is your favorite, try GCD.)

2.5 Improving Readability

The Three-cell Calculator S-expression illustrates a number of common abbreviations that help make
the FormsVBT language more readable.

A percent sign is an abbreviation for the Name property. That is, the FormsVBT parser reads
%xyz exactly as if it were (Name xyz).

An equals sign is an abbreviation for the property called Value. That is, the FormsVBT parser
reads =xyz exactly as if it were (Value xyz). By convention, any component whose value can be
changed interactively by a user has a Value property.

Components that display some type of object, like a string or a pixmap, specify the object using
a property called Main. For example, to display a pixmap from a file named Trumpet, you’d say
(Pixmap (Main "Trumpet")). However, the Main property can be abbreviated by omitting
the keyword Main and the associated parentheses, e.g., (Pixmap "Trumpet").

A Text component that has no properties other than Main can be further abbreviated simply by
giving a string. For example, (Text (Main "QUIT")) can be reduced to (Text "QUIT")
and then to "QUIT". Other examples of this are the children of the four Choice components in

20 CHAPTER 2. TUTORIAL

the last program. If you want to specify any properties on a Text component (such as a name, font,
color, or alignment), you can abbreviate Main, but you still need to write (Text ...).

Boolean properties have a value of either TRUE or FALSE. The default value of all Boolean
properties is FALSE. Mentioning the name of a Boolean property is an abbreviation for specifying a
true value. For example, in the Three-Cell Calculator, the token LeftAlign is an abbreviation for
(LeftAlign TRUE).

Finally, leaf components without any properties can be written without parentheses, e.g., Fill.
The following chart summarizes these abbreviations:

(Text "t") "t"
(Name n) %n
(Value v) =v
(Main m) m
(boolprop TRUE) boolprop
(proplessleaf) proplessleaf

Exercise 4: The following interface contains a textual label, a type-in field, and a button:

The interface is 250x75 points, and it uses Button, Frame, Pixmap, Rim, Shape, Text, and
TypeIn components, in addition to some HBoxes, VBoxes, Glues, and Fills. Appendix A de-
scribes the class-specific properties for each component. Write a concise FormsVBT expression for
this form.

FormsVBT provides two additional ways to make S-expressions more readable. First, an S-expression
can be split across multiple files (resources). To insert a file named HelpDialog.fv, just include
the expression

(Insert "HelpDialog.fv")

wherever you want the file to be inserted. The Insert expression can appear anywhere in an S-
expression; logically, it is replaced by the contents of the named file before the S-expression is parsed.
The second way to make the form more readable is by using macros. Syntactically, a macro is an
inherited property with the name Macro. For details on macros, see Section 3.5.

2.6. SEPARATING THE UI FROM THE APPLICATION 21

2.6 Separating the UI from the Application

One of the ways that user interface toolkits like FormsVBT simplify the construction of interactive,
graphical applications is by forcing a separation of the interaction-specific parts from the application-
specific parts. This allows the interface designer to concentrate on the design of the interface and the
application programmer on the implementation of the application-specific code.

In FormsVBT, the only UI components known to the application are those that are given names.
The application is insensitive to the layout of components and to the existence of all unnamed com-
ponents. There is even some insulation between the application and the UI for named components:
one component may be replaced with another whose behavior with respect to the application is the
same.

For instance, in the Three-Cell Calculator interface from Section 2.4, we could replace the Text-
component named result with any other component that can store text, such as a Typescript.
A Typescriptwould capture a history of all values computed by the application. (We would also
need to delete the LeftAlign and Main properties to make this change.)

We could also replace the radio buttons with items in a pulldown menu by replacing this expres-
sion

(Radio %functions
(VBox
(Choice %div "divide")
(Choice %mul "multiply")
(Choice %sub "subtract")
(Choice %add "add")))

with the following expression:

(Menu "?" (Radio %functions =add
(HBox
(VBox

(Choice MenuStyle %div "divide")
(Choice MenuStyle %mul "multiply"))

(VBox
(Choice MenuStyle %sub "subtract"))
(Choice MenuStyle %add "add")))))

See Fig. 2.3.
The first child of a Menu is the “anchor” of a pulldown menu; click on it to get a menu displayed.

The second child of aMenu is an arbitrary S-expression, displayed when the user clicks on the anchor.
In the example above, the first child is a Text component displaying a question mark. The second
child contains four radio buttons, arranged in a 2-by-2 matrix. The MenuStyle property causes a
radio button to react when the mouse rolls into it rather than on a mouse click.

The contents of this menu emphasizes an earlier point about composition. A Menu does not im-
pose any structure on the contents of the menu. One merely composes a Menu out of 2 children: a

22 CHAPTER 2. TUTORIAL

Figure 2.3: A modified UI for the three-cell calculator application. The cursor (not visible in the
figure) is over the string “multiply.”

child that is the anchor button, and a child that appears when the anchor button is activated. A “tra-
ditional” pulldown menu is a VBox whose children are MButtons.

Exercise 5: Change the program so that a symbol for the current operator is displayed instead of
the question mark. Hint: Assign name to the quoted question mark, by using the expanded format
(Text %op "?"), and call FormsVBT.PutText to change what is displayed in a Text com-
ponent.

2.7 Subwindows

The three-cell calculator will crash if we try to divide by 0. Let’s change the application to pop up a
dialog box warning the user if there is an attempt to divide by 0. We need to modify the Compute
event-handler by adding a test for a divisor equal to zero just before the division:

...
ELSIF Text.Equal (fn, "div") THEN
IF second = 0.0 THEN

FormsVBT.PopUp (fv, "errorWindow");
RETURN

END;
answer := first / second

END;
...

The call to FormsVBT.PopUp will cause the named dialog to appear.
It is easy to add a dialog named errorWindow to the calculator’s S-expression that was given

in Section 2.4. The S-expression becomes the following:

(ZSplit
(ZBackground (Shape ...))
(ZChassis %errorWindow

(Title "Error Message")

2.7. SUBWINDOWS 23

(Rim (Pen 20)
(Text %errorText "Can’t divide by zero."))))

A ZSplit takes an arbitrary number of children and displays them as overlapping windows. The
first child is the background; it is always visible. The visibility and location of the other children are
under program control. The ZChassis wraps a “banner” around its child; the banner is respon-
sive to mouse activity for the common window controls of closing, moving, and resizing. A call to
FormsVBT.PopUp will cause a specified child of a ZSplit to appear. By default, a ZChassis
is not initially visible.

Another common use of subwindows is to allow a user to specify additional information for a
command. For example, the “Save As...” button found in many applications pops up a dialog box,
which is a subwindow, with a way to enter the name of a file. A button like “About Bazinga...” pops
up a subwindow containing information about the application called Bazinga.

In situations like these, it’s a burden on the programmer to write an event-handler that simply calls
FormsVBT.PopUp. To simplify this common case, FormsVBT provides a PopButton. This
component is just like a Button, but before its event-handler is called, it causes a designated subwin-
dow to appear. In practice, applicationsoften don’t need to attach any event-handler to aPopButton.

For grins, we’ll now change the original three-cell calculator user interface so that the radio but-
tons are in a subwindow that is completely controlled by the user. Clicking on the "?" menu will
cause the subwindow to appear. The window can be closed and repositioned without any applica-
tion code. We need make two small changes to the original S-expression given in Section 2.4 to add
subwindows. First, replace the radio buttons by a button that causes a subwindow to pop-up. That
is, change

(Radio %functions ...)

to

(PopButton (For fnWindow) "?")

Second, move the Radio expression into a subwindow, by enclosing it in a ZChassis, and wrap-
ping a ZSpit around the root. Now, Calc3Cell.fv looks like this:

(ZSplit
(ZBackground (Shape ...))
(ZChassis %errorWindow ...)
(ZChassis %fnWindow
(Radio %functions ...)))

Exercise 6: Add an “About Three-Cell Calculator...” button. It should pop-up a subwindow with ap-
propriate information. If you want to put the button inside of a pull-down menu, use PopMButton.

24 CHAPTER 2. TUTORIAL

Figure 2.4: The three-cell calculator application with a modal dialog.

2.8 Modal Dialogs

When a subwindow appears, the rest of the form and all other subwindows remain active. In the case
of the operator-subwindow in Section 2.7 (i.e., the ZChassis named fnWindow), this behavior
was desirable. However, this behavior may not be desirable for the error-message subwindow. That
is, some application writers would like to force the user to explicitly close the error message subwin-
dow before continuing to interact in the application. In the UI jargon, this is called a modal dialog.

A simple way to do this is to bring up the error subwindow as before, but also to “deactivate”
the background—make it unresponsive to user actions—while the subwindow is displayed. When
the dialog is finished, we “re-activate” the background. A FormsVBT component called Filter
is used to set the reactivity of its child to be active (the default case), passive (mouse and keyboard
events are not sent), dormant (like passive, but it also grays out the child and changes the cursor),
or vanished (like passive, but also draws over the child in the background color, thereby making it
invisible).

Changing the modeless subwindow in the calculator so that it is modal requires only a trivial
change. First, add a Filter just inside the ZBackground. Name this component zbg. Second,
in the application, add

FormsVBT.MakePassive(form, "zbg")

after the call toFormsVBT.PopUp. Finally, you need to register an event-handler for theZChassis
named errorWindow. The event handler will be invoked when the subwindow is closed; it con-
tains the following line:

FormsVBT.MakeActive(form, "zbg")

You might also wish to eliminate the banner on the subwindow. To do so, change theZChassis
to be aZChild, and add aCloseButton somewhere in the subwindow. TheCloseButtonbut-
ton will cause the subwindow in which it is contained to be taken down. Fig. 2.4 shows the modified
application.

Exercise 7: Make the error window in the three-cell calculator modal in the manner suggested in
this section: In the.fv file, add a Filter inside theZBackground, change the error subwindow

2.9. A FILE VIEWER 25

from a ZChassis to a ZChild, and add a CloseButton to the error window. In the .m3 file,
change the application code so that the background is made passive when the error window appears,
and re-activated after error window disappears.

Exercise 8: When the error dialog appears while the subwindow containing operators is visible, the
operators are not deactivated, although the main form is deactivated. Change the form so that every-
thing except the error subwindow is made passive. Don’t modify the application! (Hint: Use two
ZSplits, one the background child of the other.)

2.9 A File Viewer

It’s easy to hook up the FormsVBT text-editing widget to an application to make a bona fide text
editor. The file-viewer application, shown in Fig. 2.5, contains a type-in area on the top for entering
the name of a file and a fully functional text editor that occupies the bulk of the window. The text
editor is in read-only mode.

The S-expression for the application, in the file Viewer.fv, is quite simple:

(Rim (Pen 10) (Font (WeightName "Bold"))
(VBox

(HBox
(Frame Lowered (TypeIn %fileName))
(Glue 10)
(Button %exit "QUIT"))

(Glue 10)
(Shape (Height 200 + inf) (Width 300 + inf)

(Frame Lowered (TextEdit ReadOnly %editor)))))

The application is structured as in the three-cell calculator application in Section 2.4. A NewForm
procedure converts the S-expression into a runtime object and registers event-handlers. Only one
event-handler is needed here; ReadFile is attached to the type-in field fileName. It is invoked
whenever you type a carriage return in the type-in field. The code is straightforward:

26 CHAPTER 2. TUTORIAL

Figure 2.5: A simple file viewer application.

PROCEDURE ReadFile (cl : FormsVBT.Closure;
fv : FormsVBT.T;
name: TEXT;
time: VBT.TimeStamp) =

VAR fname := FormsVBT.GetText (fv, "fileName");
BEGIN

TRY
FormsVBT.PutText (fv, "editor", GetFile (fname));

EXCEPT
Rd.Failure =>

FormsVBT.PutText (fv, "editor", "");
FormsVBT.PutText (fv, "fileName", "");

END;
END ReadFile;

The event-handler first retrieves the string you typed into the type-in field named fileName. It then
calls an internal procedureGetFile to retrieve the contents of a file by that name, and finally stores
the contents into the text-editor widget. If an error is encountered while trying to retrieve the contents
of the file, ReadFile catches the exception that is raised and just erases the contents of the type-in
field and the text editor. The application is shown in Fig. 2.5.

Exercise 9: Add a Reset button to the left of the Quit button. Clicking on this button should clear
the contents of the type-in field. For extra credit, interpret a double click to also clear the contents of
the editor. To detect a double-click, you will need to examine the VBT.MouseRec that is available

2.9. A FILE VIEWER 27

Figure 2.6: The file viewer application again, but now, file names can be specified in the type-in field
at the top or using the file browser at the left.

from FormsVBT.GetTheEvent to the Reset button’s event-handler.

Exercise 10: Add a pop-up to signal when the file could not be opened, rather than clearing the type-
in field.

If you substituteFileBrowser forTypeIn, you’ll be able to traverse the file system by double-
clicking on directories (those items ending with a slash) in a browser. The file browser generates an
event when you double-click on a file. Note that the application does not need be changed at all!

While it’s nice to be able to traverse the hierarchy by mousing around in the file browser, there are
times when it is more desirable simply to type in a pathname. No problem. We’ll just add a type-in
field to the S-expression. Here’s the new S-expression (see Fig. 2.6):

28 CHAPTER 2. TUTORIAL

(Rim (Pen 10) (ShadowSize -1)
(BgColor "White") (LightShadow "Black")
(DarkShadow "Black")

(VBox
(HBox

(Frame Lowered (TypeIn %fileNameString))
(Glue 10)
(Button %exit "QUIT"))

(Glue 10)
(HBox

(Shape (Width 100)
(Frame Lowered (FileBrowser %fileName)))

(Glue 10)
(Shape (Height 200 + inf) (Width 300 + inf)

(Frame Lowered (TextEdit ReadOnly %editor))))))

(A negative value for the inherited property ShadowSize is a convention for telling FormsVBT to
give feedback using a flat, 2-d style rather than a Motif-like, 3-d style.)

We also need to change the application slightly to register the ReadFile event-handler with
the type-in field (i.e., fileNameString) as well as with the file browser (i.e., fileName). In
addition, procedure ReadFile itself needs to be changed trivially to initializefname from the in-
teractor that caused the event-handler to be invoked:

VAR fname := FormsVBT.GetText (fv, name);

So far so good, but there’s no tie between the file browser and the type-in field.

Exercise 11: Implement event-handler methods for the file browser (fileName) and the type-in
field (fileNameString) to keep them synchronized. That is, typing a path into the type-in field
should cause the browser to change the directory it is displaying. The directory displayed by the file
browser is set by callingFormsVBT.PutText, passing in the name of the directory to be displayed.
What happens if you specify a directory that doesn’t exist?

If you didn’t do the last exercise, now is your last chance ...
It turns out that FormsVBT already provides a component that ties a type-in field to a file browser.

The component is called a Helper, and it has a class-specific property called For that names the
file browser to which it is tied. So, if you change the expression

(TypeIn %fileNameString)

to

(Helper (For fileName))

2.9. A FILE VIEWER 29

and replace the initialization of variable fname in the original program as described above, then the
type-in field and the file browser will stay synchronized, without any application-code intervention.

Exercise 12: What happens when you replace “Helper” by “DirMenu”? What happens when you
tie a file browser to both a Helper and DirMenu?

30 CHAPTER 2. TUTORIAL

3. The FormsVBT Language

The FormsVBT language provides a mechanism for textually describing a user interface. The lan-
guage is not a general-purpose programming language. It has no variables, control structure, or run-
time computation. Rather, it’s a declarative textual description of the hierarchical arrangement of
components that make up the user interface, written as an S-expression. Fig. 3.1 shows a simple user
interface and its S-expression.

3.1 Basic Syntax

Each component is writtenas an S-expression that begins with type of the component, such asBorder,
Button, or VBox. Following the type are subexpressions that describe eitherproperties or children
(sub-components). Properties provide additional information that control the appearance or behav-
ior of the component. The S-expression in Fig. 3.1 contains properties Pen, Pattern, Width,
Height, BgColor, and Color. Property-expressions are distinguished from child-expressions
by their names. There is one important rule to remember:

In any S-expression, all property expressions must appear before any sub-components.

Properties are discussed in detail in Section 3.3.

3.2 Components

The components of FormsVBT can be categorized in two ways: by the number of children that they
take, or by their function. In the first categorization, we have leaves, filters, and splits:

� A leaf has no children.

� A filter has exactly one child.

� A split contains any number of children.

In Fig. 3.1, Text and Pixmap are leaf components; Border, Button, and Shape are filters;
and VBox is the only component in the form that is a split.

The second way to categorize the components is by their function:

31

32 CHAPTER 3. THE FORMSVBT LANGUAGE

(Border (Pen 20) (Pattern "NWDiagonal")
(Button %cornet

(VBox
(Shape (Width 50) (Height 40)

(Pixmap "Trumpet"))
(Text (BgColor "Black") (Color "White") "Horn"))))

Figure 3.1: A very simple user interface and its description in the FormsVBT language. The user
interface consists of a button that is surrounded by a border. The button itself displays a pixmap of
a trumpet above the word “Horn”. At runtime, the application will register an event-handler for the
component named “cornet”; the event-handler will be invoked when the user clicks on the button.

� Passive visuals establish appearance and spacing. Examples includeText, Glue, andBorder.

� Basic interactors contain an editable value that both the user and the application can read and
modify. Examples include TypeIn, Numeric, and FileBrowser.

� Interactive modifiers add behavior to a child. The prototypical example is a Button. Most
interactive modifiers also add some type of visual feedback. For example, a Button adds
a “shadow” around its child to make the child appear 3-dimensional. Some modifiers, like a
Boolean, also involve an editable value.

� Helpers are components that control other components in some way. For example, aPopButton
is a button that causes a subwindow (ZChassisorZChild) to appear. ADirMenu is a pull-
down menu that is used with a FileBrowser. The items in the menu are the ancestors of
the directory currently being displayed.

� Groupers declare that all their descendants belong to one group for some particular purpose.
A Radio unites a group of radio buttons, which are Choice components.

� Geometers take an arbitrary number of children and lay them out in some way. Examples in-
cludeVBox, HPackSplit, and TSplit. An HPackSplit formats its children like words
in an unjustified paragraph. A TSplit is a temporal split—at any time, exactly one of its
children is visible.

3.3 Properties

Properties provide information that modifies the appearance or behavior of a component. A property
subexpression has the following format:

3.3. PROPERTIES 33

(keyword value)

The keyword implies the expected type of the value; values are type-checked when the description
is parsed by FormsVBT.1 Nearly all properties have default values and can be omitted.

For example, the expression

(Boolean (CheckMark TRUE) (MenuStyle TRUE) "Gravity")

defines a Boolean interactor with two properties. TheCheckMark property says to use a check mark
rather than a check box for visual feedback, and the MenuStyle property says that the Boolean
should be responsive to a mouse rolling into it, rather than responding only to a mouse click. You
would use MenuStyle when the Boolean is an element of a menu.

A value must have one of the following types:

Text A quoted string.

(Border (Pattern "NWDiagonals") ...)

Cardinal A positive integer.

(TSplit (Value 4) ...)

Integer An integer.

(Numeric (Min -100) (Max 100))

Real A real number. A whole number does not need a decimal point, and a number be-
tween -1 and 1 does not need a leading zero.

(Border (Pen 4.25) ...)

Boolean The token TRUE or FALSE.

(Boolean (MenuStyle TRUE) ...)

CardinalList A list of positive integers.

(MultiBrowser (Value 1 5 3 19))

TextList A list of quoted strings.

1If you are developing a form using the formsedit interface-builder, then type- and syntax-errors will be reported and
highlighted each time that you issue the “Do It” command. If an application gives the FormsVBT runtime system a syntacti-
cally incorrect S-expression to parse, FormsVBT will raise an exception to signal the syntax error.

34 CHAPTER 3. THE FORMSVBT LANGUAGE

(FileBrowser (Suffixes "i3" "m3"))

Symbol A name. For example, the For and Name properties are of this type:

(PageButton (For letters) "Next")
(Button (Name no) "Cancel")

Names are either identifiers (a letter followed by any number of letters, digits, or
underscores), or non-empty sequences of characters from the set

! # $ % & * + - . / : < = > ? @ [] ˆ _ { } ˜

or a sequence of characters and escape sequences surrounded by vertical bars (e.g.,
|Sue’s button|). The escape sequences are

\n \t \r \f \\ \|

and \ followed by three octal digits.

Font The name of a font conforming to the specifications in “X Logical Font Descrip-
tions” [9]. The font can be specified in two ways: A quoted string in the form that
xlsfonts prints and accepts as a pattern (we call this the string format), or a list
of parenthesized keyword pairs for the parts of a font (we call this the list format).
Consider the following example:

(VBox
(Text (LabelFont "helvetica_bold14")

"Helvetica Bold @ 14pts")
(Text (LabelFont "-*-courier-medium-*-140-*")

"Courier @ 14pt")
(HBox (LabelFont (Family "Times")

(PointSize 140))
(Text "Times@14pt")
(Text (LabelFont Reset

(Family "*")
(Width "semicondensed"))

"SemiCondensed@any")
(Text (LabelFont (PointSize 180)

(Slant "i"))
"Italics@14pt"))))

The font specification for the top two children of the VBox use the string format.
The other font specifications are in the list format. Here’s what the example looks

3.3. PROPERTIES 35

like:

In the list format, the keywords for the parts of a font are

Foundry Family WeightName Slant
Width PointSize HRes VRes
Spacing AvgWidth Registry Encoding

PointSize, HRes, VRes, and AvgWidth take cardinal values or the string
"*". All the others take strings.

Unspecified parts of a font take on the value of the nearest ancestor component for
which the part was specified using the list format. However, the keyword Reset
causes all unspecified parts of a font to take on the default values assigned by FormsVBT.

Color The description of a color either as a triplet of real numbers between 0.0 and 1.0
representing RGB or HSV values, or as a string. The following example shows
both formats:

(Pixmap
(BgColor .5 0.23 1.0)
(Color "VeryPaleRed") "MailBox")

The triplet may be preceded by one of the symbols RGB or HSV. The default is
RGB. The symbol HSV represents hue-saturation-value. Example:

(BgColor HSV 0.1 0.45 0.222)

Appendix B.1 describes the conventions used for naming colors.

Sx An S-expression in the FormsVBT language. For example, the Title property
of a ZChassis (a frame for a subwindow) has this type:

36 CHAPTER 3. THE FORMSVBT LANGUAGE

(ZSplit
(ZBackground ...)
(ZChassis
(Title

(HBox
Fill
"Window # "
(Border (Text %wid =""))
Fill))

...))

Enumeration A set of mutually exclusive tokens. FormsVBT supports the following enumera-
tions:

Type Keywords

Alignment
Center, LeftAlign,
RightAlign

Axis Horizontal, Vertical

FeedbackStyle
CheckBox, CheckMark,
Inverting

Reactivity Active, Passive,
Dormant, Vanish

ScrollStyle
HorOnly, VerOnly,
NoScroll, AlaViewport,
Auto

ShadowStyle
Flat, Raised, Lowered,
Ridged, Chiseled

Think of each enumeration as a collection of Boolean properties, at most one of
which may be specified as TRUE. If no choices are specified, then it’s as if the de-
fault choice was given. Here are some examples:

(Viewport (VerOnly TRUE) (Horizontal TRUE) ...)
(Filter (Dormant TRUE) (Vanish FALSE)

(Button ...))
(Frame (Raised TRUE)

(Rim (Frame (Lowered TRUE) ...)))

3.3. PROPERTIES 37

Size The description of the dimensions of a component along some axis. It has the syn-
tax

[size] [+ stretch] [- shrink]

where size, stretch, and shrink are specified as points in real numbers. Stretch and
shrink, if both specified, may be in either order. Spaces are required around the
plus and minus signs. The keyword Inf is used to indicate a very large value for
stretch. See Section 3.6.1 for more details.

At The location of a subwindow component relative to its parent. There are two ways
to specify this location: you can say where the center or a particular corner should
be positioned; or you can specify where the four edges should appear. To position
a subwindow by its center or corner, you write

(At h v [Center | NW | NE | SE | SW] [Scaled | Absolute])

If you don’t specify the center or a corner, the default is Center. If you don’t
specify whetherh andv are scaled or absolute, the default for this form isScaled,
which means that h and v indicate the proportionate placement in the horizontal
and vertical directions of the center or corner; in this case, h andvmust be numbers
in the range 0–1. Otherwise, in the absolute case, h and v represent the horizontal
and vertical distance, in points, between the subwindow’s center or corner, and the
parent window’s northwest corner.

To position a subwindow by its edges, you write

(At west east north south [Absolute | Scaled])

The default in this case is Absolute, not Scaled; it indicates the distance in
points between the subwindow’sedges and the parent’s west and north edges. Note
that this is the only case in which you can specify the subwindow’s exact size.

Scaled indicates the proportion of the parent window’s width and height that
mark the subwindow’s boundaries. For example,

(At .10 .10 .90 .90 Scaled)

is effectively a “10% Rim” around the subwindow, while

(At .50 .50 1 1 Scaled)

places the subwindow in the parent window’s southeast quadrant. See Section 3.7
for more details.

38 CHAPTER 3. THE FORMSVBT LANGUAGE

3.3.1 Varieties of Properties

Properties come in three varieties: class-specific, inherited, and universal.

Class-Specific Properties

Class-specific properties are defined in conjunction with a specific component class, and are allowed
only on components of that class. It is fine for several components to use the same specific property.

There are two very common class-specific properties: Main and Value.

� Main

Many passive leaf components exist to display some object; such an object is specified by
a property called Main, whose type varies. If this property exists, it is usually required. Its
value is usually specified by a shorthand: it simply follows the component keyword, without
the word Main or parentheses. Here are two examples, in the abbreviated format:

(Texture "Gray")
(Pixmap "OpenRightArrow")

� Value

The Value property specifies the initial state of some user-modifiable value. The type of this
property depends upon the value type of the interactor. No class has both a Main property and
a Value property. Here are two examples, in the abbreviated format:

(Numeric =5)
(TextBrowser (From "choices.txt") =(2 5 1))

Other specific properties (and there are many) are described with their component classes in Ap-
pendix A.

Universal Properties

Universal properties are applicable to components of all classes, and have a system-defined meaning.
There is currently only one such property: Name.

� Name (type: Symbol; default: none)

The name of a component, for access by the application. The type of the Name property is a
Symbol and it has no default value. A form may not contain duplicate names; not all compo-
nents need to have a Name property. The property may be abbreviated: (Name goButton)
can be written as %goButton.

3.3. PROPERTIES 39

Inherited Properties

Inherited properties, like universal properties, may be specified for any component, though they are
not relevant to all classes. But they have the special feature that a value specified for one compo-
nent becomes the default value for all descendants of that component. Thus an inheritable property
specification applies not to one VBT, but to an entire subtree. The inherited properties are: Font
and LabelFont; Color and BgColor; LightShadow, DarkShadow, and ShadowSize. In
essence, the inherited properties determine the overall “look and feel” of the user interface.

� Font (type: Font; default: see below)

The font for components that display selectable text, such as TextEdit and the type-in part
of a Numeric. The type of theFont property is Font, and the default value would be written
in list format as follows:

(Font
(Foundry "*")
(Family "fixed")
(WeightName "medium")
(Slant "r")
(Width "normal")
(PointSize 120)
(HRes "*")
(VRes "*")
(Spacing "*")
(AvgWidth "*")
(Registry "iso8859")
(Encoding "1"))

Essentially, it’s a 12-point, fixed-width font that can be scaled (using the Scale component).

� LabelFont (type: Font; default: see below)

The font for components that display non-selectable text, such as Text, and various browsers
such asMultiBrowser andFileBrowser. The type of theLabelFontproperty is Font,
and the default value would be written in list format as follows:

(LabelFont
(Foundry "*")
(Family "helvetica")
(WeightName "bold")
(Slant "r")
(Width "*")

40 CHAPTER 3. THE FORMSVBT LANGUAGE

(PointSize 120)
(HRes "*")
(VRes "*")
(Spacing "*")
(AvgWidth "*")
(Registry "iso8859")
(Encoding "1"))

Essentially, it’s a 12-point, boldface helvetica font that can be scaled (using the Scale com-
ponent).

� Color (type: Color; default: 0 0 0)

The foreground color; used for displaying text, bars, borders, the “on” pixels of pixmaps and
textures, and so on. The default foreground color is black.

� BgColor (type: Color; default: .8 .8 .8)

The background color; used for displaying text background, glue, and the “off” pixels of tex-
tures. The default background color is a light gray.

� LightShadow (type: Color; default: 1 1 1)

The color used for the “light shadow” in implementing a Motif-like 3-d look. The default light
shadow is white.

� DarkShadow (type: Color; default: .333 .333 .333).

The color used for the “dark shadow” in implementing a Motif-like 3-d look. The default dark
shadow is a dark gray.

� ShadowSize (type: Real; default: 1.5).

The absolute value of this property is the size of the “shadow” in implementing a Motif-like
3-d looks. The default value is 1.5 points.

Look and Feel

In order to have an effective Motif-like look and feel, you need to change the LightShadow and
DarkShadow whenever you change the BgColor. Shiz Kobara [4] provides an excellent set of
guidelines for choosing harmonious color triples.

On a grayscale monitor, objects are displayed using the intensity of their color.
On a monochrome monitor, FormsVBT does not support a Motif-like look and feel. Rather, the

user interface appears “Macintosh-like.” For example, feedback on buttons is given by inverting the

3.4. SYNTACTIC SHORTCUTS 41

image of an object rather than raising and lowering the object; a Radio button uses bitmaps showing
a filled or empty circle rather than a 3-d diamond that is either raised or recessed. Behind the scenes,
two things are happening. First, on monochrome displays, BgColor displays as background and
the other colors display in foreground. Second, the FormsVBT interactors are implemented in such
a way as to give feedback using a 2-d style when displaying on a monochrome dispay.

Actually, the FormsVBT interactors use the Motif-likestyle only when they are on a non-monochrome
display and the ShadowSize property is positive. Therefore, you can force a non 3-d look for a
color or gray-scale monitor by setting the ShadowSize to be 0. You should probably also change
theBgColor to be white in this case. Alternatively, you may find it convenient to set ShadowSize
to be a negative number and the shadow colors to be black, as follows:

(BgColor "White")
(LightShadow "Black")
(DarkShadow "Black")
(ShadowSize -1.5)

This setup will cause the shadows on various objects, like buttons, to appear as black borders.

3.4 Syntactic Shortcuts

This section describes various shortcuts that make FormsVBT descriptions more readable.

1. The Main property may be given simply by giving its value, without the keyword or paren-
theses. This is allowed only for leaf components.

(Texture (Main "LightGray"))� (Texture "LightGray")

2. The Value property may be abbreviated by an equal sign, without parentheses, and with no
intervening space.

(Numeric (Value 27)) � (Numeric =27)

Exception: If it’s a TextList or CardinalList, then parentheses are needed.

(MultiBrowser (Value 4 9 2)) � (MultiBrowser =(4 9 2))

3. The Name property may be abbreviated by a percent sign.

(Button (Name xyz) ...) � (Button %xyz ...)

4. Any Boolean-valued property may be set true simply by giving its name, without parentheses.
By convention, the default value of all Boolean properties is false.

42 CHAPTER 3. THE FORMSVBT LANGUAGE

(TypeIn (Scrollable TRUE)) � (TypeIn Scrollable)

An element of an enumeration is a Boolean.

(Viewport (Auto TRUE) ...) � (Viewport Auto ...)

5. A component of classTextmay be given simply as a quoted string, provided that no properties
other than the string are specified.

(Text "Hello") � "Hello"

6. Any leaf component from the following list

Bar Chisel Fill Glue Ridge

may be given by its keyword, without parentheses.

(HBox "A Heading" (Fill)) � (HBox "A Heading" Fill)

3.5 Macros

The FormsVBT language supports macros. A macro is a procedure that returns an S-expression,
called the expansion, that replaces the macro call; that is, the expansion is itself a FormsVBT ex-
pression. The parameters passed to the macro are not evaluated by the call, although they may be
evaluated in the body of the macro. A macro definition can appear anywhere a component or prop-
erty can appear.

A macro-definition has the following syntax:

(Macro name [BOA] (formal ... formal) expression)

A formal parameter is either a name or a list of the form (name default) where default is any
S-expression, the default value for the parameter.

A macro uses either positional binding or keyword binding, but not both. If the definition in-
cludes the keyword BOA (“By Order of Arguments”), then the macro uses positional binding, and
the macro-call must have the form

(name actual ... actual)

The actuals are bound to the formals in left-to-right order.
If the definition does not include the keyword BOA, then the macro uses keyword binding, and

the macro-call must have the form

3.5. MACROS 43

(name (formal actual) ...(formal actual))

The actuals are bound to the formal parameters with corresponding names.
The number of actual parameters may not exceed the number of formal parameters. If there are

fewer actuals than formals, then all the remaining formals must have default values.
The body of the macro-definition is an expression that is evaluated (expanded) when the macro

is called. Typically, the body is a quoted or backquoted S-expression. As in Common Lisp macros,
quoted S-expressions are constants; they expand into themselves. Backquoted expressions are tem-
plates; all of the subexpressions are treated as constants except for expressions preceded by a comma
or a comma-atsign combination. In the expression ‘(A ,x B), the value of x is substituted as
the second element of the list; the expanded list will always have length 3. In the expression ‘(A
,@x B), the value of x must be a list, and the elements of that list are “spliced in” between A and
B; the expanded list will have length 2 (if the value of x is the empty list) or more.

For example, here is a macro that puts a 2-point border around its argument, after surrounding
the argument by 16 points of background space on all four sides:

(Macro Boxed (x)
‘(Border (Pen 2) (Rim (Pen 16) ,x)))

The call (Boxed (x (Text (BgColor "Red") "Warning"))) expands to

(Border (Pen 2)
(Rim (Pen 16)

(Text (BgColor "Red") "Warning"))))

If the definition of Boxed had included the keyword BOA then the expression could have been
written as

(Boxed (Text (BgColor "Red") "Warning"))

Thus, for all practical purposes, we’ve effectively added a new filter-component called Boxed to the
FormsVBT language.

Here is an example showing the use of default values:

(Macro Ht BOA (v (n 16)) ‘(Shape (Height ,n) ,v))

With this definition, the call (Ht (Button "Go!") 20) expands into

(Shape (Height 20) (Button "Go!"))

The call (Ht (Button "Stop")) uses the default value of n and expands into

(Shape (Height 16) (Button "Stop"))

An example using comma-atsign:

44 CHAPTER 3. THE FORMSVBT LANGUAGE

(Macro V (items)
‘(VBox (Color "Red") Fill ,@items Fill))

Given this definition, the call (V (items ("abc" "def" "hij"))) expands into

(VBox (Color "Red") Fill "abc" "def" "ghi" Fill)

Macros must be defined before they are called. The effect of using a macro to redefine an existing
name (e.g., VBox) is undefined.

It is permitted for a macro to expand into another Macro-expression, or into an expression con-
taining another Macro-expression. Nested backquotes are permitted; they follow Common Lisp
evaluation-semantics.

The expressions that are permitted in the body of a macro are not restricted to quoted and back-
quoted expressions. As we have already seen, an expression may be the name of a formal parameter;
the value of such an expression is the value of the corresponding actual parameter. Other expressions
that are permitted include the following:

� (Cat x y z ...)
There must be at least two arguments, and all of them must have type TEXT. The result has
type TEXT. Example: (Cat "Gate-" x "-button")

� (Empty x)
The argument must be a TEXT; the result has type BOOLEAN.

� (Equal x y)
The arguments may have any type; the result has type BOOLEAN.

� (Length x)
The argument must be a TEXT or a list; the result has type INTEGER. (FormsVBT does not
support a separate type for cardinals.)

� (Sub s start count)
The argument s must be a TEXT; start and count must be non-negative integers. The result is
a TEXT.

� (SymbolName x)
The argument must be a symbol; the result is a TEXT.

� (Intern x)
The argument must be a TEXT; the result is a symbol.

� (Cons x y)
The first argument may have any type. (All S-expressions are REFs.) The second argument
must be a list. The result is a list.

3.5. MACROS 45

� (List x y z ...)
The arguments may have any type; the result is a list.

� (List* x y ...z)
There must be at least two arguments. The last argument must be a list; the others may have
any type, and they are “consed” onto the front of the last argument.
Example: (List* 1 2 3 ’(a b)) � (1 2 3 a b)

� (Append x y z ...)
All the arguments must be lists; the result is a list.

� (Nth x n)
The first argument must be a list; the second argument must be an integer in the range [0 ..
RefList.Length(x) - 1]. The result is the nth element of the list.

� (NthTail x n)
The first argument must be a list; the second argument must be an integer in the range [0 ..
RefList.Length(x) - 1]. The result is the nth tail of the list.

� (IF pred x y)
The value of the first argument must be a BOOLEAN. If the value is TRUE, then x is evaluated,
and its value is the value of this expression. Otherwise, y is evaluated, and its value is the value
of this expression. I.e., this is IF as in Lisp, not as in Modula-3.

� (AND x y z ...)
All the arguments must be of type BOOLEAN, as is the result. The arguments are evaluated
from left to right. If any argument evaluates to FALSE, the value of this expression is FALSE,
and the remaining arguments are not evaluated. If all the arguments evaluate to TRUE, or if
there are no arguments, then the value of this expression is TRUE.

� (OR x y z ...)
All the arguments must be of type BOOLEAN, as is the result. The arguments are evaluated
from left to right. If any argument evaluates to TRUE, the value of this expression is TRUE,
and the remaining arguments are not evaluated. If all the arguments evaluate to FALSE, or if
there are no arguments, then the value of this expression is FALSE.

� (NOT x)
The argument must be a BOOLEAN, as is the result.

� (= x y z ...)
There must be at least two arguments. If x is a number (integer or real), then all the other ar-
guments must be numbers of the same type as x, and the result is TRUE if they are all equal,
and FALSE otherwise. If x is not a number, then the result is TRUE if all the arguments are the
same REF.

46 CHAPTER 3. THE FORMSVBT LANGUAGE

� (< x y z ...)
(<= x y z ...)
(> x y z ...)
(>= x y z ...)
There must be at least two arguments, and they must all be numbers of the same type as x. The
result is of type BOOLEAN.
(< x y z ...) � (AND (< x y) (< y z) ...)
Likewise for the other operations.

� NIL
This is a constant.

Macros provide one kind of extensibility to the FormsVBT language. Another kind of extensibil-
ity is provided by the realize method for a FormsVBT.T object. The realize method allows
the programmer to define subtypes of theVBT classes that FormsVBT uses, such as theFVTypes.FVButton.
However, it is not currently possible for the client to extend the language with any other VBT classes,
such as TranslateVBT.T or a client-defined subtype of VBT.Leaf. See Section 4.7 for details.

3.6 Layout

Every component has a natural size in the horizontal and vertical axes; these are its width and height.
It may also have shrinkability and stretchability in each axis, to allow it to adapt in a visually pleasing
way as the window is resized. The minimum size of a child in each axis is its natural size minus its
shrinkability, and the maximum size in each axis is its natural size plus its stretchability. The size
range of a component in each axis is the interval between its minimum and its maximum.

The size ranges in each axis are computed for a top-level window by a bottom-up process. Each
split computes its ranges as a function of the size ranges of its children; the function used depends
on the type of the split.

FormsVBT uses TEX’s “boxes-and-glue” layout model. At the center of the layout strategy are
two split classes, HBox and VBox. These organize the layout of their children along the horizon-
tal and vertical axes, respectively. To keep the discussion simple, we will explain the algorithm for
HBox.

An HBox reports its size as follows. An HBox’s natural width is the sum of the natural widths of
its children; its width shrinkability is the sum of the width shrinkabilities of its children (but no more
than its natural size), and its width stretchability is the sum of the width stretchabilities of its children.
An HBox’s height range is the intersection of the height ranges of its children (if the intersection
is empty, the children’s maximum heights are increased until the intersection is non-empty). The
HBox’s natural height is the maximum of the natural heights of its children, projected into the range.

Ultimately, the shape of each top-level window is controlled by the user through a window man-
ager. The window manager allows the user to shrink and grow a top-level window in each axis.
However, the window manager will not let user grow a top-level window beyond its maximum size
bounds, or shrink a top-level window below its minumum size bounds, in each axis. When a top-level

3.6. LAYOUT 47

window’s size is changed, the new size-information is propagated down through the top-level win-
dow’s tree of subwindows. How each split component communicates this information to its children
depends on the type of the component.

When an HBox is given some screen real estate to allocate among its children, here’s what hap-
pens. In the vertical dimension, it gives each child the same vertical height it has been given; that’s
easy. In the horizontal dimension, things are more interesting. The HBox computes the sum of the
natural widths of the children; this is the natural width of the HBox. Ideally, the HBox would give
each child its natural width and that’s all there is to it. If this is not possible, then either theHBox has
extra space it must divide among the children, or the HBox must take away space from its children.

In the first case, the HBox allocates its extra space in proportion to the children’s stretchabilities.
For example, if the first child has twice as much stretchability as the middle child, and three times as
much as the third and last child, then the extra space is divided 6=11, 3=11, and 2=11 to the children,
from left to right. In the second case, the HBox takes away space from the children in proportion to
the amount that each child can shrink.

If the sum of the minimum sizes of the children is greater than the size of the HBox, then the
HBox is said to be overfull. In this case the children are considered in order and given their minimum
sizes, as long as there is room. The first child that doesn’t fit is given all the space that’s left, and the
remaining children are given size zero.

If the sum of the maximum sizes of the children is less than the size of the parent, the split is said
to be underfull. This produces a state in which the children are stretched larger than their maximum
sizes, but in proportion to their relative stretchabilities.

3.6.1 How Sizes are Specified

Most of the time, sizes are not given explicitly; natural sizes are allowed to take effect. Leaf compo-
nents have an inherent natural size that is usually data-dependent. For example, the size of a Text
is the size of the rectangle needed to display it in the appropriate font. In each axis, it has no shrink-
ability but “infinite” stretchability. A vertical Scroller has a fixed width (a natural size with no
stretch and no shrink). Its natural vertical size is quite small (enough to show a “thumb”), it has no
vertical shrinkability, and it has infinite vertical stretchability. In practice, a vertical scrollbar is an
element of an HBox, so it takes on the size of the other elements of the HBox.

A filter component derives its size information from its child. A Border component, for exam-
ple, takes the size of its child, but adds twice the border’s thickness in both dimensions. A Guard
takes on precisely the size of its child. Appendix A describes how each component computes its
shape.

A property of type Size is used to describe the size of a component along one dimension. It has
the syntax

[size] [+ stretch] [- shrink]

where size, stretch, and shrink are specified as points in real numbers. Stretch and shrink, if both
specified, may be in either order. Spaces are required around the plus and minus signs. The keyword
Inf is used to indicate a very large value for stretch; it may also be spelled inf or INF.

48 CHAPTER 3. THE FORMSVBT LANGUAGE

A natural size may be overridden, completely or in part, by specifying the Width and Height
properties on aShape filter. For the sake of simplicity, let’s consider just theWidth property. There
are eight situations to consider: when size, stretch, and shrink are all missing; when just size is given;
when just stretch and shrink appear; and so on.

See Figure 3.6.1 for details.
A few common paradigms merit mention. First, to remove whatever inherent stretchability a

component has, use

(Shape (Width + 0) ...)

Second, to make a component stretchy regardless of its inherent stretchiness, use

(Shape (Width + Inf) ...)

And third, to set a component to a particular size, e.g, 100, use:

(Shape (Width 100) ...)

3.6.2 Precedence of Size Constraints

The various constraints on the size of an object sometimes come into conflict. They take precedence
as follows:

1. Downward-propagating constraints: window size forced by Trestle, vertical size forced by an
HBox, and so on.

2. Explicit size information, given by a Shape filter.

3. Upward-propagating natural size information: inherent size of leaves, filters taking size from
their children, an HBox taking width from the sum of its children’s widths, on so on.

3.7 Subwindows

In addition to organizing child components by grouping them horizontally or vertically, FormsVBT
allows child components to overlap. The split that does this organization is called a ZSplit.

There are two very different ways to use a ZSplit.

1. If you don’t like arranging elements in horizontal and vertical boxes, you could place each
element at a specific location. Many UI Builders follow this model; it has its advantages and
disadvantages. We rarely use this style at SRC.

2. You can use ZSplits as a container for overlapping, often transient subwindows that are not
installed as top-level windows.

Without loss of generality, we’ll talk just about the second style of use.
A ZSplit is written like this:

3.7. SUBWINDOWS 49

all missing
<q-p, q, q+r>

A no-op; reports the child’s size

size

<size, size, size>

Constrains child’s natural size to size, with no
stretch or shrink

- shrink

<q-shrink, q, q+r>

Forces child’s shrink to be shrink; doesn’t
change child’s natural size or stretchability

+ stretch

<q-p, q, q+stretch>

Forces child’s stretch to be stretch; doesn’t
change child’s natural size or shrinkability

- shrink + stretch

<q-shrink, q, q+stretch>

Changes child’s shrink to be shrink and its
stretch to be stretch; doesn’t change child’s
natural size

size - shrink

<size-shrink, size, size>

Changes child’s size to be size with no stretcha-
bility and with shrink shrinkability

size + stretch

<size, size, size+stretch>

Changes child’s size to be size with no shrinka-
bility and with stretch stretchability

size - shrink + stretch

<size-shrink, size, size+stretch>

Changes child’s size to be size with shrink
shrinkability and with stretch stretchability

This table describes whatShape reports, as a function of its child’s size. The notation< q�p; q; q+
r > refers to the child’s size: the natural size is q; it has p shrinkability, so it can shrink to a minimum
of q � p, and it can stretch to a maximum of q + r.

50 CHAPTER 3. THE FORMSVBT LANGUAGE

(ZSplit
The first child:

(ZBackground ...)
Any number of other z-children:

(ZChild ...)
(ZChassis ...)
...
)

The first child is called the background. It is displayed below all other children.
The other children are ordered from bottom to top in the z-dimension. A non-background child

of a ZSplit should be a ZChild or a ZChassis. It has an Open property to say if it should be
initially visible (“mapped”) or invisible (“unmapped”).

It also has an At property to control where it should appear when it is made visible. The syntax
of the At property is described below.

A PopButton is a button that causes a named subwindow to appear. A PopMButton is a
version of PopButton that is appropriate for inclusion in a menu.

A CloseButton is a button that causes a named subwindow to disappear.
A ZGrow is a button that is used to change the size of a subwindow. A ZMove-component is

used to change a subwindow’s position by dragging.
A ZChassis is just a ZChild that has a standard configuration, including a frame whose ban-

ner includes a CloseButton, a title inside a ZMove, and a ZGrow.

The “At” Property

The location of a subwindow (denoted by a ZChild and ZChassis component) is specified using
a property named At. TheAt property is a list that can take one of two forms: the “corner” form (two
numbers, an optional corner, and an optional coordinate type); or the “edges” form (four numbers and
an optional coordinate type). The coordinate types are eitherAbsolute, which means that the coor-
dinates represent the distance in points from the background window’s northwest corner, orScaled,
which means that the coordinates represent a fraction (a number in the range 0–1) of the background
window’s width or height. Here are the two forms of the At property: (At h v [Center |
NW | SW | NE | SE] [Scaled | Absolute]) (At west east north south [Absolute
| Scaled])

If the list contains two numbers, then these coordinates specify the center of the subwindow. If
the list contains two numbers and a corner, then these coordinates specify the position of that corner
of the subwindow. In either case the default coordinate type is Scaled.

For example, (At 0.5 0.5)means that the center of the subwindowshould be placed halfway
across and halfway down the background window, i.e., that it should be centered in the background
window. (If there is no At property, this is the default.)

3.7. SUBWINDOWS 51

(At 0.2 0.3 NW) means that the northwest corner of the subwinbdow should be place 20%
of the way across the backgroundwindow, and 30% down. This can also be writtenas (At 0.2 0.3
NW Scaled). Scaled coordinates must be written as numbers (integers or reals) in the range 0–1.

(At 100 237.5 Absolute)means that the center of the subwindow should be placed 100
points east and 237.5 points south of the background window’s northwest corner.

(At 100 237.5 SE Absolute) means that the subwindow’s southeast corner should be
placed at that position.

Alternatively, you may specify the edges of the subwindow by using a list with four numbers,
representing the west, east, north, and south edges, in that order. The numbers may be followed by
a coordinate type; the default coordinate type in the 4-number form is Absolute, not Scaled as
it is in the 2-number form.

If the coordinate type is Absolute, then the coordinates represent the distance in points from
the background window’s northwest corner; this is the only form in which you can specify the sub-
window’s actual size. For example, (At 20 120 60 300) means that the subwindow’s width
should be 100 points wide (120 � 20) and 240 points tall (300� 60), and that its northwest corner
should be 20 points east and 60 points south of the background window’s northwest corner.

(At .10 .90 .30 1 Scaled) means that the subwindow occupies the middle 80% hori-
zontally (:90� :10) and the bottom 70% (1� :30) of the background window.

(At .5 1 .5 1 Scaled)would place the subwindowin the southeast quadrant of the back-
ground window.

52 CHAPTER 3. THE FORMSVBT LANGUAGE

Here are some additional examples:

(ZChassis %A (At .2 .3 NW) ...)
(ZChassis %B (At 130 200 SE) ...)
(ZChassis %C (At .1 .6 .2 1) ...)
(ZChassis %D (At 20 120 60 300)

If the ZSplit containing the subwindow is 200 points wide and 300 points high, here is what each
specification means:

� Subwindow A has its northwest corner at (40, 90). That is, its northwest corner is 40 points to
the right of the ZSplit’s left edge and 90 points below the top.

� Subwindow B has its southeast corner at (130, 200).

� Subwindows C and D have the same positions: The northwest corner is at (20, 60) and the
southeast corner is at (120, 300).

The actual location of a subwindow has two additional restrictions. First, FormsVBT will ensure
that the size it gives a subwindow will be within the subwindow’s acceptable dimensions: the north-
west corner stays fixed, and the southwest corner is adjusted. Second, FormsVBT will not pop up a
subwindow with its northwest corner north or west of the visible portion of its parent; it will move
the subwindow away from the specified position in order to bring it into view.

3.8 Catalog of Components

This section provides a brief description of current FormsVBT components. Appendix A describes
the details of each component.

Visual components

These leaf and filter components have no interactive behavior; they are used to provide appearance
and positioning control.

3.8. CATALOG OF COMPONENTS 53

Border displays space, in the foreground color, around its child
Rim displays space, in the background color, around its child
Pixmap displays a pixmap, centered
Text displays a single-line text
Texture displays a textured rectangle

Bar a line in the foreground color; child of HBox or VBox
Glue a piece of background filler; child of HBox or VBox
Fill an infinitely stretchable background filler; child of HBox or VBox

Frame draws a 3-d border around its child
Chisel like Bar, but line appears 3-d, chiseled into background
Ridge like Bar, but line appears 3-d, raised above background

Scale enlarges or shrinks child
Shape constrains shape of child

The following filters respond to mouse activity. They do not report events to the application pro-
gram.

Viewport adds scrollbars around a child for panning
Filter controls reactivity and visibility of child

Basic Interactors

These are leaf components that have a user-modifiable value. They should always be named so that
the application will have access to the value.

Numeric an editable integer
Browser a group of lines of text, of which one may be selected
MultiBrowser a Browser in which multiple lines may be selected
Generic a placeholder to be taken over by the application
Scroller a vertical or horizontal scrollbar

Text Editing Interactors

These leaf components provide extensive text editing facilities.

54 CHAPTER 3. THE FORMSVBT LANGUAGE

TypeIn an editable-text region, typically single-line
TextEdit a scrollable text-editing area
Typescript a TextEdit with a reader and writer

File Browser Interactors

A FileBrowser displays the names of the files in a directory, initially the current working direc-
tory. The user can traverse the file system by double-clicking on elements in the browser. There are
two related leaf interactors that facilitate traversal.

FileBrowser the list of filenames
Helper an area for typing filenames
DirMenu a pulldown menu containing the names of parent directories

Basic Buttons

These filters take a child and add some interactive behavior to it.

Button generates an event when clicked
Guard click once to remove and expose underlying component
TrillButton generates an event while mouse is down

Boolean and Radio Buttons

ABoolean andChoice are types of buttons that also maintain some state. ARadio is a “grouper”:
it takes a child and changes neither its appearance nor its behavior. Rather, it specifies that it and all
its descendants are members of one “group” for some particular purpose.

Boolean toggles on/off when clicked
Choice a radio button; selects itself when clicked
Radio defines a group of Choice components

Drag and Drop

These buttons provide a way to implement “drag-n-drop” and to get semantic feedback.

3.8. CATALOG OF COMPONENTS 55

Source a button that is dragged
Target the thing into which a Source is dropped

Menus

Menu a pull-down menu; pulls down when anchor is clicked
MButton a pull-down menu element; generates an event on up-click

Other buttons that can be put into a menu are Boolean, Choice, and PopMButton.

Horizontal and Vertical Splits

Splits take an arbitrary number of children and lay them out in some fashion. These splits implement
the TEX-like “boxes-and-glue” layout model.

HBox horizontal layout
VBox vertical layout
HTile an HBox with user-adjustable divider bars between children
VTile VBox with user-adjustable divider bars between children

HPackSplit arranges children like words in a paragraph
VPackSplit arranges children like paragraphs in a multi-column newspaper

The layout algorithm for HTile and VTile is slightly different than for HBox and VBox when
the size of one of its children changes. In the case of the tiles, the algorithm tries to keep existing
children with their same relative sizes, which might have been adjusted by the user from their initial
assignments. The HBox and VBox always re-assign sizes, independent of the current sizes of the
children.

Subwindows

A ZSplit organizes its children as overlapping subwindows. The following components allow the
user to control the appearance, location, and size of subwindows.

56 CHAPTER 3. THE FORMSVBT LANGUAGE

CloseButton closes a subwindow
PopButton pops up a subwindow
PopMButton a menu item that pops up a subwindow
ZBackground needed around the background child
ZChild needed around non-background children
ZGrow a button for resizing a subwindow
ZMove a button for repositioning a subwindow
ZChassis a handy combination of ZChild, CloseButton,

ZMove, and ZGrow

Temporal Windows

TSplit a temporal window that organizes its children so that
exactly one child is visible at any given time.

LinkButton displays a specific child in a TSplit.
PageButton switches children displayed in a TSplit.

A common use of a TSplit is to make an arbitrary component appear or disappear under user
control. The component whose visibility is to be toggled is put into a TSplit with one sibling:
a component with no size. A LinkButton to the component will cause it to appear, and another
LinkButton to the sibling will effectively cause the component to disappear.

4. Programming with FormsVBT

All ordinary client access to the FormsVBT system is handled by theFormsVBT interface. The other
interfaces exported by the FormsVBT package are given in Appendix B.

4.1 The FormsVBT Interface

FormsVBT is a system for building graphical user interfaces. FormsVBT provides a special-purpose
language for describing user interfaces, an interface-builder that allows editing of such descriptions,
and a runtime library for applications to make use of the user interfaces.

The locking level for any procedure in this interface that may alter an installed VBT is LL.sup
= VBT.mu. (See the Trestle Reference Manual for a complete description of locking levels [6].)
Most applications don’t need to worry about VBT.mu because their event-handlers don’t fork any
threads that call FormsVBT.

INTERFACE FormsVBT;

IMPORT AnyEvent, Color, Filter, Rd, Rsrc, Sx, Thread, VBT,

Wr, ZSplit;

EXCEPTION

Error (TEXT);

Unimplemented;

Mismatch;

4.2 Creation, allocation, and initialization

An object fv of type FormsVBT.T (or simply, a form) is created by parsing an S-expression. These
expressions are usually stored in files with the suffix .fv. One way of creating a form is to call the
procedure NewFromFile, or the method fv.initFromFile, with the name of such a file; the
expression is parsed, and if there are no errors, a new VBT is created and stored in the form, which
is returned.

57

58 CHAPTER 4. PROGRAMMING WITH FORMSVBT

It is also possible for a program to generate a description “on the fly” and then use it to create a
form. The methods fv.init, fv.initFromRd, and fv.initFromSx support these options.
Forms can also be stored in resources (fv.initFromRsrc) and in URLs (fv.initFromURL).

TYPE

T <: Public;

<* SUBTYPE T <: MultiFilter.T *> (* ... *)

Public = Filter.T OBJECT

METHODS

<* LL.sup <= VBT.mu *>

init (description : TEXT;

raw : BOOLEAN := FALSE;

path : Rsrc.Path := NIL): T

RAISES {Error};

initFromFile (filename : TEXT;

raw : BOOLEAN := FALSE;

path : Rsrc.Path := NIL): T

RAISES {Error, Rd.Failure, Thread.Alerted};

initFromRd (rd : Rd.T;

raw : BOOLEAN := FALSE;

path : Rsrc.Path := NIL): T

RAISES {Error, Rd.Failure, Thread.Alerted};

initFromSx (sx : Sx.T;

raw : BOOLEAN := FALSE;

path : Rsrc.Path := NIL): T

RAISES {Error};

initFromRsrc (name : TEXT;

path : Rsrc.Path;

raw : BOOLEAN := FALSE): T

RAISES {Error, Rd.Failure,

Rsrc.NotFound, Thread.Alerted};

initFromURL(baseURL : TEXT;

raw : BOOLEAN := FALSE): T

RAISES {Error, Rd.Failure, Thread.Alerted};

realize (type, name: TEXT): VBT.T RAISES {Error};

<* LL.sup = VBT.mu *>

snapshot (wr: Wr.T) RAISES {Error};

restore (rd: Rd.T) RAISES {Mismatch, Error};

END;

4.2. CREATION, ALLOCATION, AND INITIALIZATION 59

The call fv.init(description, raw, path) initializes fv as a form and returns fv. It
creates a VBT, v, from description, which must contain a single, valid S-expression. The meth-
odsinitFromFile,initFromRd,initFromSx,initFromRsrc, andinitFromURLpro-
vide analogous support for files, readers, S-expressions, and named resources.

The raw parameter is used to control that actual internal structure fv. Regardless of the value
of raw, fv is a multi-filter and MultiFilter.Child(fv)will always return v. Internally, fv
is a filter; if raw is TRUE, then the filter’s child is v. Otherwise, fv is “cooked”, which means there
are several filters inserted between v and fv, so that the filter’s child has the following structure:

(ZSplit
(Filter
(HighlightVBT
(Filter v))))

The filter above v supports the common case of making an entire form passive without requiring
an explicit Filter interactor in the description. It also functions to restore the keyboard focus
to whichever of the form’s descendant-VBTs had most recently acquired the keyboard focus. The
ZSplit supports menus and other pop-up operations, even if there is no ZSplit explicitly men-
tioned in the description. To get the ZSplit that is inserted, use GetZSplit. Clients should not
traverse a cooked form directly. We reserve the right to change the filters that are inserted.

The path parameter is used for looking up all resources that are mentioned in the form: the
name of a Pixmap or Image; a file for Insert; the ItemFromFile property on Browser and
MultiBrowser; and theFrom propertyonText,TypeIn, andTextEdit. (TheinitFromURL
looks up resources as URLs, relative to baseURL.)

Briefly, the description of a form is an S-expression whose first element is the name of a com-
ponent (e.g., HBox), and whose other elements are either properties (e.g., Color), or other compo-
nents, typically describing the VBT-children of the outer component.

The VBT-tree is created during a depth-first traversal of the S-expression. On the way down, each
VBT is allocated, typically with a call to NEW(...). Then the subexpressions, if any, are traversed.
On the way back up, each VBT is initialized, typically with a call to v.init(...). The result is
returned to the caller, where it is typically an argument to the parent’s init method.

In other words, allocation occurs top-down, and initialization occurs bottom-up. (For more de-
tails on allocation, see Section 4.7.)

For each subexpression, the parser produces a VBT whose type is defined in the FVTypes inter-
face, and whose name corresponds to the first element of the subexpression. For example, from the
S-expression (HBox ...), the parser creates an object of type FVTypes.FVHBox.

PROCEDURE NewFromFile (filename: TEXT;

raw := FALSE;

path : Rsrc.Path := NIL): T

RAISES {Error, Rd.Failure, Thread.Alerted};

Create a new form from the description in the file. Rd.EndOfFile is signalled as Error.
Equivalent to NEW(T).initFromFile (name, raw, path)

60 CHAPTER 4. PROGRAMMING WITH FORMSVBT

PROCEDURE GetZSplit (fv: T): ZSplit.T RAISES {Error};

Return the ZSplit that “cooked”mode inserts. An exception is raised if fv was created with raw = TRUE.

4.3 Events and Symbols

4.3.1 Attaching event-handlers

Most interactive components in the user interface generate events. (See the Appendix A for a descrip-
tion of all components.) To register an event-handler for such a component, the component must be
named, and the client must call Attach or AttachProc, giving the name of the component and
a procedure to be called when an event occurs in that component.

PROCEDURE Attach (fv: T; name: TEXT; cl: Closure) RAISES {Error};

Attach an event-handler (“callback”) to the component of fv whose name is given by name. If there is no
such component, or if that component does not generate events (e.g., Text), then Error will be raised. If cl
is NIL, then any existing event-handler for that component is removed. Otherwise, when an event occurs in
the named component, the implementation calls

cl.apply(fv, name, time)

TYPE

Closure = OBJECT

METHODS

apply (fv: T; name: TEXT; time: VBT.TimeStamp);

END;

PROCEDURE AttachProc (fv : T;

name : TEXT;

p : Proc;

eventData: REFANY := NIL) RAISES {Error};

This is an alternate, somewhat simpler way to attach an event-handler. When an event occurs in the named
component, the implementation calls

p(fv, name, eventData, time)

TYPE

Proc = PROCEDURE (fv : T;

name : TEXT;

eventData: REFANY;

time : VBT.TimeStamp);

These event-handlers do not provide any other details, such as what key or mouse button was pressed,
or whether it was a double-click. If such information is needed, call GetTheEvent to retrieve it.

PROCEDURE AttachEditOps (fv : T;

4.3. EVENTS AND SYMBOLS 61

editorName: TEXT;

cut, copy, paste, clear,

selectAll, undo, redo,

findFirst, findNext, findPrev: TEXT := NIL)

RAISES {Error}; <* LL.sup = VBT.mu *>

Create and attach event-handlers for common editing operations.

editorName must be the name of a text-editing component: TextEdit, TypeIn, Numeric,
or Typescript. If cut is not NIL, then it must be the name of a component (typically a menu-
button), and AttachEditOpswill create an event-handler for it that will invoke the Cut operation
on the text-editing component. Similarly, if copy is not NIL, then it should name a component for
which AttachEditOps will create an event-handler that invokes the Copy operation on the text-
editing component. Likewise for paste, clear, and so on.

4.3.2 Access to the current event

PROCEDURE GetTheEvent (fv: T): AnyEvent.T RAISES {Error};

PROCEDURE GetTheEventTime (fv: T): VBT.TimeStamp RAISES {Error};

Retrieve the details of the event that is currently in progress. These routines may be called only during the
dynamic extent of an event-handler attached to some component via Attach or AttachProc.

PROCEDURE MakeEvent (fv: T; name: TEXT; time: VBT.TimeStamp)

RAISES {Error};

MakeEvent invokes the event-handler for the component of fv whose name is name. A component has an
event-handler if attached via Attach or AttachProc, or if the component is a PopButton, PopMButton,
PageButton, PageMButton, LinkButton, or LinkMButton.

MakeEvent is useful when one part of a large program wishes to communicate with another part,
by pretending that the named event occurred. For example, a client might want typing a particular
control-character in a text-editing component to have the same effect as selecting a menu-item such
as “Quit.” MakeEvent provides a way to link the two events to the same handler.

VAR MakeEventMiscCodeType: VBT.MiscCodeType; (* CONST *)

The exact type of the result of GetTheEvent depends on the user action that caused the event to be generated,
a key, a mouse-click, etc. If the event was actually caused by a call to MakeEvent, the type of the result will
be AnyEvent.Misc, and the value of its type field will be MakeEventMiscCodeType.

4.3.3 Symbol management

PROCEDURE AddSymbol (fv: T; name: TEXT) RAISES {Error};

62 CHAPTER 4. PROGRAMMING WITH FORMSVBT

Add a “virtual” component to fv with the given name. The form will behave as if there was a component
called name (i.e., the call GetVBT(fv, name) will return a valid VBT).

This procedure is most useful as a means to communicate between distant parts of a large program. One
part of the program would use AddSymbol to create a new symbol; another part would call MakeEvent to
invoke an event-handler for the symbol.

Error is raised if name is already defined in fv.

PROCEDURE AddUniqueSymbol (fv: T): TEXT;

Just like AddSymbol, but finds a name that has not been used yet. The name is returned.

4.4 Reading and Changing State

In response to an event or other occurrence, a program may want to read or change the state of various
interactors in the form. This is handled by the various Get and Put procedures. Get procedures take
the form and the name of the interactor, and return its value. Put procedures take the form, the name
of the interactor, and the new value to be set.

There are several Get procedures and several Put procedures, for convenient handling of various
Modula-3 types. These should be used as appropriate to the type of the interactor: GetText for a
TypeIn, GetInteger for a Numeric, GetBoolean for a Boolean or Choice, etc. How-
ever, some conversions are supported: PutInteger to aTypeInwill convert the integer into text;
GetIntegerwill likewise attempt to convert the text of the TypeIn to an integer (and return 0 in
case of failure). All Get and Put procedures, however, will raise Error if applied to a component
that does not have a value.

4.4.1 Access to the Main and Value properties

PROCEDURE GetText (fv: T; name: TEXT): TEXT

RAISES {Error, Unimplemented};

This is implemented for Browser, FileBrowser, Numeric, Text, Typescript, and the text-
interactors: TextEdit, TypeIn, and TextArea.

PROCEDURE PutText (fv: T; name: TEXT; t: TEXT; append := FALSE)

RAISES {Error, Unimplemented};

This is implemented for Browser, FileBrowser, Pixmap, Text, Typescript, and the text-interactors:
TextEdit, TypeIn, and TextArea. For Text and the text-interactors, if append is true, then t is added
to the end of the current text, rather than replacing it.

PROCEDURE GetInteger (fv: T; name: TEXT): INTEGER

RAISES {Error, Unimplemented};

PROCEDURE PutInteger (fv: T; name: TEXT; n: INTEGER)

RAISES {Error, Unimplemented};

4.4. READING AND CHANGING STATE 63

These are implemented for Browser, Numeric, Scroller, and TSplit. PutInteger only is
implemented for Audio.

If you use PutInteger to select the nth child of a TSplit and that child has a text-editing com-
ponent that has the FirstFocus property, then the text-editor will acquire the keyboard focus, and
if it’s a TypeIn, its text will be selected in replace-mode.

PROCEDURE GetBoolean (fv: T; name: TEXT): BOOLEAN

RAISES {Error, Unimplemented};

PROCEDURE PutBoolean (fv: T; name: TEXT; val: BOOLEAN)

RAISES {Error, Unimplemented};

These are implemented for Boolean and Choice.

4.4.2 Access to arbitrary properties

FormsVBT provides access to properties other thanMain andValue. The intention is to provide ac-
cess to all the inherited and class properties. For example, theScroller component has an integer-
valued property named Min, so it should be possible to call

GetIntegerProperty(fv, name, "Min")

to retrieve that value, or

PutIntegerProperty(fv, name, "Min", 6)

to change the value to 6.

WARNING: The current implementation provides access only to the inherited properties,
and even that access is limited.

Note also that changing the value of a property in a component will not affect its subcomponents.

PROCEDURE GetTextProperty (fv: T; name, propertyName: TEXT): TEXT

RAISES {Error, Unimplemented};

This is implemented for the Font and LabelFont properties for all components, as well as the Items and
Select properties of Browsers, and the ActiveTarget property of Sources.

PROCEDURE PutTextProperty (fv: T; name, propertyName: TEXT; value: TEXT)

RAISES {Error, Unimplemented};

This is implemented for the Color, BgColor, Font, and LabelFont properties for all components, as
well as the Items and Select properties of Browsers.

PROCEDURE GetIntegerProperty (fv: T; name, propertyName: TEXT):

INTEGER RAISES {Error, Unimplemented};

64 CHAPTER 4. PROGRAMMING WITH FORMSVBT

PROCEDURE PutIntegerProperty (fv : T;

name, propertyName: TEXT;

value : INTEGER)

RAISES {Error, Unimplemented};

This is implemented for the Min and Max properties of Numerics; the Min, Max, Step, and Thumb

properties of Scrollers; and the Quality, ImageWidth, ImageHeight and MSecs properties of
Videos, and the NorthEdge, SouthEdge, EastEdge and WestEdge properties of all VBTs.

PROCEDURE GetRealProperty (fv: T; name, propertyName: TEXT): REAL

RAISES {Error, Unimplemented};

PROCEDURE PutRealProperty (fv : T;

name, propertyName: TEXT;

value : REAL)

RAISES {Error, Unimplemented};

This is implemented for the HScale and VScale properties of Scales.

PROCEDURE GetColorProperty (fv: T; name, property: TEXT): Color.T

RAISES {Error, Unimplemented};

Return the color used by the named component. property must be one of Color, BgColor,
LightShadow, or DarkShadow.

PROCEDURE PutColorProperty (fv : T;

name, property: TEXT;

READONLY color : Color.T)

RAISES {Error, Unimplemented};

Set the color used by the named component. property must be Color or BgColor.

PROCEDURE GetBooleanProperty (fv: T; name, propertyName: TEXT):

BOOLEAN RAISES {Error, Unimplemented};

PROCEDURE PutBooleanProperty (fv : T;

name, propertyName: TEXT;

value : BOOLEAN)

RAISES {Error, Unimplemented};

(* This is implemented for the "ReadOnly" property of

"TextEdit"s, and the shadow styles of "Frame"s. The

"PutBooleanProperty" is implemented for the "Synchronous",

"Paused" and "FixedSize" properties of "Video", and for the

"Mute" and "MuteWhenUnmapped" properties of "Audio" *)

4.4.3 Access to the underlying VBTs

PROCEDURE GetVBT (fv: T; name: TEXT): VBT.T RAISES {Error};

4.4. READING AND CHANGING STATE 65

Return the VBT corresponding to a named interactor in fv. Error is raised if there is no such VBT.

PROCEDURE GetName (vbt: VBT.T): TEXT RAISES {Error};

If vbt is the VBT corresponding to a named interactor in some form, returns the name given to that interactor.
Otherwise, raisses Error.

4.4.4 Radios and Choices

PROCEDURE GetChoice (fv: T; radioName: TEXT): TEXT

RAISES {Error, Unimplemented};

PROCEDURE PutChoice (fv: T; radioName, choiceName: TEXT)

RAISES {Error, Unimplemented};

Get/Put the name of the selected Choice in a radio-button group. If there is no selection, GetChoice
returnsNIL. If choiceName is NIL, the radio-group will have no selection.

PROCEDURE MakeSelected (fv: T; choiceName: TEXT) RAISES {Error};

PROCEDURE IsSelected (fv: T; choiceName: TEXT): BOOLEAN

RAISES {Error};

Set/test a Choice-button without referring to its group.

4.4.5 Generic interactors

PROCEDURE GetGeneric (fv: T; genericName: TEXT): VBT.T

RAISES {Error};

Retrieve the VBT used by the named Generic interactor.

PROCEDURE PutGeneric (fv: T; genericName: TEXT; vbt: VBT.T)

RAISES {Error};

Replace the named Generic interactor with vbt, which may be NIL. When NIL is specified, a default (and
initial) VBT is used: a TextureVBT with 0 size and 0 stretch in each dimension.

4.4.6 Special controls for Filters

The (Filter ...) expression in FormsVBT supports a feature called reactivity. This has one of
four states: Active, Passive, Dormant, or Vanished. The state can be specified in the description and
changed by the applicationat runtime. The default state is Active. In the Passive state, the component
and its descendants, if any, are unresponsive to mouse clicks. The Dormant state is like Passive, but
the component and descendants are “grayed out.” Dormant is often to be preferred over Passive,
because it provide additional feedback to the user. In the Vanished state, the component becomes
unreactive and disappears entirely.

A cursor is specified when the state is set, and the name is interpretted by the Trestle implemen-
tation. An empty string (the default value) indicates that you don’t care about the cursor shape.

66 CHAPTER 4. PROGRAMMING WITH FORMSVBT

Standard X screentypes support the cursors named in X Window System by Scheifler et. al. [?]
Appendix B. Therefore, for example, XC_arrow returns a cursor that behaves like the X arrow cur-
sor on X screentypes, and like the default cursor on screentypes that have no cursor namedXC_arrow.

PROCEDURE MakeActive (fv: T; name: TEXT; cursor:= "") RAISES {Error};

PROCEDURE MakePassive (fv: T; name: TEXT; cursor:= "") RAISES {Error};

PROCEDURE MakeDormant (fv: T; name: TEXT; cursor:= "") RAISES {Error};

PROCEDURE MakeVanish (fv: T; name: TEXT; cursor:= "") RAISES {Error};

Find the nearest ancestor of the named component that is of type FVFilter, and set its state and cursor as
indicated. The exception is raised if no such ancestor can be found.

PROCEDURE IsActive (fv: T; name: TEXT): BOOLEAN RAISES {Error};

PROCEDURE IsPassive (fv: T; name: TEXT): BOOLEAN RAISES {Error};

PROCEDURE IsDormant (fv: T; name: TEXT): BOOLEAN RAISES {Error};

PROCEDURE IsVanished (fv: T; name: TEXT): BOOLEAN RAISES {Error};

Find the nearest ancestor of the named component that is of type FVFilter, and test its state as indicated.
The exception is raised if no such ancestor can be found.

4.4.7 Access to Subwindows

PROCEDURE PopUp (fv : T;

name : TEXT;

forcePlace: BOOLEAN := FALSE;

time : VBT.TimeStamp := 0)

RAISES {Error};

Pop up the named subwindow.

Assuming that name is the name of an element of fv that can be popped up, pop it up. That is, the
named element must be a non-background child of a ZSplit, or some descendant thereof. In the
latter case, the ancestor that is a direct child of the ZSplit will be the thing popped up. Call this
ancestor zchild. PopUp is equivalent to activating

(PopButton (For zchild) ...)

If the target zchild is already open or has been opened before and has been moved by the user (to a
location that is now visible), it will normally be left where the user left it. The forcePlace option
will force it instead to be returned to its canonical place.

If the subwindow contains a text-editing component that has the FirstFocus property, then
that component will acquire the keyboard focus, and if it’s a TypeinVBT.T, its text will be selected
in replace-mode.

PROCEDURE PopDown (fv: T; name: TEXT) RAISES {Error};

4.5. SAVING AND RESTORING STATE 67

The inverse of PopUp: make the named element (or suitable ancestor) invisible. This is implemented using
ZSplit’s unmapping. (Unfortunately, this doesn’t cause the keyboard focus to be lost.) The exception is
raised if name is not the name of an element of fv.

4.4.8 Special controls for text-interactors

PROCEDURE TakeFocus (fv : T;

name : TEXT;

eventTime: VBT.TimeStamp;

select := FALSE)

RAISES {Error};

Give the keyboard focus to a specified interactor. An exception is raised if the interactor is not of a suitable
class to take it; however, no exception is raised if the keyboard focus cannot be taken because of a timeout, i.e.,
an invalid eventTime. If select is TRUE and the focus was taken, then select the entire contents of the
interactor’sTextPort as a primary selection in replace-mode.

4.5 Saving and restoring state

FormsVBT allows clients to save and restore the entire state of a form.
A snapshot is an S-expression that captures the state of components in a form. The callfv.snapshot(wr)

writes a snapshot of fv to the writer wr, and the call fv.restore(rd) reads a snapshot from the
reader rd and restores the components of fv to the state in the snapshot.

A snapshot produced by the default method contains only those named components that have
a modifiable value. More precisely, a component is part of a snapshot if (1) it has a name and (2)
the call to GetText, GetInteger, GetReal, GetBoolean, or GetChoice does not raise an
exception. If you want to include a component into the snapshot that has state but does not respond
to GetText, GetInteger, etc., then you need to override the defaults methods.

The snapshot method raises the Error exception if there is a problem writing the snapshot
to the writer.

The restore method raises the Error exception if there is a syntax error in the S-expression
or if there is any type of problem with the reader.

When restoring, the snapshot need not precisely match the set of interactors in the form. If the
snapshot lacks values for some fields that the form contains, those fields will be left alone. If the
snapshot has values for some fields that the form does not contain, the restore method should
raise Mismatch, but only after restoring all the values that do match. If the snapshot has a value for
a field that the form contains, but the types do not agree, this is a show-stopping error; the restore
method should raise Error. Catching Mismatch is useful when you want to continue to tolerate
snapshots from old versions of a form.

The default snapshot and restore methods write S-expressions in the following format:

((name1 value1)
(name2 value2) ...)

68 CHAPTER 4. PROGRAMMING WITH FORMSVBT

4.6 Dynamic Alteration of Forms

FormsVBT provides facilities for modifying a form while a program is running. For example, one
might want to add or delete items in a menu.

The procedure Insert parses a description of new form in the context of an existing form, and
Delete removes a component and all of its descendents.

The procedure InsertVBT is used for forms within forms, where the subforms are independent
from the forms containing them to avoid name clashes. You need to use DeleteVBT to delete a
subform inserted this way.

Any resizing that may be appropriate after the modifications to the form is performed automat-
ically. For the common case of modifying menus, this is not an issue because the menu is (almost
certainly) not visible at the time the alteration takes place.

PROCEDURE Insert (fv : T;

parent : TEXT;

description: TEXT;

n : CARDINAL := LAST(CARDINAL)): VBT.T

RAISES {Error};

<* LL.sup = VBT.mu *>

Insert parses a description in the context of an existing form, that is, in fv’s namespace, so that names
already defined in fv are visible while the description is being parsed, and with the state (color, resource-path,
etc.) that was in effect for parent.

Once the new VBT is created, it is inserted into the named component, which must be a Split, as the nth
child. It is also returned.

PROCEDURE InsertFromFile (fv : T;

parent : TEXT;

filename: TEXT;

n : CARDINAL := LAST(CARDINAL)): VBT.T

RAISES {Error, Rd.Failure, Thread.Alerted};

<* LL.sup = VBT.mu *>

PROCEDURE InsertFromRsrc (fv : T;

parent: TEXT;

name : TEXT;

path : Rsrc.Path;

n : CARDINAL := LAST(CARDINAL)): VBT.T

RAISES {Error, Rd.Failure, Rsrc.NotFound, Thread.Alerted};

<* LL.sup = VBT.mu *>

InsertFromFile and InsertFromRsrc read a description from a file or named resource, and then call
Insert.

PROCEDURE Delete (fv : T;

4.7. SUBCLASSES OF COMPONENTS 69

parent: TEXT;

n : CARDINAL;

count : CARDINAL := 1) RAISES {Error};

<* LL.sup = VBT.mu *>

Delete the children whose indices are in the range [n .. (n + count - 1)] from the named
component, which must be a Split. The names of the n components, as well as the names of all of the
desendants of those components, are removed from fv’s namespace.

PROCEDURE InsertVBT (fv : T;

name : TEXT;

child : VBT.T;

n : CARDINAL := LAST (CARDINAL))

RAISES {Error};

<* LL.sup = VBT.mu *>

Insert child as the nth child of the named component, which must be a Split. The names of components in
child are not added to fv’s namespace. Thus, InsertVBT is typically used for “forms within forms.”

PROCEDURE DeleteVBT (fv : T;

name : TEXT;

n : CARDINAL;

count : CARDINAL := 1)

RAISES {Error};

<* LL.sup = VBT.mu *>

Like Delete, this procedure deletes the children whose indices are in the range [n .. (n + count -

1)] from the named component, which must be a Split. UnlinkeDelete, the names of the n components, as
well as the names of all of the desendants of those components, are not removed from fv’s namespace. Thus,
DeleteVBT is typically only used with children that were inserted using InsertVBT.

END FormsVBT.

4.7 Subclasses of components

As the subexpressions describing the form fv are being parsed, the VBT-components are created
(allocated) by calling

fv.realize(type, name)

where type is the name of the first element of the subexpression, and name is the Name property
specified in the subexpression, or the empty string if no such property was specified. For example,
if the description contains the expression

(Menu %mainMenu ...)

70 CHAPTER 4. PROGRAMMING WITH FORMSVBT

then the FormsVBT parser will call

fv.realize("Menu", "mainMenu")

to create the VBT.
By overriding the realize method of fv, the client can create subtypes for any or all of the

components. For each kind of form, there is a corresponding type in the FVTypes interface. For
example, the result of parsing (Menu ...) is an object that is a subtype of FVTypes.FVMenu.
The realize method must allocate and return a VBT that is a subtype of the corresponding type in
FVTypes.

For example, suppose you wanted the form to keep a count of the number of menus it contains,
and for each menu to store its own index.

TYPE
MyForm = FormsVBT.T OBJECT

count: CARDINAL := 0
OVERRIDES
realize := Realize

END;
MyMenu = FVTypes.FVMenu OBJECT

index: CARDINAL
END;

PROCEDURE Realize (fv: MyForm; type, name: TEXT):
VBT.T RAISES {FormsVBT.Error} =
BEGIN

IF Text.Equal (type, "Menu") THEN
WITH m = NEW (MyMenu, index := fv.count) DO
INC (fv.count);
RETURN m

END
ELSE (* use the default *)
RETURN FormsVBT.T.realize (fv, type, name)

END
END Realize;

Note that therealizemethod does not initialize theVBT that it allocates. Actually, it may initialize
any private fields, such as theindex field in this example, but theVBT’sinitmethod should not be
called inside the call tofv.realize, since it will be called later during a “bottom-up” initialization
phase. Of course, the client may also override the init method to control what happens in that
phase.

4.7. SUBCLASSES OF COMPONENTS 71

A more complicated case arises with text-editing components. Textports are contained in three
forms: TextEdit, Typescript, and Numeric. In a TextEdit components, the textport is in
an exported field, TextEditVBT.T.tp. If the realizemethod allocates a TextPort.T, even
a private subtype of TextPort.T, it should not call the textport’sinit method, since FormsVBT
will do that in the initialization phase, passing some of the current state information (such as back-
ground color and the width of the “turn margin”) to the textport’sinitmethod. The same applies to
Typescript components, since TypescriptVBT.T is a subtype of TextEditVBT.T. Sim-
ilarly, the textport in a Numeric component is in an exported field, NumericVBT.T.typein;
again, it may be allocated but not initialized in the realize method.

If you wish to redefine the interpretation of keystrokes, you do so by overriding the filter
method of the textports. The following code illustrates how to do this.

TYPE
MyForm = FormsVBT.T OBJECT

OVERRIDES realize := Realize END;

PROCEDURE Realize (fv: MyForm; type, name: TEXT): VBT.T
RAISES {FormsVBT.Error} =
BEGIN
IF Text.Equal (type, "TextEdit") THEN
RETURN
NEW (FVTypes.FVTextEdit,

tp := NEW (TextPort.T, filter := MyFilter))
ELSIF Text.Equal (type, "Numeric") THEN
RETURN NEW (FVTypes.FVNumeric,

typein := NEW (NumericVBT.Typein,
filter := MyFilter))

ELSIF Text.Equal (type, "Typescript") THEN
RETURN NEW (FVTypes.FVTypescript,

tp := NEW (TypescriptVBT.Port,
filter := MyFilter))

ELSIF Text.Equal (type, "TypeIn") THEN
RETURN NEW (FVTypes.FVTypein, filter := MyFilter)

ELSE (* use the default *)
RETURN FormsVBT.T.realize (fv, type, name)

END
END Realize;

The realize method can also be used to integrate any VBT, including leafs and filters into a
form. The componentsAny, AnyFilter, andAnySplit are defined to beVBT.Leaf,VBT.Filter,
and VBT.Split respectively.

72 CHAPTER 4. PROGRAMMING WITH FORMSVBT

5. FormsEdit

FormsEdit is a stand-alone application that allows you to develop a FormsVBT user interface: the
layout, the colors, the fonts, the text, the buttons, the pop-up windows, the shadows, ... everything
except the application code that does whatever it is you’re building a user interface to.

The shell-command formsedit takes an optional argument, the name of an .fv file you wish
to edit. It also takes optional X11 parameters for specifying the initial display and geometry; the
manpage has the details.

The following sections describe the user interface.

5.1 Getting started

When you start the program, you’ll see two windows: an editor and a result view (see Figure 5.1).
The editor has a simple FormsVBT S-expression in it:

(Rim (Pen 10)
(Text (Name ignoreMe) "This space available for a small fee"))

The result view is simply a window that contains the text, surrounded by 10 points of whitespace,
or in this case, “greyspace”, since the default background color is light grey.

5.2 The menubar

The menubar has four menus and a button.

5.2.1 The quill-pen menu

This menu has four items:
About FormsEdit ... shows the copyright notice and other information.
Help pops up a window with an online help-file, containing a list of all the components and their

properties.

73

74 CHAPTER 5. FORMSEDIT

Figure 5.1: The initial text-editor window shown by formsedit.

Editing Model includes a choice of keybindings and selection controls; they also determine the
keyboard equivalents that appear in the menu items. The four choices, Ivy, Emacs, Mac, and Xterm,
are documented in the VBTkit Reference Manual[2].

Quit This terminates FormsEdit.

5.2.2 The File menu

This menu (see Figure 5.2) contains a standard list of items:
New creates another pair of windows, using the same, simple S-expression.
Open..., which is selected in the figure, brings up a file browser.
Close closes the window. If you click Close or Quit while there are unsaved changes, you will

be asked whether you want to save them.
Save and Save As... are self-explanatory.
Revert to Saved re-reads the expression from the disk file.
PP setup... brings up a window with a Numeric component that lets you establish the width

that the pretty-printer should use; typing Return causes the S-expression to be pretty-printed at the
new width. The user-interface descriptions in.fv files tend to grow fairly quickly. If you can afford
the screen real-estate, you might try reshaping the editor window to be as wide as possible, setting
the pretty-printer width to 150, and typing Return.

5.2. THE MENUBAR 75

Figure 5.2: The File menu.

PPrint invokes the pretty-printer, and rewrites the S-expression in the window.

5.2.3 The Edit menu

The Edit menu has buttons for Undo and Redo; buttons for the standard editing commands Cut,
Copy, Paste, Clear, and Select All; a Find... button that brings up a dialog box for specifying the
string you wish to search for; and buttons for Find Next and Find Prev, which look for the current
Source selection.

5.2.4 The Misc menu

The Misc menu contains an item for examining the named components in the form you’re editing—
it shows their names, types, and shapes; an item for producing a snapshot (see Section 4.5); and a
button to bring up the error-message window, which normally disappears 5 seconds after it displays
a message. This menu also contains items that allow you to move the editor and result windows from
one screen to another.

5.2.5 The “Do It” button

The space to the right of the Misc button contains the name of the file being edited (if the window is
showing a file). When there are unsaved changes to the window, a “note” icon also appears here.

76 CHAPTER 5. FORMSEDIT

Figure 5.3: The error window.

After you’ve edited the file describing your user interface, you’ll want to see what it looks like.
Click the Do It button. On some keyboards, there’s a (big) key labeled Do; you can press that instead
of clicking the button. The key labeled Enter may also be used.

Every time you click the Do It button (or press the Do key or the Enter key), FormsVBT parses
the entire S-expression, and updates the result view accordingly. The result-view window will change
its shape, if necessary, to give the form its preferred shape.

5.3 Errors

What if there’s an error in your form? The parser will detect it and highlight the nearest enclosing S-
expression. An error window will pop up, explaining what the error was. If you click the OK button
in the error window, the highlighting will disappear.

For example, suppose you wanted to change the font in the sample S-expression, and instead of
writing Family, you misspelled it as Famly. When you hit the Do It button, the error window
pops up; see Figure 5.3. The Text subexpression is highlighted, and the error message says: Bad
font-spec: (Famly "new century schoolbook").

5.3. ERRORS 77

When an error has been detected, the result view is not changed. If you open a window onto a
file that contains an erroneous S-expression, its result window will be in some undefined state.

If we correct the misspelling and click Do It, the error window will disappear.

78 CHAPTER 5. FORMSEDIT

A. Full Description of Components

This appendix contains a complete description of each FormsVBT component. Each description con-
tains the following sections:

� A banner containing the component’s name and syntactic classification (Leaf, Filter, or
Split). A box around the name, e.g., Button indicates that the component generates an
event; FormsVBT.Attach and FormsVBT.AttachProc can be used to attach an event-
handler to such a component.

� A short description of the component.

� The class-specific properties, if any, for the component.

� A description of the component’s interactive behavior, if it generates an event.

� The component’s shape information.

� Additional notes (optional).

The first line of each class-specific property contains the property name, the access information,
the type, the default value, and a description of the property. Example:

Value GP (Boolean, FALSE)

The property name, Value in this example, is the symbol that would appear in the S-expression. The
access information is indicated by the small letters G and P. G means that the value of this property
can be retrieved at runtime (“Get”); P means that the value can be set at runtime (“Put”).

If the name of the property is Value or Main, then you can retrieve the value of the property
by calling GetText, GetInteger, or GetBoolean, depending on the type of the property, and
you can set the value by calling PutText, PutInteger, or PutBoolean.

For properties other than Value or Main, you can retrieve the value of the property by calling
GetTextProperty or GetIntegerProperty,and you can set the value by calling
PutTextProperty or PutIntegerProperty. These procedures take the name of the prop-
erty as an argument.

79

80 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

The descriptions in this appendix do not include the components’ inheritable properties (see sec-
tion 3.3, page 39). All (well-behaved) components use these properties for displaying information.
Some of these can be accessed at runtime, as the following list indicates:

Font GP (Font, default on page 39)
The font used for Browser, DirMenu, FileBrowser, Helper, MultiBrowser, Nu-
meric, TextEdit, Typein, and Typescript.

LabelFont GP (Font, default on page 39)
The font used for Text and the Title of a ZChassis.

Color P (Color, "Black") The foreground color.

BgColor P (Color, 0.8 0.8 0.8) The background color.

LightShadow (Color, "White")

DarkShadow (Color, 0.333 0.333 0.333)

ShadowSize (Real, 1.5)

Some components define enumerations that specify mutually exclusive choices for a single, un-
named property. Syntactically, these are all Boolean properties, but unlike other Boolean properties,
which always have a FALSE default value, one of these will default to TRUE. Furthermore, specify-
ing any of them as TRUE has the effect of declaring all the others to be FALSE.

For example, the shadow-style of a Frame may be raised, flat, lowered, ridged, or chiseled. The
default is Raised, but if you write

(Frame Lowered ...)

or, equivalently,

(Frame (Lowered TRUE) ...)

then that has the effect of declaring Raised, Flat, etc., to be false.

81

Bar Leaf

Displays a horizontal or vertical line, using the foreground color, with the specified size and stretch-
ability in the principal direction of its parent. Bar is exactly like Glue except that it uses the fore-
ground color (Color) instead of the background color (BgColor).

Main (Size, 1 + 0 - 0)
The size and stretchability in the principal direction of its parent.

Shape The principal direction is explicitly specified; the other direction has zero preferred
and minimum size and is infinitely stretchable, thereby taking on the parent’s shape.

Notes Must be a child of a horizontal or vertical split (HBox, HVTile, VBox, or VTile).

See Also Ridge and Chisel

82 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Boolean Filter

A Boolean, on-off interactor.

Value GP (Boolean, FALSE)
The current state.

MenuStyle (Boolean, FALSE)
When set, the interactor should be a child of aMenu, in which case it will react
on the upclick. Otherwise, it reacts on the downclick.

Feedback choices (mutually exclusive):

CheckBox (Boolean, TRUE)
Give feedback with a “check-box” icon.

CheckMark (Boolean, FALSE)
Give feedback with a “check-mark” icon.

Inverting (Boolean, FALSE)
Give feedback by displaying a border around the child VBT.

Behavior If CheckBox (the default) is set, FormsVBT adds a three-dimensional check-box
icon to the left of its child. To indicate a false value, the check-box is raised and empty;
to indicate a true value, the check-box is lowered and filled-in. Any click on the check-
box or on the child toggles state and generates an event on the upclick. CheckMark
causes a different set of bitmaps to be used to indicate state. Inverting causes
no bitmaps to be used. Actually, “inverting” is a (historical) misnomer: on a non-
monochrome display, a three-dimensional shadow is put around the child, and the
shadow is raised (when false) and lowered (when true).

Shape When Inverting is false, the shape of this interactor is the shape of its child, plus
16 pixels wider on the west side. When Inverting is true, the shape of the inter-
actor is the shape of the child plus the shadow.

Notes The CheckMark property, in conjunction with MenuStyle, can be used to imple-
ment the Macintosh-style“checks” on menu items. However, because the check-mark
is put to the left of its child, menu elements will look misaligned if some elements are
MButtons and others are Booleans with check-marks.

See Also Choice and Radio

83

84 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Border Filter

Displays a border around its child.

Pen (Real, 1.0)
The thickness of the border.

Pattern (Text)
The name of a pixmap-resource used for the border’s texture, which defaults
to Pixmap.Solid.

Shape The shape of its child, plus twice the value of Pen in each dimension.

See Also Rim and Frame

85

Browser Leaf

A browser on a collection of text strings.

Contents (Items takes precedence):

Items GP (TextList)
The contents of the browser.
Example: (Items "red" "blue"). When this property is accessed at
runtime, the TextList is passed a single text string, with \n used to separate
entries. PutTextProperty replaces the entire contents of the browser and
sets the selection to NIL. GetTextProperty returns the elements in the
browser, from top to bottom.

From (Text)
If present, names a resource from which the initial browser contents will be
taken.

Choices (Value takes precedence):

Value GP (Integer, -1)
The position of the selected item. 0 means the first item; -1 means no item is
selected.

Select GP (Text)
The text of the selected item. PutTextProperty selects the first match-
ing item if there is one; otherwise it selects nothing. GetTextProperty
returns the text of the selected item, or NIL is there is no selection.

Quick (Boolean, FALSE)
If true, every selection action is reported as an event. Otherwise, only double-
click actions are reported.

Behavior Displays items vertically, with a scrollbar at the left. Clicking selects the item under
the mouse. Double-clicking on an item generates an event on the second up-click. If
Quick is true, single-clicking on an item generates an event on the up-click.

Shape At minimum, large enough to hold its scrollbar plus the single string "XXXX" in the
font being used. Infinitely stretchable in both dimensions.

See Also MultiBrowser

86 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

87

Button Filter

A button. Surrounds its child with a raised shadow, and generates an event when clicked.

Behavior On a down-click, the shadow becomes recessed; restores the raised shadow on an up-
click or chord-abort, and generates an event if the mouse is still within the button on
the up-click.

Shape The natural shape of its child (i.e., with no shrink or stretch), plus the border around
the button.

See Also MButton

88 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Chisel Leaf

Displays a chiseled, three-dimensional horizontal or vertical line with the specified size in the prin-
cipal direction (horizontal or vertical) of its parent.

Main (Real, 1.5)
The size in the principal direction.

Shape The principal direction is explicitly specified; the other direction has zero preferred
and minimum size and is infinitely stretchable, thereby taking on the parent’s shape.

Notes Must be a child of a horizontal or vertical split (HBox, HVTile, VBox, or VTile).

See Also Bar and Ridge

89

Choice Filter

A choice button is one of a group of “radio buttons.” There must be a Radio component somewhere
in its ancestry. Choice components must be named.

Value GP (Boolean, FALSE)
Whether currently selected.

MenuStyle (Boolean, FALSE)
When set, the interactor should be a child of a Menu, in which case it will react
on the upclick. Otherwise, it reacts on the downclick.

Feedback choices (mutually exclusive):

CheckBox (Boolean, TRUE)
Give feedback with a “check-box” icon.

CheckMark (Boolean, FALSE)
Give feedback with a “check-mark” icon.

Inverting (Boolean, FALSE)
Give feedback by drawing a border around the child VBT.

Behavior If CheckBox is TRUE, Choice adds a three-dimensional diamond to the left of its
child. The diamond is raised and empty for false, lowered and filled-in for true. Any
click on the diamond or on the child selects this “button,” unselects any other member
of the group that might have been selected, and generates an event. MenuStyle causes
different reaction to the mouse clicks, as described above.

Shape The shape of its child, plus 16 pixels wider on the west side when not Inverting. When
Inverting, the shape of the child plus the border.

See Also Boolean and Radio

90 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

CloseButton Filter

A button that closes a subwindow when clicked. Its target may be specified using the For property;
otherwise, it is the nearest subwindow ancestor of the CloseButton itself.

For (Symbol)
If given, this names the target. The named component must be either an over-
lapping (non-background) child of a ZSplit, or a descendant of something
that is. In the latter case, the actual target will be the ZSplit child, not the
named descendant.

Behavior Like a Button, but before generating an event, closes its target (if the target is not al-
ready closed).

Shape The natural shape of its child (i.e., with no shrink or stretch), plus the border around
the button.

91

DirMenu Leaf

A “directory menu” is a button connected to a FileBrowser. The button displays the name of the last
(nearest) component of the FileBrowser’s current directory.

For (Symbol)
The name of a FileBrowser. This property is required.

Behavior The directory menu shows the FileBrowser’s parent-directories, one parent per line,
down to first component of the path, which is typically the root directory. Selecting an
item in this menu makes that parent-directory be the FileBrowser’s current directory.

Shape The shape of a TextVBT containing the name of the parent, plus the shadow.

Notes A DirMenu never generates events in its own name. It can be accessed in its own
name, but this is not recommended.

In a typical ”Open File...” dialog, the DirMenu is above the FileBrowser, and the
Helper is below. See Figure A

See Also FileBrowser and Helper

92 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

FileBrowser Leaf

A FileBrowser is used for examining directories and selecting files.

Value GP (Text, ".")
On retrieval, the value is the full pathname of the selected file, or NIL if no file
is selected. When specified, the value may be absolute or relative (to the cur-
rently displayed directory), and may name a file or a directory. If a directory
is specified, that directory is displayed but no file is selected, hence the new
retrievable value is NIL. An initial specification, if relative, is relative to the
current working directory of the application. Thus, the default initial value of
“.” displays the current working directory.

Suffixes (TextList)
If this property is specified, the file-browser will show only those files whose
suffixes are in this list. The strings should not include the period; to include
files that have no suffix, use the empty string.

Example: (Suffixes "i3" "m3" "" "fv")

(Directories are always shown.)

ReadOnly (Boolean, FALSE)
If true, the browser will only accept selection or naming of files that already
exist. Otherwise, user may name a new file by typing in the helper (see Helper).

CONTINUED...

93

Behavior The FileBrowser displays a list of the files in the current directory, in alphabetic order.
The user can select a file by clicking on its name, and activate it by double-clicking.
Auto-scrolling works as for Browser. In the default setup, only activating a file gen-
erates an event. Activating a directory makes that the current directory, and changes
the display to show it.

If a helper is present (see Helper), it displays the pathname of the current directory
whenever the current directory is changed. The user may also type a filename in the
helper, and press Return to activate it.

There are three “states” of selection in a FileBrowser with a Helper. After a new di-
rectory has just been set, there is no selection; the value is NIL. When the user clicks
on an item in the browser, the browser has the selection, shown by a highlighted item;
when the user types any character in the helper, the helper has the selection; the high-
light vanishes from the browser. Thus it is possible to give a name for a file that does
not yet exist, provided that ReadOnly is false. A relative pathname typed in the Helper
is relative to the current directory.

We recommend using (LabelFont "fixed") for a filebrowser.

Shape At minimum, large enough to hold its scrollbar plus the single string "XXXX" in the
font being used, plus the shadow. Infinitely stretchable in both dimensions.

Notes A Helper never generates events in its own name. It can be accessed in its own name,
but this is not recommended.

OS-related errors can occur: nonexistent directory in path, current directory became
inaccessible, protection violation, etc. The default reaction to these errors is just to
refuse to activate anything. In such a state, GetText will return NIL. The user can
get out of this state by typing an absolute pathname of a directory that is known to
exist. The underlying FileBrowserVBT interface has a mechanism (the error
method) whereby the client can be notified of such errors, to report them to the user
appropriately.

See Also Helper and DirMenu

CONTINUED...

94 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

It is common (and recommended) practice to combine a FileBrowser, a DirMenu, and a Helper,
with activation and cancellation buttons, in an arrangment like the following, which could be used
in an “Open...” dialog.

(ZChassis
(VBox
(HBox
(Shape (Width 150) (Height 150)
(VBox (LabelFont "fixed")

(DirMenu (For fb))
(Glue 6)
(Frame Lowered (BgColor "White")

(FileBrowser %fb ReadOnly))))
Fill
(Shape (Width 100)
(VBox Fill

(Button %open "Open")
(Glue 10)
(CloseButton "Cancel"))))

(HBox
(Shape (Width 30) (Height 16) "File:")
(Frame Lowered (BgColor "White")
(Helper (For fb) (Font "fixed"))))))

95

Fill Leaf

This is used for spacing other objects. Fill uses the background color, and it is essentially a shorthand
for (Glue 0 + Inf).

Shape Both dimensions have zero preferred and minimum size and are infinitely stretchable.
Thus, the non-principal direction takes on the same shape as its parent.

Notes Must be a child of a horizontal or vertical split (HBox, HVTile, VBox, or VTile).

See Also Glue

96 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Filter Filter

Overlays its child with reactivity.

Cursor (Text)
Names the cursor that will be displayed when the mouse is over the child. The
default is cursor is defined by the Trestle implementation.

Reactivity choices (mutually exclusive):

Active (Boolean, TRUE)
When true, mouse and keyboard events are relayed to child. This is the normal
case.

Passive (Boolean, FALSE)
When true, doesn’t allow mouse or keyboard events to go to the child; in ad-
dition, the cursor is changed to Cursor.NotReady, a watch-face.

Dormant (Boolean, FALSE)
When true, doesn’t send mouse or keyboard events to the child; it also draws
a grey screen over the child.

Vanish (Boolean, FALSE)
When true, doesn’t send mouse or keyboard events to the child; in addition, it
draws over the child in the background color thereby making it invisible.

Shape The shape of its child.

Notes Of the four state properties, exactly one can be in effect at any instant. If more than
one is specified, they are considered in the orderVanish, Dormant, Passive, and
Active to find the first one that is true. If all are false (including Active, which
defaults to true), an error is raised.

To test the reactivity of a Filter, you can call one of the following procedures in the FormsVBT inter-
face: IsActive, IsPassive, IsDormant, or IsVanished. To change the reactivity or the
cursor, call MakeActive, MakePassive, MakeDormant, or MakeVanish.

FormsVBT provides a mechanism for accessing the nearest Filter component above a named in-
teractor. Thus, Filter interactors are typically left unnamed, and some named descendant is used to
reference the Filter from the application program.

As mentioned, the default is cursor is defined by the Trestle implementation. Standard X screen-
types support the cursors named in X Window System by Scheifler et. al. [9] Appendix B. Therefore,
for example, XC_arrow returns a cursor that behaves like the X arrow cursor on X screentypes, and
like the default cursor on screentypes that have no cursor named XC_arrow. *)

97

Frame Filter

Displays a three-dimensional border around its child.

Shadow-style choices (mutually exclusive):

Raised GP (Boolean, TRUE)

Flat GP (Boolean, FALSE)

Lowered GP (Boolean, FALSE)

Ridged GP (Boolean, FALSE)

Chiseled GP (Boolean, FALSE)

Shape The shape of its child, plus twice the value of ShadowSize in each dimension.

See Also Border and Rim

98 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Generic Leaf

A placeholder, intended to be taken over by the application. Should always be given a name, so the
application can access it. Often has some application-defined interactive behavior. Until taken over,
this has the shape and appearance of
(Shape (Width 0 + 0) (Height 0 + 0) "")

Notes To take over a Generic, use PutGeneric; to retrieve the VBT, use GetGeneric.
A Generic is implemented as a Filter.T, whose child is the VBT specified usingPutGeneric.
Whenever PutGeneric is invoked, the size of the new VBT is propagated appro-
priately.

Generic should be used only when there is no comparable interactor provided by FormsVBT, or when
the VBT will change dynamically. If you want to use a subtype of an interactor, you should override
the realize method of the FormsVBT object; see FormsVBT.i3.

99

Glue Leaf

A piece of filler for spacing other objects. Glue displays using the background color, BgColor. (To
use the foreground color, use a Bar component.) Unlike Fill, Glue has specified size and no stretch-
ability in the principal direction (horizontal or vertical) of its parent.

Main (Size, 1 + 0 - 0)
The size and stretchability in the principal direction of its parent.

Shape The principal direction is explicitly specified; the other direction has zero preferred
and minimum size and is infinitely stretchable, thereby taking on the parent’s shape.

Notes Must be a child of a horizontal or vertical split (HBox, HVTile, VBox, or VTile).

See Also Fill

100 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Guard Filter

A filter that covers its child with a striped shadow. On the first click, the guard is removed, exposing
and activating the child. If the mouse moves out of the guarded area, the guard returns.

Behavior On down-click, the shadow becomes recessed; restores the raised shadow on up-click
or chord-abort, and generates an event if the mouse is still within the button on the up-
click.

Shape The shape of its child plus the shadow.

Notes A guard is often used around a component whose action has has potentially serious
side-effects; e.g., (Button "Delete"), (Boolean "Override").

101

Help Split

A “helper bubble.” The first child, the “anchor,” is displayed as if Help were not present. The second
child, the “bubble,” is popped up when the mouse is over the anchor for a “sufficiently long time” (the
amount of time is implementation-specific), and the bubble remains displayed as long as the mouse
is in over the anchor.

Shape The shape of the anchor child.

Notes The bubble appears in the southwest corner of the anchor. It would probably be better
were it displayed closer to where the mouse first entered the anchor.

The following macro creates a helper bubble that contains some text on a yellow background.

(Macro TextBubble BOA (child text)
‘(Help ,child
(Border (Pen 1) (Color "Black") (BgColor "LightYellow")
(Rim (Pen 4)
(Text ,text)))))

102 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Helper Leaf

A type-in field connected to a FileBrowser. A Helper is used for typing filenames, either to select a
new file or to switch to another directory.

For (Symbol)
The name of a FileBrowser. This property is required.

FirstFocus (Boolean, FALSE)
If this Helper is in a subwindow or TSplit-child, then when that component
appears, the keyboard focus will go to this Helper, and its typein field will be
selected in replace-mode. See the note about the TypeIn’s FirstFocus property.

TabTo (Symbol)
If given, this is the name of the component to which the keyboard focus wil
be transferred when the user types Tab.

ExpandOnDemand (Boolean, FALSE)
If true, the text area will grow and shrink vertically, as required, to contain the
entire text.

Behavior The helper displays the pathname of the FileBrowser’s current directory. The user
can also type a name in the Helper; typing Return will then activate that file in the
FileBrowser.

In a non-ReadOnly FileBrowser, a Helper is necessary in order to specify a file that
does not yet exist (e.g., that the application should create), as in a ”Save As ...” dialog.

We recommend using (Font "fixed") in the helper.

Shape The width is zero with infinite stretchability, and the height is as high as one line in
the current font.

Notes A Helper never generates events in its own name. It can be accessed in its own name,
but this is not recommended.

See Also DirMenu and FileBrowser

103

HBox Split

Organizes its children horizontally, in order from left to right. If it is wider than the sum of its chil-
dren’s widths, the excess is distributed equally among all stretchable children, as far as they will
stretch. If all stretchability is exceeded, the excess will be given to the last child. If it is narrower
than the sum of its children’s widths, it clips on the right, perhaps making some children entirely in-
visible. All children have height equal to the height of the HBox. Section 3.6 explains the layout
model in detail.

Shape The width is the sum of its children’s widths; the height is the maximum of the chil-
dren’s heights, but is stretchable only if all of them are.

See Also VBox

104 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

HPackSplit Split

Organizes its children like words of text in a ragged-right paragraph. The children in any given row
have their north boundaries aligned, and all children that are first in their row have their west borders
equal to the west border of the parent. A child is horizontally clipped only if its requested horizontal
size exceeds the parent’s horizontal size; in this case the child will be alone in its row.

HGap (Real, 2.0)
This many points separate each child horizontally.

VGap (Real, 2.0)
This many points separate each row of children.

Background (Text, "White")
Inter-children (HGap), inter-row (VGap), and end-of-line spaces are displayed
in this texture.

Shape The shape is unconstrained in the principal axis and fixed in the other axis.

See Also VPackSplit

105

HTile Split

Organizes its children horizontally, in order from left to right, with an adjusting bar between each
child. The adjusting bar allows the user to move the boundary between the children, subject to the
size range allowed by each child.

Shape Same as HBox.

See Also VTile

106 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Insert Leaf

Insert is not a component at all. It is a syntactic form for specifying the name of another resource
whose contents are to be included at this point in the S-expression. (It is the only such form in the
language.)

Main (Text)
The text argument is the name of a resource containingone or more S-expressions.

Behavior Insert is convenient for breaking a large FormsVBT description into several files. Typ-
ically, such files contain ZChild, ZChassis, and Macro forms.

107

LinkButton Filter

A button that provides “random access” to a child of a TSplit. Switches a TSplit to display the spec-
ified child.

For (Symbol)
The target, which must be specified. The named component must be either a
TSplit child, or a descendant of something that is. In the latter case the TSplit
child is the true target.

Behavior Like a Button, but before generating an event, switches a TSplit to display a specific
child.

Shape The natural shape of its child (i.e., with no shrink or stretch), plus the border around
the button.

Notes The LinkButton need not be a descendant of the TSplit it controls. You may specify
more than one LinkButton for the same TSplit.

See Also LinkMButton, PageButton, and TSplit

108 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

LinkMButton Filter

This is the “menu-style” equivalent of LinkButton; it provides “random access” to a child of a TSplit.

For (Symbol)
The target, which must be specified. The named component must be either a
TSplit child, or a descendant of something that is. In the latter case the TSplit
child is the true target.

Behavior Like an MButton, but before generating an event, it switches a TSplit to display a
specific child.

Shape The natural shape of its child (i.e., with no shrink or stretch), plus the border around
the button.

See Also LinkButton, PageMButton, and TSplit

109

MButton Filter

A “menu button” is usually a member of a Menu. It can be used anywhere, but its behavior will seem
weird in almost any other context.

Behavior Its child is surrounded by a flat shadow that is recessed whenever the mouse rolls into
it. Restores the flat shadow on up-click or chord-abort, and generates an event if the
mouse is still within the button on the up-click.

Shape The natural shape of its child (i.e., with no shrink or stretch), plus the border around
the button.

See Also Button

110 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Menu Split

A pull-down menu. The first child, the “anchor”, looks just like a button, and when it is clicked,
it pops up the second child. The second child can be any component, and is surrounded by a raised
shadow. All other children are ignored. A menu requires a ZSplit somewhere in its ancestry; FormsVBT
provides one of these by default.

NotInTrestle (Boolean, FALSE)
If true, the menu is installed into a local ZSplit, rather than directly into Tres-
tle, when popped up. Menus installed in Trestle may exceed the size of the
containing window.

Behavior Pops up the second child when the first child is clicked, and keeps it there until the
mouse button is released. Typically, the the second child contains a VBox of menu
buttons (MButton, PopMButton, PageMButton, LinkMButton).

An event is generated just after the anchor button is activated, and before the sec-
ond child of Menu is popped up. This is useful for clients whose menu contents are
changing dynamically and should be made consistent only when the menu is about to
be displayed.

Shape The shape of its first child plus its shadow.

111

MultiBrowser Leaf

A browser on a collection of text strings that allows multiple items to be selected.

Contents (Items takes precedence):

Items (TextList)
The contents of the browser.
Example: (Items "a" "b" "c")

From (Text)
If present, this names a resource from which the initial browser contents will
be taken, one item per line.

Initial choices (Value takes precedence):

Value (CardinalList)
The positions of selected items.
Example: (Value 1 3 5 2).

Select (TextList)
The list of initially selected items.
Example: (Items "c" "a")

Quick (Boolean, FALSE)
If true, every selection action is reported as an event. Otherwise, only double-
click actions are reported.

Behavior Displays items vertically, with a scrollbar at the left. The left button modifies the se-
lection: If the item under the cursor is not currently selected, it becomes selected; if
it is currently selected, it is deselected. Dragging sets the state of the additional items
to the state it gave to the first item. Middle and right buttons clear any existing se-
lection, and select the item under the cursor. Dragging selects additional items as the
mouse passes over them; retreating unselects items. Autoscrolling is implemented,
and it continues to select or unselect items as they scroll by.

When Quick is true, every selection action also generates an event, on the up-click.
Otherwise, an event is not generated until the second up-click of a double-click.

Shape At minimum, large enough to hold its scrollbar plus the single string "XXXX" in the
font being used, plus a shadow. Infinitely stretchable in both dimensions.

See Also Browser

112 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Numeric Leaf

An interactor for integer values. Numeric has an editable displayed number, as well as “increment”
and “decrement” buttons.

Value GP (Integer)
The currently displayed number.

AllowEmpty (Boolean, FALSE)
If true, the component supports a distinct “empty” state. See Notes.

Min GP (Integer, FIRST(INTEGER))
The minimum allowed value.

Max GP (Integer, LAST(INTEGER))
The minimum allowed value.

HideButtons (Boolean, FALSE)
If true, the numeric interactor appears without increment and decrement but-
tons.

TabTo (Symbol)
If given, this is the name of the component to which the keyboard focus wil
be transferred when the user types Tab.

FirstFocus (Boolean, FALSE)
If this Numeric is in a subwindow or TSplit-child, then when that component
appears, the keyboard focus will go to this Numeric, and its number field will
be selected in replace-mode. See the note about the TypeIn’s FirstFocus prop-
erty.

Behavior The increment button (+) increments the number, whereas the decrement button (�)
decrements it, up to the respective limits. The number field is editable as a single-line
TypeIn. Typing Return in the number field checks the number; if it is out of range, it is
forced to the nearest acceptable value. Increment, decrement, and Return all generate
an event.

Shape The shape depends on the ShadowSize and Font in effect. When the default shadow
and font are used, the size of a Numeric is 76 by 19 pixels.

Notes GetInteger can be used to retrieve the current value, and PutInteger can be
used to set it.

When AllowEmpty is true, emptiness is a special, out-of-band state for the interac-
tor. In this state the increment and decrement functions are disabled. The value of an
empty Numeric is reported as FIRST(INTEGER).

Emptiness can be tested explicitly by NumericVBT.IsEmpty, and can be set by
NumericVBT.SetEmpty.

113

PageButton Filter

A button that switches to the next or previous child of a TSplit. Its target is a TSplit, which may be
specified by the For property; otherwise the target is the nearest TSplit ancestor of the PageButton
itself.

For (Symbol)
If given, names the target, which must be a TSplit.

Back (Boolean, FALSE)
If true, the button advances backward among children of the TSplit, otherwise
it advances forward.

Behavior PageButton is like a Button, but before generating an event, it switches the children
of a TSplit. However, if the TSplit is not Circular, and if the last (first) child is already
being displayed, nothing happens and no event is generated.

Shape The natural shape of its child (i.e., with no shrink or stretch), plus the border around
the button.

Notes If a PageButton is a descendant of the TSplit it controls, it will naturally vanish when
activated, due to the nature of TSplits.

You may specify more than one PageButton for the same TSplit.

See Also LinkButton, PageMButton, and TSplit

114 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

PageMButton Filter

This is the “menu-style” equivalent of PageButton. It switches to the next or previous child of a
TSplit. Its target is a TSplit, which may be specified by the For property; otherwise the target the
nearest TSplit ancestor of the PageMButton itself.

For (Symbol)
If given, names the target, which must be a TSplit.

Back (Boolean, FALSE)
If true, the button advances backward among children of the TSplit, otherwise
it advances forward.

Behavior PageMButton is like an MButton, but before generating an event, it switches the chil-
dren of a TSplit. However, if the TSplit is not Circular, and if the last (first) child is
already being displayed, nothing happens and no event is generated.

Shape The natural shape of its child (i.e., with no shrink or stretch), plus the border around
the button.

See Also LinkMButton, PageButton, and TSplit

115

Pixmap Leaf

Displays a pixmap, centered in the space available. The image in the pixmap is a resource in “pnm”
format, representing one of three types of images: “pbm” is a 1-bit-deep (bitmap) image; “pgm” is
a greyscale image; “ppm” is a color image.

Main P (Text)
The name of a resource containing the image for a pixmap. The image must
be in “pnm” format.

Accurate (Boolean, FALSE)
If the image is is greyscale or color (pgm or ppm), this property determines
how each RGB value in the pixmap should be displayed on a color-mapped
display.

NeedsGamma (Boolean, FALSE)
If the image is is greyscale or color (pgm or ppm), thisproperty indicates whether
to let Trestle gamma-correct the colors.

Notes The current foreground and background colors are used for bitmap (pbm) images. In
all three formats, if the image is smaller than the space available, the current back-
ground color is used for the surrounding space.

Shape The shape of the pixmap, with infinite stretchability in both dimensions.

See Also Texture

116 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

PopButton Filter

A button that pops up an overlapping subwindow when clicked. Its target must be specified with the
For property.

For (Symbol)
If given, this names the target. The named component must be either an over-
lapping (non-background) child of a ZSplit, or a descendant of something
that is. In the latter case, the actual target will be the ZSplit child, not the
named descendant.

Behavior Like a Button, but before generating an event, it pops up its target (or brings the target
to the top of it sibling, overlapping windows, if it is already visible).

Shape The natural shape of its child (i.e., with no shrink or stretch), plus the border around
the button.

See Also PopMButton

117

PopMButton Filter

This is the “menu-style” equivalent of PopButton.

For (Symbol)
If given, this names the target. The named component must be either an over-
lapping (non-background) child of a ZSplit, or a descendant of something
that is. In the latter case, the actual target will be the ZSplit child, not the
named descendant.

Behavior Like an MButton, but before generating an event, it pops up its target (or brings the
target to the top of it sibling, overlapping windows, if it is already visible).

See Also PopButton

118 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Radio Filter

Unites those descendants that are Choice components into “radio buttons.” Within a Radio, at most
one Choice component is selected at any given time.

Value (Symbol, "")
The name of the Choice element currently selected. Note that the application
can clear the selection, so that no member of the group is selected, but the user
cannot. The current selection can be accessed via FormsVBT.GetChoice
and FormsVBT.PutChoice.

Behavior An event is generated whenever the user changes which element of the group is se-
lected. If the Choice element has an attached event procedure, it will be called; oth-
erwise, the event falls through to the Radio group, which may also have an attached
procedure. Thus an event can occur in the name of the Radio group, though the group
itself has no interactive behavior.

Shape The shape of its child.

See Also Boolean and Choice

119

Ridge Leaf

Displays a ridged, three-dimensional divider bar with the specified size in the principal direction (hor-
izontal or vertical) of its parent.

Main (Real, 1.5)
The size in the principal direction.

Shape The principal direction is explicitly specified; the other direction has zero preferred
and minimum size and is infinitely stretchable, thereby taking on the parent’s shape.

Notes Must be a child of a horizontal or vertical split (HBox, HVTile, VBox, or VTile).

See Also Bar and Chisel

120 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Rim Filter

Displays a rim around its child. A rim is like a border, but uses the background color rather than the
foreground color.

Pen (Real, 1.0)
The thickness of the rim.

Texture (Text)
The name of a pixmap-resource used for the border’s texture, which defaults
to Pixmap.Solid.

Shape The shape of its child, plus twice the value of Pen in each dimension.

See Also Border and Frame

121

Scale Filter

Scale provides a filter that changes the resolution, not the size, of its child. Both graphics and fonts
are scaled.

HScale GP (Real, 1.0)
The horizontal scaling factor.

VScale GP (Real, 1.0)
The vertical scaling factor.

Auto (Boolean, FALSE)
Dynamically set the scaling such that the child’s natural size always fills its
domain.

AutoFixed (Boolean, FALSE)
Like Auto, but always use set the horizontal and vertical scaling factors to the
same number.

Shape The shape of the child.

Notes Auto takes precedence over AutoFixed, which takes precedence over HScale or VS-
cale.

There are two ways you can use a ”Scale” component: With the HScale and VScale
properties, the ”Scale” allows you to explicitly set a horizontal and vertical scale fac-
tor. Alternatively, with Auto the scale factors are set so that the child’s natural size al-
ways fills the screen real estate it’s been given. A varient of Auto is AutoFixed: here,
the child is scaled by the same amount both horizontally and vertically. The amount
is chosen so that the natural size of child just fits in the larger direction given and fits
fine in the other direction.

You should only retrive and modify the values of HScale and VScale if the component
was created without Auto or AutoFixed.

Scale does not change the size of the child, just the size of the “pixels.” Graphic ele-
ments will be scaled fairly precisely. Fonts will be scaled to the nearest available font.
If you are scaling components that include text, for best results, HScale and VScale
should have the same value.

If you are specifying a Font or LabelFont in a component that is going to be scaled,
you should use the “long form” of the font’s name in order to specify the point size;
e.g.,

(Font
(Family "fixed")
(WeightName "medium")
(Slant "r")
(Width "normal")
(PointSize 120))

122 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Scroller Leaf

An integer-valued scroll bar interactor. The full range of the scroll bar is gray, and the “thumb” is a
white rectangular stripe somewhere within the scroll bar. The scroll bar represents the interval[Min
.. Max], and the thumb represents the subinterval [Value .. (Value+Thumb)].

Value GP (Integer, 50)
The current value; always between Min and Max-Thumb, inclusive.

Min GP (Integer, 0)
The minimum value allowed.

Max GP (Integer, 100)
The maximum value allowed. Value is within Min and Max-Thumb.

Thumb GP (Cardinal, 0)
A non-negative number no greater than Max-Min.

Step GP (Cardinal, 1)
The amount to increment or decrement Value when “continuous scrolling.”

Vertical (Boolean, FALSE)
If true, the scroll bar is oriented vertically, from south (Min) to north (Max).
Otherwise, the scroll bar goes from west to east.

CONTINUED...

123

Behavior The user can adjust the position of the thumb with the mouse. For the sake of explana-
tion, suppose that the scroll bar is adjacent and attached (via an application program)
to a column containing the numbers Min through Max. At any given time, Thumb+1
of the numbers (i.e., Value through Value+Thumb) are visible in the attached view.

The semantics of the mouse are as follows: A left click scrolls the view towards its
end by moving the number at the mouse so it becomes the first number visible in the
view. A right click scrolls the view towards its beginning by bringing the first number
visible in the view to the position of the mouse. A middle click scrolls the view to the
mouse by bringing the top of the thumb to the position of the mouse. Holding the left
or right button without moving the mouse will cause (after a short time) continuous
scrolling to begin. If you then drag the mouse, any continuous scrolling is terminated
and the view scrolls with the mouse.

An event is generated after each time the Value of the scroll bar is changed. That can
happen after any click, while continuous scrolling is in effect, and while dragging the
mouse. When continuous scrolling causes the thumb to reach its limit, the scroll bar
doesn’t continue to generate events, since the value is no longer changing.

It is not unreasonable for the application to modify properties of the scroll bar (the
thumb, in particular) while processing an event.

Notes The scroll bar does not allow canceling.

Shape Vertical sliders have a minimum size of 13x27 pixels, with infinite vertical stretch.
Horizontal sliders have a minimum size of 27x13 pixels, with infinitehorizontal stretch.

124 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Shape Filter

The Shape filter is used for putting size-constraints on a component.

Height (Size)

Width (Size)

See Also Sections 3.6 and 3.6.1

125

Source Filter

A Source component is a filter, used for drag-and-drop actions. It generates an event on an uncan-
celled upclick. A typical event-handler will then inquire theActiveTarget property to determine
whether the Source is over a Target and take some action if it is. For example, a source-icon repre-
senting a file might delete the file when it is dragged and released over a target-icon representing a
“trash can.” A tiling window manager might make every window both a Source and Target to permit
windows to be exchanged.

ActiveTarget G (Text) The name of the component over which the Source is located. This
property is ignored when the Source is defined; it only has a value while the
callback associated with the Source is active. The call toFormsVBT.GetTextProperty
raises an Error exception if the Source is not over a valid Target on an un-
cancelled upclick or if the Target does not have a name.

Behavior If the Source is located over a Target when the mouse-button is down, the Source’s
hit method is called.

See Also Target

126 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Stable Filter

The Stable filter is used to mask out changes to its child’s preferred size.

Shape The max and min are its child’s max and min size. The preferred size is the projection
of its own size into the child’s size range. Its own size is its current size if this is non-
empty, or its last non-empty size otherwise.

Notes A Stable is part of a ZChassis. In this way, whenever the user changes the size of
a subwindow, that size will take precedence over any new size preferences given by
the ZChassis’s child. A Stable is also inserted automatically by Trestle whenever a
window is installed.

127

Target Filter

A Target is a filter that marks its child as a destination for a Source component.

Behavior By default, a Target component inverts its highlighting when there is a Source com-
ponent overlapping it.

See Also Source

128 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Text Leaf

Displays a single-line text string. By default, the string is centered horizontally and vertically.

Contents (Main takes precedence):

Main GP (Text)
The text.

From (Text)
The name of a resource from which the text will be taken.

Centering choices (mutually exclusive):

Center (Boolean, TRUE)
Causes the text to be centered.

LeftAlign (Boolean, FALSE)
Causes the text to be left-aligned.

RightAlign (Boolean, FALSE)
Causes the text to be right-aligned.

Margin (Real, 2.0)
Forces this many points of margin on the east and west sides of the text.

Shape The bounding rectangle of the text when rendered in the current LabelFont, plus 2 *
Margin in each axis.

Notes Text components use the LabelFont property, not the Font property.

129

TextEdit Leaf

A multi-line, editable text with a scrollbar.

Contents (Value takes precedence):

Value (Text, "")
The contents.

From (Text)
The name of a resource from which the text will be taken.

ReadOnly GP (Boolean, FALSE)
If true, the text will not be editable.

Clip (Boolean, FALSE)
If true, the long lines will be clipped, not wrapped.

TurnMargin (Real, 2.0)
If long lines are wrapped, then a small grey bar will appear at the end of the
first line and the beginning of the next to indicate that the line was wrapped.
TurnMargin specifies the width of the grey bar.

NoScrollbar (Boolean, FALSE)
If true, there will be no scrollbar or thin line to the left of the text area.

FirstFocus (Boolean, FALSE)
If true, and if this TextEdit is in a subwindow or TSplit-child, then when that
component appears, this TextEdit will acquire the keyboard focus. See the
note about the TypeIn’s FirstFocus property.

Position GP (Cardinal, N/A)
The position of the cursor.

Length GP (Cardinal, N/A)
The number of characters in the text.

Notes The Positionand Length properties are unusual because they cannot be specified in the
s-expression; they may only be accessed at runtime usingFormsVBT.GetIntegerProperty
and FormsVBT.PutIntegerProperty.

Notes For details on the editing commands, see the description of TextPort in the VBTkit
Reference Manual[2].

Notes This form produces an object that is a subtype of TextEditVBT.T, which contains
a TextPort.T and (optionally) a TextPort.Scrollbar. To override methods
such as filter on the textport, the client should use the realize method of the
FormsVBT.T; see Section 4.7, page 69 for an example.

See Also TypeIn and Typescript

130 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Texture Leaf

Displays a rectangle in some texture.

Main (Texture)
The name of a pixmap-resource used for the texture. The default is to use
Pixmap.Solid for the texture.

LocalAlign (Boolean, FALSE)
If true, the texture is aligned to the northwest corner of the underlying VBT.
Otherwise, it’s aligned with the coordinate origin. Note that all other interac-
tors that use textures are necessarily aligned with the coordinate origin.

Shape Zero size and infinitely stretchable in both dimensions.

See Also Pixmap

131

TrillButton Filter

A button, generates an event on the down-click and continues to generate events while the mouse is
held down over the button.

Behavior Highlights on down-click, and generates an event. If held long enough, generates
events repeatedly until released, canceled (by chording), or moved outside the domain
of the button. When moved outside the button and still held, events are suspended
until the mouse is returned to the domain of the button. At that point, the button is re-
highlighted and event generation is resumed. The button is unhighlighted when the
button is released or canceled.

Notes The initial hold-period and the repeat-period should ultimately be governed by an
application-independent user profile.

Shape The natural shape of its child (i.e., with no shrink or stretch), plus the border around
the button.

132 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

TSplit Split

Organizes its children temporally: exactly one child is visible at any given time.

Value GP (Cardinal, 0)
Which child is currently shown. The first child is numbered 0.

Which (Symbol)
The name of the currently visible child. If both Value and Which are specified,
they must refer to the same child.

Circular (Boolean, FALSE)
If true, makes the TSplit view its children as a circular rather than a linear list,
thereby changing the behavior of PageButton.

Flex (Boolean, FALSE)
If true, the TSplit will change shape to fit the shape of the child on display at
the moment. Otherwise switching the visible child never changes the TSplits’s
shape. A change of shape can lead to resizing that cascades throughout the
entire form, so use with care.

Behavior TSplit has no direct interactive behavior, but the user can change which child is shown
by using PageButton and LinkButton.

Shape If Flex is false, the natural width and height are separately computed as the maximum
of the natural widths and heights of the children. If Flex is true, shape is identical to
the shape of the currently displayed child.

See Also LinkButton, LinkMButtonm, PageButton, and PageMButton

133

TypeIn Leaf

A single-line editable text.

Contents (Value takes precedence):

Value GP (Text, "")
The current text.

From (Text)
If present, names a resource from which the initial text will be taken.

ReadOnly (Boolean, FALSE)
If true, the text-area will not be editable.

ExpandOnDemand (Boolean, FALSE)
If true, the text area will grow and shrink vertically, as required, to contain the
entire text.

FirstFocus (Boolean, FALSE)
If true, and if this TypeIn is in a subwindow or TSplit-child, then when that
component appears, this TypeIn will acquire the keyboard focus, and its text
will be selected in replace-mode. See the notes below.

TabTo (Symbol)
If given, this is the name of the component to which the keyboard focus wil
be transferred when the user types Tab.

TurnMargin (Real, 2.0)
If long lines are wrapped, then a small grey bar will appear at the end of the
first line and the beginning of the next to indicate that the line was wrapped.
TurnMargin specifies the width of the grey bar.

CONTINUED...

134 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Behavior This is a text editor, normally used for small type-in fields.

Typing Return generates an event.

Extensive application control can be exercised by direct calls on procedures in the
TextPort interface.

Shape The width is initially 30 times the width of the widest character in the font. It has infi-
nite shrinkabilityand stretchability. It is initiallyone line high. IfExpandOnDemand
is false, then it always keeps that height; otherwise, the height changes to accomodate
the entire text, but never less than one line. In any case, there is no vertical stretch or
shrink.

Notes For details on the editing commands, see the description of the TypeinVBT interface
in the VBTkit Reference Manual[2].

Notes The FirstFocus property only works when the TypeIn is in a subwindow or TSplit-
child. If you’d like a TypeIn in the top-level window to grab the keyboard when the
mouse first enters the window, you can override the position method of the form to
grab the focus the first time (and only the first time!) that the mouse enters the window.
Here’s how to do that.

Here’s how to subclass the form:

TYPE
MyForm = FormsVBT.T OBJECT
graphFocus: BOOLEAN := TRUE;
firstFocus: TEXT; (* name of widget to grab focus *)

OVERRIDES
position := MyPosition;

END;

And here is what the position method looks like:
\begin{verbatim}
PROCEDURE MyPosition(self: MyForm; READONLY cd: VBT.PositionRec) =
BEGIN
FormsVBT.T.position(self, cd);
IF self.grabFocus THEN
FormsVBT.TakeFocus(self, self.firstFocus, cd.time);

self.grabFocus := FALSE
END

END MyPosition

See Also TextEdit and Typescript

135

Typescript Leaf

This is like a TextEdit component, but the underlying VBT class provides a reader and a writer for
accessing the text. The lines of text that have been read become read-only as far as the editor is
concerned. It is useful for “transcripts.” With a small amount of Modula-3 code, you can connect
the reader and writer to pipes that run a command interpreter. Typescripts always have scrollbars.

ReadOnly (Boolean, FALSE)
If true, the text-area will not be editable.

Clip (Boolean, FALSE)
If true, the long lines will be clipped, not wrapped.

TurnMargin (Real, 2.0)
If long lines are wrapped, then a small grey bar will appear at the end of the
first line and the beginning of the next to indicate that the line was wrapped.
TurnMargin specifies the width of the grey bar.

FirstFocus (Boolean, FALSE)
If true, and if this component is in a subwindow or TSplit-child, then when
that component appears, this component will acquire the keyboard focus, and
its text will be selected in replace-mode. See the note about the TypeIn’s First-
Focus property.

Notes For details on the editing commands, see the description of TextPort in the VBTkit
Reference Manual[2]. The following code shows the Modula-3 code for accesses the
underlying reader and writer:

WITH v = FormsVBT.GetVBT(fv, "typescript") DO
rd := TypescriptVBT.GetRd(v);
wr := TypescriptVBT.GetWr(v);

END;

See Also TextEdit and TypeIn

136 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

VBox Split

Organizes its children vertically, in order from top to bottom. If it is taller than the sum of its chil-
dren’s heights, the excess is distributed equally among all stretchable children, as far as they will
stretch. If all stretchability is exceeded, the excess will be given to the last child. If it is shorter than
the sum of its children’s heights, it clips on the bottom, perhaps making some children entirely invis-
ible. All children have width equal to the width of the VBox. Section 3.6 explains the layout model
in detail.

Shape The height is the sum of its children’s heights; the width is the maximum of the chil-
dren’s widths, but is stretchable only if all of them are.

See Also HBox

137

Viewport Filter

A Viewport is a filter that provides scrollbars (horizontal and/or and vertical) to let you scroll over
its child-component when the child’s preferred size is bigger than the Viewport’s size.

Step (Cardinal, 10)
The number of pixels to move while auto-scrolling.

Scrolling choices (mutually exclusive):

HorAndVer (Boolean, TRUE)
This puts a horizontal and vertical scrollbar on every view, and a “reset” button
in the southwest corner that moves the northwest corner of the child to the
northwest corner of the view.

HorOnly (Boolean, FALSE)
Places a horizontal scrollbar at the bottom of the Viewport, and none at the left
side.

VerOnly (Boolean, FALSE)
Places a vertical scrollbar on the left side of the Viewport, and none at the bot-
tom.

Behavior Meta-left-click in a scrollbar splits the view, and meta-right-click removes the current
view.

See Also Scroller

138 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

VPackSplit Split

Organizes its children vertically, in order from top to bottom, like paragraphs in a newspaper. The
children in any given column have their west boundaries aligned, and all children that are first in their
column have their north borders equal to the north border of the parent. A child is vertically clipped
only if its requested vertical size exceeds the parent’s vertical size; in this case the child will be alone
in its column.

HGap (Real, 2.0)
This many points separate each column of children.

VGap (Real, 2.0)
This many points separate each child vertically.

Background (Text, “White”)
Inter-children (HGap), inter-row (VGap), and end-of-line spaces are displayed
in this texture.

Shape The shape is unconstrained in the vertical axis.

See Also HPackSplit

139

VTile Split

Organizes its children vertically, in order from top to bottom, with an adjusting bar between each
child. The adjusting bar allows the user to move the boundary between the children, subject to the
size range allowed by each child.

Shape The height is the sum of its children’s heights; the width is the maximum of the chil-
dren’s widths, but is stretchable only if all of them are.

See Also HTile

140 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

ZBackground Filter

ZBackground is a filter that should be put around the first (background) child of a ZSplit. This fil-
ter will clip highlighting that takes place within the background child from the other children of the
ZSplit.

See Also ZSplit, ZChassis, and ZChild

141

ZChassis Filter

A handy setup for a standard, titled, draggable subwindow (a non-background child of a ZSplit).
The top of the subwindow contains a banner with a close button, a title that can be used to drag the
window, and a grow button.

At (List, 0.5 0.5)
This determines the initial position of the subwindow. See ZChild.

Open (Boolean, FALSE)
If true, the subwindow is initially visible. See ZChild.

Title (Sx, (Text "<Unnamed>"))
This is the text inside the draggable part of the title bar.

NoClose (Boolean, FALSE)
If true, the close button is omitted.

Shape Shape of its child plus borders, frames, and the title bar.

See Also ZSplit and ZChild

142 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Except for some details of the feedback and the handling of keywords, ZChassis could be defined
by a macro:

(Macro ZChassis ((Open FALSE)
(At (0.5 0.5))
(Title "<Untitled>")
child)

‘(ZChild
(Open ,Open)
(At ,@At)
(Stable
(Border
(VBox
(HBox
(CloseButton "C")
Bar
(Shape (Width + Inf) (ZMove ,Title))
Bar
(ZGrow "G"))

Bar
(Frame ,child))))))

143

ZChild Filter

A hook on which to hang various properties (such as At and Name) that control the behavior of an
overlapping subwindow.

At (At, 0.5 0.5)
Position, as discussed in Section 3.7.

Open (Boolean, FALSE)
If true, the subwindow is initiallyvisible. Otherwise, it is invisibleuntil opened
by user or program action (typically via PopButton or PopMButton). Open
subwindows are useful for achieving layouts that cannot be achieved by a hi-
erarchy of HBoxes and VBoxes.

Notes In practice, most overlappingsubwindowsbegin witha ZChildwith properties. ZChild
itself has no interactive behavior or appearance, but because it is a HighlightVBT, it
ensures that Buttons and other descendants that also highlight by HighlightVBTdon’t
visually interfere with other overlapping subwindows.

See Also ZSplit and ZChassis

144 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

ZGrow Filter

This button has the side effect of reshaping its nearest subwindow-ancestor. A ZGrow button is there-
fore useful in a ZChild.

See Also ZChassis and ZSplit

145

ZMove Filter

A button that has the side effect of repositioning its nearest ancestor that’s a non-background child
of a ZSplit. A ZMove button is therefore useful in a ZChild (see ZChassis).

See Also ZChassis and ZSplit

146 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

ZSplit Split

Organizes its children as overlapping subwindows. The first child is special: it is the background,
and it underlies all overlapping windows and defines the shape of the ZSplit itself. The background
child should be enclosed in a ZBackground form. It’s recommended that non-background children of
ZSplit be either ZChild or ZChassis, since those interactors support position control, non-interfering
highlighting, and so on.

Shape The shape of its background child.

See Also CloseButton, ZChassis, ZChild, ZMove, and ZGrow

B. Miscellaneous Interfaces

This appendix describes interfaces that are of interest to FormsVBT programmers.
TheColorName interface describes the names that are permitted in FormsVBT color-expressions,

e.g., (BgColor "VividTomato"). While these names are useful to all FormsVBT program-
mers, the procedures in the interface will be useful primarily to VBTkit programmers.

TheXTrestle interface provides utilityprocedures for handling the display and geometry command-
line parameters that use the X server.

You should use use XParam interface instead of XTrestle if your application installs more
than one top-level window.

The FVTypes interface provides the type definitions of the VBT classes implementing each
FormsVBT component. Clients that override the realize method will need to access this inter-
face.

The Rsrc interface describes how constant data (texts, pixmaps, form-descriptions, etc.) can be
combined with a program.

147

148 APPENDIX B. MISCELLANEOUS INTERFACES

B.1 The ColorName Interface

TheColorName interface provides a standard mapping between color names and linear RGB triples.
The implementation recognizes the followingnames, based on those found in/usr/lib/X11/rgb.txt:

AliceBlue ForestGreen MintCream SandyBrown
AntiqueWhite y Gainsboro MistyRose y SeaGreen y

Aquamarine y GhostWhite Moccasin Seashell y

Azure y Gold y NavajoWhite y Sienna y

Beige Goldenrod y Navy SkyBlue y

Bisque GoldenrodYellow NavyBlue SlateBlue y

Black Gray z OldLace SlateGray y

BlanchedAlmond Green y OliveDrab y SlateGrey
Blue y GreenYellow OliveGreen y Snow y

BlueViolet Grey z Orange y SpringGreeny
Brown y Honeydew y OrangeRed y SteelBlue y

Burlywood y HotPink y Orchid y Tan y

CadetBlue y IndianRed y PapayaWhip Thistle y

Chartreuse y Ivory y PeachPuff y Tomato y

Chocolate y Khaki y Peru Turquoise y

Coral y Lavender Pink y Violet
CornflowerBlue LavenderBlush y Plum y VioletRed y

Cornsilk y LawnGreen Powderblue Wheat y

Cyan y LemonChiffon y Purple y White
DeepPink y LimeGreen Red y WhiteSmoke
DeepSkyBlue y Linen RosyBrowny Yellow y

DodgerBlue y Magenta y Royalbluey YellowGreen
Firebrick y Maroon y SaddleBrown
FloralWhite MidnightBlue Salmon y

The dagger (y) indicates that the implementation recognizes a name along with the suffixes 1–4;
e.g., Red, Red1, Red2, Red3, and Red4.

The double dagger (z) indicates that the implementation also recognizes the names with the suf-
fixes0 through100. That is, Gray0,Gray1, ..., Gray100, as well asGrey0, Grey1, ..., Grey100.

B.1. THE COLORNAME INTERFACE 149

In addition, the name of a color C from this list can be prefixed by one or more of the following
modifiers:

Term Meaning
Light
Pale

1/3 of the way from C to white

Dark
Dim

1/3 of the way from C to black

Drab
Weak
Dull

1/3 of the way from C to the gray
with the same brightness as C

Vivid
Strong
Bright

1/3 of the way from C to the purest color
with the same hue as C

Reddish 1/3 of the way from C to red
Greenish 1/3 of the way from C to green
Bluish 1/3 of the way from C to blue
Yellowish 1/3 of the way from C to yellow

Each of these modifiers can be modified in turn by the following prefixes, which replace “1/3 of
the way” by the indicated fraction:

Term Degree % (approx.)
VeryVerySlightly 1/16 of the way 6%
VerySlightly 1/8 of the way 13%
Slightly 1/4 of the way 25%
Somewhat 3/8 of the way 38%
Rather 1/2 of the way 50%
Quite 5/8 of the way 63%
Very 3/4 of the way 75%
VeryVery 7/8 of the way 88%
VeryVeryVery 15/16 of the way 94%

The modifier Medium is also recognized as a shorthand for SlightlyDark. (But you cannot use
VeryMedium.)

INTERFACE ColorName;

IMPORT Color, TextList;

EXCEPTION NotFound;

PROCEDURE ToRGB (name: TEXT): Color.T RAISES {NotFound};

Give the RGB.T value described by name, ignoring case and whitespace. A cache of unnormalized names is
maintained, so this procedure should be pretty fast for repeated lookups of the same name.

150 APPENDIX B. MISCELLANEOUS INTERFACES

PROCEDURE NameList (): TextList.T;

Return a list of all the “basic” (unmodified) color names known to this module, as lower-case TEXTs, in
alphabetical order.

END ColorName.

B.2. THE XTRESTLE INTERFACE 151

B.2 The XTrestle Interface

XTrestle checks for X-style “-display” and “-geometry” command-line switches and in-
stalls a top-level window accordingly. If your application install more than one top-level window,
you may find the routines in the XParam interface helpful.

INTERFACE XTrestle;

IMPORT TrestleComm, VBT;

EXCEPTION Error;

PROCEDURE Install (v : VBT.T;

applName : TEXT := NIL;

inst : TEXT := NIL;

windowTitle: TEXT := NIL;

iconTitle : TEXT := NIL;

bgColorR : REAL := -1.0;

bgColorG : REAL := -1.0;

bgColorB : REAL := -1.0;

iconWindow : VBT.T := NIL)

RAISES {TrestleComm.Failure, Error};

<* LL.sup = VBT.mu *>

This is like Trestle.Install except that the locking level is different and the command line is parsed for
X-style -display and -geometry options.

END XTrestle.

The syntax of these switches is described in the X manpage and in The X Window System [9].
If there is a -display argument, it will be made the default Trestle connection for those pro-

cedures in the Trestle interface that take a Trestle.T as a parameter.
The TrestleComm.Failure exception is raised if a call to Trestle raises that exception.

The Error exception is raised if the parameter following-display or -geometry contains any
syntax errors (or is missing).

152 APPENDIX B. MISCELLANEOUS INTERFACES

B.3 The XParam Interface

TheXParam interface provides utilitiesfor handlingX-style-display and-geometry command-
line arguments. If your application installs a single top-level window, the XTrestle interface may
be more appropriate than this interface.

INTERFACE XParam;

IMPORT Point, Rect, Trestle, TrestleComm;

Here are routines for manipulating the -display argument:

TYPE

Display = RECORD

hostname: TEXT := "";

display : CARDINAL := 0;

screen : CARDINAL := 0;

DECnet : BOOLEAN := FALSE

END;

PROCEDURE ParseDisplay (spec: TEXT): Display RAISES {Error};

<* LL = arbitrary *>

Return a parsed version of the -display argument in spec.

For example, if spec contains the stringmyrtle.pa.dec.com:0.2, the record returned would
be

Display{hostname := "myrtle.pa.dec.com",
display := 0, screen := 2, DECnet := FALSE}

PROCEDURE UnparseDisplay (READONLY d: Display): TEXT;

<* LL = arbitrary *>

Return the text-version of the -display argument d.

Here are routines for manipulating the -geometry argument:

CONST Missing = Point.T{-1, -1};

TYPE

Geometry =

RECORD

vertex := Rect.Vertex.NW; (* corner for displacement *)

dp := Point.Origin; (* displacement *)

size := Missing; (* width, height *)

END;

B.3. THE XPARAM INTERFACE 153

PROCEDURE ParseGeometry (spec: TEXT): Geometry RAISES {Error};

<* LL = arbitrary *>

Return a parsed version of the -geometry argument in spec.

For example, if spec contains the string 1024x800-0-10, the returned record would be

Geometry {Rect.Vertex.SE,
Point.T {0, 10},
Point.T {1024, 800}}

Thesize field defaults toMissing. The horizontal and vertical displacements default toPoint.Origin
(no displacement). The displacements are always positive values; use the vertex field to find out
from which corner they are to be offset.

PROCEDURE UnparseGeometry (READONLY g: Geometry): TEXT;

<* LL = arbitrary *>

Return the text-version of the -geometry argument g.

PROCEDURE Position (trsl: Trestle.T;

id : Trestle.ScreenID;

READONLY g : Geometry): Point.T

RAISES {TrestleComm.Failure};

<* LL.sup = VBT.mu *>

Return the position specified by g in the screen coordinates for the screenID id on the window system
connected to trsl (cf. Trestle.GetScreens). The value of g.size must not be Missing, unless
g.vertex is the northwest corner.

Here is the definition of the Error exception:

TYPE

Info = OBJECT

spec : TEXT;

index: CARDINAL

END;

GeometryInfo = Info BRANDED OBJECT END;

DisplayInfo = Info BRANDED OBJECT END;

EXCEPTION Error(Info);

Parsing errors are reported with the text (spec) and position (index) of the first illegal character in the text.

END XParam.

154 APPENDIX B. MISCELLANEOUS INTERFACES

An example

Here is an example of how to use this interface to install a VBT v as a top level window, obeying the
display and geometry arguments given to the application. It relies on the Params interface, which
provides the number of arguments passed to the program, Params.Count, and a procedure to re-
trieve the value of the nth argument, Params.Get(n).

EXCEPTION Error (TEXT);
VAR
display, geometry: TEXT := NIL;
d: XParam.DisplayRec;
g: XParam.Geometry;
i: CARDINAL := 1;

BEGIN
LOOP
IF i >= Params.Count - 1 THEN EXIT END;
WITH argument = Params.Get (i) DO
IF Text.Equal (argument, "-display") THEN
display := Params.Get (i + 1);
TRY d := XParam.ParseDisplay (display)
EXCEPT XParam.Error (info) =>
RAISE Error ("Illegal -display argument: "

& info.spec)
END;
INC (i, 2)

ELSIF Text.Equal (argument, "-geometry") THEN
geometry := Params.Get (i + 1);
TRY
g := XParam.ParseGeometry (geometry);
IF g.size = XParam.Missing THEN
WITH shapes = VBTClass.GetShapes (v, FALSE) DO
g.size.h := shapes [Axis.T.Hor].pref;
g.size.v := shapes [Axis.T.Ver].pref

END
END

EXCEPT XParam.Error (info) =>
RAISE Error ("Illegal -geometry argument: "

& info.spec);
END;
INC (i, 2)

ELSE INC (i)
END (* IF *)

B.3. THE XPARAM INTERFACE 155

END (* WITH *)
END; (* LOOP *)

At this point, if display is non-NIL, then d contains the information from the -display ar-
gument. Similarly, ifgeometry is non-NIL, theng contains the information from the-geometry
argument. If the window-size specificiation was missing, the preferred shape of the window is used.

Finally, we now process the display and geometry information:

VAR
trsl := Trestle.Connect (display);
screen: CARDINAL;

BEGIN
TrestleImpl.SetDefault (trsl);
Trestle.Attach (v, trsl);
Trestle.Decorate (v, ...);
IF geometry = NIL THEN
Trestle.MoveNear (v, NIL)

ELSE
StableVBT.SetShape (v, g.size.h, g.size.v)
IF d = NIL THEN
screen := Trestle.ScreenOf (v, Point.Origin).id

ELSE
screen := d.screen

END;
Trestle.Overlap (
v, screen, XParam.Position(trsl, screen, g))

END (* IF *)
END (* BEGIN *)

END; (* BEGIN *)

The call to TrestleImpl.SetDefault establishes the value of the -display argument as
the default Trestle connection. The call to StableVBT.SetShape is used to control the size of a
top-level window. The TrestleImpl and StableVBT interfaces are part of Trestle.

156 APPENDIX B. MISCELLANEOUS INTERFACES

B.4 The FVTypes Interface

This interface declares a type for each component in the language. A client wishing to subclass the
VBT used by a component should be sure that the VBT returned by the overrideVBT method is a
subtype of type listed here.

INTERFACE FVTypes;

IMPORT AudioVBT, AnchorSplit, AnchorHelpSplit, BooleanVBT, BorderedVBT, ChoiceVBT,

FileBrowserVBT, Filter, FlexVBT, Font, FormsVBT,

GuardedBtnVBT, HVSplit, HighlightVBT, ListVBT,

MenuSwitchVBT, NumericVBT, PackSplit, PaintOp, PixmapVBT,

ProperSplit, ReactivityVBT, ScaleFilter, ScrollerVBT, Shadow,

ShadowedVBT, ShadowedBarVBT, SourceVBT,

SplitterVBT, StableVBT, SwitchVBT, TSplit, TextEditVBT,

TextPort, TextureVBT, TextVBT, TrillSwitchVBT, TypeinVBT,

TypescriptVBT, VBT, VideoVBT, ViewportVBT, ZChassisVBT,

ZGrowVBT, ZMoveVBT, ZChildVBT, ZTilps;

IMPORT StubImageVBT AS ImageVBT;

TYPE

FVAny = VBT.Leaf; (* just an alias *)

FVAnyFilter = Filter.T; (* just an alias *)

FVAnySplit = ProperSplit.T; (* just an alias *)

FVAudio = AudioVBT.T BRANDED OBJECT END;

FVBar = FlexVBT.T BRANDED OBJECT END;

FVBoolean <: BooleanVBT.T;

FVBorder = BorderedVBT.T BRANDED OBJECT END;

FVBrowser =

ListVBT.T BRANDED OBJECT END; (* requires a UniSelector *)

FVButton <: SwitchVBT.T;

FVChisel = ShadowedBarVBT.T BRANDED OBJECT END;

FVChoice <: ChoiceVBT.T;

FVCloseButton <: PublicCloseButton;

FVDirMenu = FileBrowserVBT.DirMenu BRANDED OBJECT END;

FVFileBrowser <: FileBrowserVBT.T;

FVFill = FlexVBT.T BRANDED OBJECT END;

FVFilter = ReactivityVBT.T BRANDED OBJECT END;

FVFrame = ShadowedVBT.T BRANDED OBJECT END;

FVGeneric = FlexVBT.T BRANDED OBJECT END;

FVGlue = FlexVBT.T BRANDED OBJECT END;

FVGuard <: GuardedBtnVBT.T;

FVHBox <: HVSplit.T;

FVHPackSplit = PackSplit.T;

B.4. THE FVTYPES INTERFACE 157

FVHTile <: SplitterVBT.T;

FVHelp <: AnchorHelpSplit.T;

FVHelper = FileBrowserVBT.Helper BRANDED OBJECT END;

FVImage <: ImageVBT.T;

FVIntApply <: IntApplyPublic;

FVLinkButton <: SwitchVBT.T;

FVLinkMButton <: MenuSwitchVBT.T;

FVMButton <: MenuSwitchVBT.T;

FVMenu <: AnchorSplit.T;

FVMultiBrowser =

ListVBT.T BRANDED OBJECT END; (* requires a MultiSelector *)

FVNumeric <: NumericVBT.T;

FVPageButton <: PublicPageButton;

FVPageMButton <: PublicPageMButton;

FVPixmap = PixmapVBT.T BRANDED OBJECT END;

FVPopButton <: SwitchVBT.T;

FVPopMButton <: MenuSwitchVBT.T;

FVRadio = PublicRadio;

FVRidge = ShadowedBarVBT.T BRANDED OBJECT END;

FVRim = BorderedVBT.T BRANDED OBJECT END;

FVScale = ScaleFilter.T BRANDED OBJECT END;

FVScroller <: ScrollerVBT.T;

FVShape = FlexVBT.T BRANDED OBJECT END;

FVSource <: SourceVBT.T;

FVStable = StableVBT.T BRANDED OBJECT END;

FVTSplit = PublicTSplit;

FVTarget = Filter.T BRANDED OBJECT END;

FVText = TextVBT.T BRANDED OBJECT END;

FVTextEdit =

TextEditVBT.T BRANDED OBJECT END; (* requires a Port *)

FVTexture = TextureVBT.T BRANDED OBJECT END;

FVTrillButton <: TrillSwitchVBT.T;

FVTypeIn <: TypeinVBT.T;

FVTypescript = TypescriptVBT.T BRANDED OBJECT END;

FVVBox <: HVSplit.T;

FVVTile <: SplitterVBT.T;

FVVideo = VideoVBT.T BRANDED OBJECT END;

FVViewport = ViewportVBT.T BRANDED OBJECT END;

FVZBackground = HighlightVBT.T BRANDED OBJECT END;

FVZChassis <: ZChassisVBT.T;

FVZChild = ZChildVBT.T BRANDED OBJECT END;

FVZGrow = ZGrowVBT.T BRANDED OBJECT END;

FVZMove = ZMoveVBT.T BRANDED OBJECT END;

158 APPENDIX B. MISCELLANEOUS INTERFACES

FVZSplit = ZTilps.T BRANDED OBJECT END;

TYPE UniSelector <: ListVBT.UniSelector;

If you create a subtype of FVBrowser, its .selector field must be NIL or a subtype of FV-
Types.UniSelector.

TYPE MultiSelector <: ListVBT.MultiSelector;

If you create a subtype of FVBrowser, its .selector field must be NIL or a subtype of FV-
Types.MultiSelector.

TYPE

Port <: PublicPort;

PublicPort =

TextPort.T OBJECT

METHODS

init (textedit : FVTextEdit;

reportKeys : BOOLEAN;

font : Font.T;

colorScheme : PaintOp.ColorScheme;

wrap, readOnly: BOOLEAN;

turnMargin : REAL): Port;

END;

If you create a subtype of FVTextEdit, its .tp field must be NIL or a subtype of FVTypes.Port.

TYPE

PublicCloseButton =

SwitchVBT.T OBJECT

METHODS

init (ch: VBT.T; shadow: Shadow.T): FVCloseButton

END;

PublicPageButton = SwitchVBT.T OBJECT

METHODS

init (ch : VBT.T;

shadow : Shadow.T;

backwards: BOOLEAN;

tsplit : FVTSplit): FVPageButton

END;

PublicPageMButton =

MenuSwitchVBT.T OBJECT

METHODS

init (ch : VBT.T;

shadow : Shadow.T;

B.4. THE FVTYPES INTERFACE 159

backwards: BOOLEAN;

tsplit : FVTSplit): FVPageMButton

END;

PublicRadio = Filter.T OBJECT radio: ChoiceVBT.Group END;

PublicTSplit = TSplit.T OBJECT circular := FALSE END;

IntApplyPublic =

Filter.T OBJECT

METHODS

init (fv : VBT.T;

ch : VBT.T;

name : TEXT;

property: TEXT := NIL): FVIntApply

RAISES {FormsVBT.Error};

(* raises an error if NOT ISTYPE(fv, FormsVBT.T) OR

NOT(ISTYPE(ch, FVNumeric) OR ISTYPE(ch, FVScroller)) *)

END;

END FVTypes.

160 APPENDIX B. MISCELLANEOUS INTERFACES

B.5 The Rsrc interface

Resources are arbitrary files that are associated with applications. Resources can be bundled into an
application using the m3bundle facility. They may also be found in the file system.

This interface supports retrieval of resources using a search path. A search path is a list of ele-
ments, and each element is either a path or a bundle. A path is a directory, implemented as aPathname.T.
It should already be fullyexpanded by having calledPathname.Expand. A bundle is aBundle.T
object, typically created by m3bundle.

INTERFACE Rsrc;

IMPORT List, Rd, Thread;

TYPE

Path = List.T; (* of Pathname.T or Bundle.T *)

EXCEPTION NotFound;

PROCEDURE Open (name: TEXT; path: Path): Rd.T RAISES {NotFound};

Search each element of path, from front to back, for the first occurrence of the resource called name and
return a reader on the resource. If the path element is a string s, then a reader is returned if

FileStream.OpenRead(s & "/" & name)

is successful. If the path element is a bundle b, a reader is returned if

TextRd.New(Bundle.Get(b, name))

is successful. The NotFound exception is raised if no element of path yields a successful reader on name.
It is a checked runtime error if path contains an element that is neither a string nor a bundle.

PROCEDURE Get (name: TEXT; path: Path): TEXT

RAISES {NotFound, Rd.Failure, Thread.Alerted};

A convenience procedure to retrieve the contents of the resourcename as a TEXT. Get is logically equivalent
to

VAR rd := Open(name);

BEGIN

TRY

RETURN Rd.GetText(rd, LAST(CARDINAL))

FINALLY

Rd.Close(rd)

END

END;

B.5. THE RSRC INTERFACE 161

The implementation is slightly more efficient, because it takes advantage of Bundle.Get procedure which
returns the contents of the bundle element as a TEXT. The Rd.Failure exception is raised if Rd.GetText
or Rd.Close report a problem. The Thread.Alerted can be raised by the call to Rd.GetText.

PROCEDURE BuildPath (a1, a2, a3, a4: REFANY := NIL): Path;

Build a Path from the non-NIL elements. Each element must be either a Bundle.T or a TEXT. If a TEXT,
the string is passed to Pathname.Expand and the result is used, if it’s non-NIL.

Note: Currently,Pathname.Expand is not implemented; TEXTs are expanded as follows: The text is
assumed to be the name of a directory, unless it starts with a dollar sign. In the latter case, it is assumed to be
environment variable and it’s expanded using Env.Get.

END Rsrc.

162 APPENDIX B. MISCELLANEOUS INTERFACES

C. An Annotated Example

In this appendix, we present a complete example of a non-trivial form, the one used for FormsEdit
itself. This form uses nearly all of the FormsVBT components, as well as macros.

It will be easier to understand this form if you can run the FormsEdit program at the same time,
to see what each part of the description looks like in the actual application.

The design of a user interface is not easy. We make no claims about this particular one; it has
been used by a fair number people for over a year, although details have changed. You may have
quite different preferences in fonts, colors, and layout. At the very least, FormsEdit will make it
easy for you to “fix” this form!

In this appendix, we present the form hierarchically. We show “line numbers” along the left edge,
and each line containing an ellipsis is explained in more detail in a subsequent section, where the line
numbers use decimal points.

The following diagram shows the overall structure of the form, which is fairly typical: a top-
level filter of some sort with the global properties; some macros; and a ZSplit with a background and
a dozen or so subwindows. While the entire file is fairly long, the structure is simple.

163

164 APPENDIX C. AN ANNOTATED EXAMPLE

1 (Shape %top ...
2 (Macro TLA ...)
3 (Macro TRA ...)
4 (Macro SEP ...)
5 (Macro BOX ...)
6 (Macro COMMAND ...)
7 (Macro FINDER ...)
8 (Macro YESNO ...)
9 (Macro CONFIRM ...)
10 (Macro FILEDIALOG ...)
11 (ZSplit
12 (ZBackground
13 (VBox (Glue 3)
14 (HBox %menubar ...)
15 (Glue 3)
16 Ridge
17 (TextEdit %buffer)
18 (FINDER ...)))
19 (ZChassis %manpage ...)
20 (ZChild %notFound ...)
21 (ZChild %aboutFE ...)
22 (ZChassis %errorPopup ...)
23 (ZChassis %PPwidthNumeric ...)
24 (ZChassis %snapshotDialog ...)
25 (ZChassis %dumpTablePopup ...)
26 (FILEDIALOG %OpenDialog ...)
27 (FILEDIALOG %SaveAsDialog ...)
28 (CONFIRM %quitConfirmation ...)
29 (CONFIRM %switchConfirmation ...)
30 (CONFIRM %closeConfirmation ...)
31 (YESNO %overwriteConfirmation ...)
32 (YESNO %RevertDialog ...)))

C.1. THE TOP-LEVEL FILTER 165

C.1 The top-level filter

The outermost form is usually a filter where you can place global properties. In this case, we use a
Shape filter so that the editing windows can start out with a similar size.

1.0 (Shape %top
1.1 (Width 425 - 200 + Inf)
1.2 (Height 300 - 200 + Inf)
1.3 (LabelFont (Family "new century schoolbook"))
1.4 (Font "fixed")
1.5 (BgColor "PaleYellow")
1.6 (LightShadow "VeryVeryLightBlue")
1.7 (DarkShadow "Blue")

...)

On lines 1.1 and 1.2, we establish an initial size for the editor window, 425 points wide and 300
points tall. It can shrink to 200x200, and it can grow arbitrarily large. On lines 1.3 and 1.4, we specify
the initial fonts for labels (Text forms) and for all the editable-text areas (TextEdit and TypeIn forms).
Since the user will want to align columns of text (i.e., pretty-print the form), it is appropriate to use
a fixed-width font. We also include the default colors here.

166 APPENDIX C. AN ANNOTATED EXAMPLE

C.2 Simple macros

The first macros are just shorthand: TLA for “Text LeftAlign” and so on.

2 (Macro TLA BOA (x) ‘(Text LeftAlign ,x))
3 (Macro TRA BOA (x) ‘(Text RightAlign ,x))
4 (Macro SEP () ’(VBox (Glue 3) Ridge (Glue 3)))

TLA and TRA are simple, 1-argument macros that are used several times throughout this form.
BOA stands for “By Order of Argument,” which means that the arguments are passed by position, not
by keyword. This allows us to write(TLA "Open"), for example, instead of(TLA (x "Open")).

SEP, on line 4, is the simplest form of macro, effectively a constant, since it takes no arguments.
We use it to separate groups of items within a Menu.

C.3. A RECURSIVE MACRO 167

C.3 A recursive macro

The BOX macro produces a series of nested, double-bordered boxes.

5.0 (Macro BOX (pens child)
5.1 (IF (= pens ’())
5.2 child
5.3 ‘(Border
5.4 (Pen ,(List.Nth pens 0))
5.5 (Rim (Pen ,(List.Nth pens 1))
5.6 (BOX (pens ,(List.NthTail pens 2))
5.7 (child ,child))))))

BOX is a recursive macro. It generates expressions of the form

(Border (Pen ...)
(Rim (Pen ...)
(Border (Pen ...)
(Rim (Pen ...)
...))))}

The pens-argument is a list of pen-widths; it must have an even number of elements. The even-
numbered widths are used for the Borders; the odd-numbered widths are used for the Rims. For
example,

(BOX (pens (2 4)) (child "Hello!"))

expands into

(Border (Pen 2) (Rim (Pen 4) "Hello!"))

The expression

(BOX (pens (2 4 5 10)) (child "Hello!"))

expands into

(Border (Pen 2)
(Rim (Pen 4)
(Border (Pen 5)
(Rim (Pen 10)
"Hello!"))))

Line 5.1 tests whether there are any pen-widths left in the list. If not, the expansion is simply the
“child,” on line 5.2. If there are pen-widths in the list, then the first two are used in lines 5.4 and 5.5,
and the rest are passed recursively on line 5.6.

168 APPENDIX C. AN ANNOTATED EXAMPLE

C.4 A macro for menu-items

The COMMAND macro generates menu-items that have some text on the left (the name of the com-
mand, such as “Open”), some filler-space in the middle, and a TSplit containing all the possible key-
bindings on the right. A keybinding is the name of a keyboard-equivalent for the command, such
as M-o. FormsEdit allows you to change text-editing models, by means of a menu described in Sec-
tion C.11 on page 178. When you do so, it changes all the keybindings in all the menus. In the Emacs
model, for example, the keybinding for “Open” is written M-o, but in the Ivy model, it’s oO.

6.0 (Macro COMMAND BOA (name label k1 k2 k3 k4 (type (MButton)))
6.1 ‘(,@type
6.2 ,name
6.3 (HBox
6.4 (TLA ,label)
6.5 Fill
6.6 (TSplit
6.7 %,(SxSymbol.FromName
6.8 (Text.Cat "Model_"
6.9 (SxSymbol.Name (List.Nth name 1))))
6.10 (TRA ,k1)
6.11 (TRA ,k2)
6.12 (TRA ,k3)
6.13 (TRA ,k4)))))

The macro generates MButtons by default, as we see at the end of line 6.0. The button contains
an HBox (line 6.3) that has the left-aligned command-label on the left (line 6.4) and the keybinding
on the right (lines 6.6–6.13).

The arguments k1–k4 are the keybindings for the four models. We use the TSplit on line 6.6 to
switch among them. The name of the TSplit is constructed by concatenating the string"Model " to
the name of the menu-item, e.g., "Model Open". When the user changes the text-editing model,
the application calls FormsVBT.PutInteger(fv, "Model Open", n) to set the TSplit to
nth child, where n is the index that corresponds to the model.

Arguments are passed to this macro by position (BOA), and calls are written as

(COMMAND %foo ...)

That’s equivalent to writing (COMMAND (Name foo) ...), so the first parameter, name, is
bound to the list (Name foo). To extract the symbol foo from that, we call (List.Nth name
1) on line 6.9. Passing that symbol to SxSymbol.Name produces the string "foo", which we
then concatenate to the string "Model Open" on line 6.8.

C.5. A MACRO FOR A FINDER-DIALOG 169

C.5 A macro for a Finder-dialog

To provide a user interface for text-searching, we use a “Finder,” a form that contains a type-in field
for the search-string, buttons for finding the first, next, or previous occurrence of that string, and a
button to hide the form. See Figure C.1. The application searches through the text (the buttons tell it
where to start and in which direction to look). If the search succeeds, the matching text is highlighted.

We use this form both in the main editing window and in the help-window, which is why we make
it a macro.

7.0 (Macro FINDER (first next prev typein show close)
7.1 ‘(TSplit
7.2 Flex
7.3 Circular
7.4 (LightShadow "White")
7.5 (BgColor "VeryPaleBlue")
7.6 (Shape (Height 0) "")
7.7 (VBox %,show
7.8 Ridge
7.9 (Glue 2)
7.10 (HBox
7.11 (Shape (Width + 0) "Find:")
7.12 (Shape (Width 0 + 3000)
7.13 (Frame Lowered
7.14 (TypeIn %,typein (BgColor "VeryVeryPaleBlue"))))
7.15 (Glue 5)
7.16 (Shape (Width 0 + 1000)
7.17 (Rim (Pen 1) (Button %,first "First")))
7.18 (Shape (Width 0 + 1000) (ShadowSize 2.5)
7.19 (Button %,next "Next"))
7.20 (Shape (Width 0 + 1000)
7.21 (Rim (Pen 1) (Button %,prev "Prev.")))
7.22 (Glue 20)
7.23 (Rim (Pen 1) (PageButton %,close "C")))
7.24 (Glue 2))))

The FINDER macro expands into a TSplit with two children. The first child, on line 7.6, has
no size at all; since the TSplit has the Flex property (line 7.2), each child gets the size it wants, so
“displaying” the first child is displaying nothing.

170 APPENDIX C. AN ANNOTATED EXAMPLE

Figure C.1: The Finder dialog

The second child is a VBox, beginning on line 7.7 (see Figure C.1). Since the Finder-dialog ap-
pears at the bottom of the editing and Help windows, we separate it from the rest with a Ridge (a 3-D
bar) and 2 points’ worth of Glue (lines 7.8–7.9). Underneath them is an HBox that contains a type-in
field and three buttons: First, Next, and Previous. The Next button is the default, so it has the same
effect as typing Return in the type-in field. To indicate that it is the default, it has no Rim, as the First
and Prev buttons do (lines 7.17, 7.21). Instead, it uses the same amount of space for its shadow-size
(line 7.18): 1 point to match the Rims’ Pen-size, plus 1.5 points, which is the default shadow-size.

The (Width 0 + 3000) property on the framed type-in component (line 7.12), and the (Width 0
+ 1000) properties on the three buttons, have the effect of diving the horizontal space into six equal
regions (3 + 1 + 1 + 1), the first three of which are given to the type-in. These proportionswill persist
even if the subwindow grows or shrinks.

The “close button,” marked “C,” is a PageButton (line 7.23). Since the TSplit in which it appears
has the Flex property, clicking this button selects the first child, the one that has no size, so the effect
is to make the entire TSplit disappear.

C.6. A MACRO FOR YES/NO DIALOGS 171

Figure C.2: A yes/no dialog.

C.6 A macro for yes/no dialogs

A yes/no dialog is a simple form containing two buttons; see Figure C.6 for an example. There are
two places in the form where a yes/no dialog is needed (lines 31 and 32); we use this macro to ensure
that the dialogs look the same.

8.0 (Macro YESNO (Name msg yesName noName)
8.1 ‘(ZChild %,Name
8.2 (BgColor "VeryPaleGray")
8.3 (LightShadow "White")
8.4 (DarkShadow "VeryDarkGray")
8.5 (Shape (Width 300)
8.6 (BOX (pens (2 2 1 26))
8.7 (child
8.8 (VBox
8.9 ,msg
8.10 (Glue 20)
8.11 (HBox
8.12 Fill
8.13 (Button %,yesName (BgColor "Red")
8.14 (Shape (Width 80) "Yes"))
8.15 Fill
8.16 (CloseButton %,noName (BgColor "Green")
8.17 (Shape (Width 80) "No"))
8.18 Fill)))))))

The call to BOX on line 8.6 produces a 2-point Border around a 2-point Rim, which in turn en-
closes a 1-point Border around a 26-point Rim, which surrounds the VBox beginning on line 8.8.

The VBox contains a question (line 8.9), some filler, and two equally spaced buttons (8.13 and
8.16). We use the convention that the “safe” option is always green, and the “dangerous” option is
red. In our case, the safe option is also the do-nothing option, so we use a CloseButton for “No” (line
8.16).

172 APPENDIX C. AN ANNOTATED EXAMPLE

C.7 A macro for confirmation dialogs

A confirmation dialog is similar to a yes/no dialog, but it offers the user two choices on how to per-
form some action, plus a third choice of not performing the action at all. For example, the form on
line 30 asks the user whether changes should be saved before closing the file. The choices are: yes,
close the file, but save the changes first; no, close the file, but discard the changes; and don’t close
the file at all. The third choice is often simply labeled “Cancel,” but a more descriptive label (e.g.,
“Don’t close”) may be more helpful.

9.0 (Macro CONFIRM (Name question yesName noName
9.1 cancelName cancelLabel)
9.2 ‘(ZChild %,Name
9.3 (BgColor "VeryPaleBlue")
9.4 (LightShadow "White")
9.5 (DarkShadow "VeryDarkBlue")
9.6 (Shape (Width 300)
9.7 (BOX (pens (2 2 1 26))
9.8 (child
9.9 (VBox
9.10 ,question
9.11 (Glue 20)
9.12 (HBox
9.13 Fill
9.14 (VBox
9.15 (Button %,yesName (BgColor "Green")
9.16 (Shape (Width 80) "Yes"))
9.17 (Glue 10)
9.18 (Button %,noName (BgColor "Red")
9.19 (Shape (Width 80) "No")))
9.20 (Glue 20)
9.21 (VBox
9.22 Fill
9.23 (Filter %,cancelName
9.24 (CloseButton (Shape (Width 80) ,cancelLabel))))
9.25 Fill)))))))

The arguments are the name for the subwindow, the question being asked (e.g., “Save changes
before quitting?”), the names of the “yes,” “no,” and “cancel” button, and the text for the cancel
button (e.g., “Don’t quit”).

Note that as in the YESNO macro on lines 8.0–8.18, green is used for the “safe” button, red for
the “dangerous” button, but now the text of those buttons is reversed: the “safe” button says “No”,
and the “dangerous” button says “Yes”, because the question being asked in a confirmation dialog is
always “dangerous.”

C.8. A MACRO FOR A FILE-CHOOSER 173

Figure C.3: A confirmation dialog

C.8 A macro for a file-chooser

As we mentioned in the description of the FileBrowser component on page 94, it is a good idea to
combine a FileBrowser, a DirMenu, and a Helper, with activation and cancellation buttons, in a stan-
dard arrangement. We do that with the following macro.

174 APPENDIX C. AN ANNOTATED EXAMPLE

10.0 (Macro FILEDIALOG
10.1 (Name BgColor DarkShadow Title fbName OKName OKLabel
10.2 cancelName (cancelLabel "Cancel") helperName
10.3 (ReadOnly FALSE) (other ()))
10.4 ‘(ZChassis %,Name
10.5 (BgColor ,BgColor)
10.6 (LightShadow "White")
10.7 (DarkShadow ,DarkShadow)
10.8 (Title ,Title)
10.9 (Shape (Width 300 - 200 + Inf) (ShadowSize 2)
10.10 (Rim
10.11 (Pen 10)
10.12 (VBox
10.13 (HBox
10.14 (Shape (Width 150 + Inf) (Height 150 + Inf)
10.15 (VBox (LabelFont "fixed")
10.16 (DirMenu (For ,fbName))
10.17 (Glue 6)
10.18 (Frame Lowered (BgColor "VeryPaleGray")
10.19 (FileBrowser %,fbName))))
10.20 Fill
10.21 (Shape (Width 100)
10.22 (VBox
10.23 Fill
10.24 (Button %,OKName ,OKLabel)
10.25 (Glue 10)
10.26 (Filter
10.27 (CloseButton %,cancelName ,cancelLabel)))))
10.28 (Glue 6)
10.29 (HBox
10.30 (Shape (Width 30) "File:")
10.31 (Frame Lowered
10.32 (Helper %,helperName FirstFocus (For ,fbName)
10.33 (BgColor "VeryPaleGray"))))
10.34 ,@other)))))

While the overall appearance is standard, the names of the components, the colors, the labels,
and other aspects may vary, so those are all passed in as parameters to the macro. Figure C.4 shows
what this looks like for the “Save As...” dialog in Section C.24 on page 193.

The fixed-width label-font is used on line 10.15 to make it easier to read filenames. Filename-
punctuation such as periods and slashes are often hard to read in small, variable-width fonts.

C.8. A MACRO FOR A FILE-CHOOSER 175

Figure C.4: The ‘Save As...” file-dialog

As in the example on line 9.22, the Filter on line 10.26 makes it possible to de-activate the Cancel
button via FormsVBT.MakeDormant.

176 APPENDIX C. AN ANNOTATED EXAMPLE

C.9 The background child

11 (ZSplit
12 (ZBackground
13 (VBox (Glue 3)
14 (HBox %menubar ...)
15 (Glue 3)
16 Ridge
17 (TextEdit %buffer)
18 (FINDER ...)))

...)

The background child of this ZSplit is a VBox with a menubar, the main text-editing area,1 and
the Finder-dialog.

1The most complex component has the shortest description in the form!

C.10. THE MENUBAR 177

C.10 The menubar

14.0 (HBox %menubar
14.1 (Glue 5)
14.2 (Menu ...)
14.3 (Glue 5)
14.4 (Menu ...)
14.5 (Glue 5)
14.6 (Menu ...)
14.7 (Glue 5)
14.8 (Menu ...)
14.9 (Glue 5)
14.10 Fill
14.11 (TSplit %modified
14.12 (Text "")
14.13 (Pixmap (Color "Red") "bnote.pbm"))
14.14 (Text %shortname "")
14.15 Fill
14.16 (Button %parse (BgColor "VeryPaleBlue")
14.17 (Text (Margin 10) "Do It"))
14.18 (Glue 5))

The menubar is an HBox with four Menus, a TSplit for the note-icon (14.11–14.13), the filename
(14.14), and the “Do it” Button.

This TSplit displays either an empty string (14.12) or a small red warning note (14.13), depending
on whether there are unsaved changes to the text in the buffer. The applicationswitches between these
choices by calling FormsVBT.PutInteger(fv, "modified", n), where n is the index of
the desired TSplit-child.

178 APPENDIX C. AN ANNOTATED EXAMPLE

The name of the file is inserted into the menubar by assigning it to Text component on line 14.14,
via FormsVBT.PutText(fv, "shortname", ...). The Fill’s on lines 14.10 and 14.15
cause the TSplit and the filename to be centered between the menus and the button.

C.11 The quill-pen menu

14.2.0 (Menu
14.2.1 (Shape (Width 40) (Height 13.5) (Pixmap "pen.pbm"))
14.2.2 (Border
14.2.3 (VBox
14.2.4 (PopMButton (For aboutFE) (TLA "About FormsEdit..."))
14.2.5 (SEP)
14.2.6 (COMMAND %Help "Help..."
14.2.7 "oH" "M-h" "c-h" "M-h" (PopMButton (For manpage)))
14.2.8 Ridge
14.2.9 (Radio %Model
14.2.10 (HBox
14.2.11 (Glue 10)
14.2.12 (VBox
14.2.13 "Editing Model"
14.2.14 (Choice %ivyModel MenuStyle (TLA "Ivy"))
14.2.15 (Choice %emacsModel MenuStyle (TLA "Emacs"))
14.2.16 (Choice %macModel MenuStyle (TLA "Mac"))
14.2.17 (Choice %xtermModel MenuStyle (TLA "Xterm")))))
14.2.18 Ridge
14.2.19 (COMMAND %quit2 "Quit" "oQ" "M-q" "c-q" "M-q")))))

The quill-pen icon was created usingbitmap(1), converted to “pnm” format byanytopnm(1),
and saved in the resource-file named pen.pbm. All the menu-buttons have a width of 40 points.

Line 14.2.4 shows a simple pop-menu-button containing a left-aligned string. When the button
is released, FormsVBT automatically opens the subwindow whose name in this form is aboutFE.
The subwindow itself is defined on line 21.

The call to (SEP) on line 14.2.5 produces the VBox that separates groups within a menu. It was
defined on line 4; see Section C.2 on page 166.

The first “command” button is the Help button on lines 14.2.6–14.2.7. As it happens, it is a PopM-
Button, not an MButton; by passing a seventh argument, (PopMButton (For manpage)), we
avoid getting the default value for the type parameter; see line 6.0 in Section C.4 on page 168. The
name of the button isHelp. The four keynames are the keyboard shortcuts for the Ivy, Emacs, Mac,2

and Xterm models, in that order.

2We use “c-h” for the Mac, since there is no ISO Latin-1 character that corresponds to the Mac “command” or “cloverleaf”
icon.

C.11. THE QUILL-PEN MENU 179

This macro-call expands into the following expression:

(PopMButton (Name Help)
(HBox (Text LeftAlign "Help...")

Fill
(TSplit (Name Model_Help)

(Text RightAlign "oH")
(Text RightAlign "M-h")
(Text RightAlign "c-h")
(Text RightAlign "M-h"))))

The 4 radio-buttons on lines 14.2.14–14.2.17 allow the user to choose the editing model. The
group is indented slightly (line 14.2.11).

180 APPENDIX C. AN ANNOTATED EXAMPLE

C.12 The File menu

The File menu has the standard assortment of items: Open, Save, Save As..., etc. The form describes
all the visual aspects of the menu; the application interprets each of the commands by attaching an
event-handler to each name.

14.4.0 (Menu
14.4.1 (Shape (Width 40) "File")
14.4.2 (Border
14.4.3 (Shape (Width 110)
14.4.4 (VBox
14.4.5 (COMMAND %new "New" "oN" "M-n" "c-n" "M-n")
14.4.6 (COMMAND %openMButton "Open..."
14.4.7 "oO" "M-o" "c-o" "M-o"
14.4.8 (PopMButton (For OpenDialog)))
14.4.9 (SEP)
14.4.10 (MButton %close (TLA "Close"))
14.4.11 (Filter (COMMAND %save "Save" "oS" "M-s" "c-s" "M-s"))
14.4.12 (PopMButton %saveasMButton (For SaveAsDialog)
14.4.13 (TLA "Save As..."))
14.4.14 (PopMButton %revertbutton (For RevertDialog)
14.4.15 (TLA "Revert To Saved"))
14.4.16 (SEP)
14.4.17 (PopMButton %ppwidthPopMButton (For PPwidthNumeric)
14.4.18 (TLA "PP setup..."))
14.4.19 (COMMAND %PPrint "PPrint" "oP" "M-p" "c-p" "M-p")
14.4.20 (SEP)
14.4.21 (COMMAND %quit "Quit" "oQ" "M-q" "c-q" "M-q"))))))

The Filter on line 14.4.11 enables the application to gray-out the Save button, which it does when
no changes have been made to the buffer, sincethere’s no point in saving an unmodified file.

The Quit button on line 14.4.21 is a duplicate of the item on line 14.2.19 at the bottom of the
quill-pen menu. A Quit button normally appears at the bottom of the File menu, as it is here, but
some users expect to see it at the bottom of the top-left menu, whatever that may be called. The
application attaches the same event-handler to both quit-buttons.

C.13. THE EDIT MENU 181

C.13 The Edit Menu

The Edit menu has a standard set of items, plus three additional items for searching.

14.6.1 (Menu
14.6.2 (Shape (Width 40) "Edit")
14.6.3 (Border
14.6.4 (Shape (Width 100)
14.6.5 (VBox
14.6.6 (COMMAND %undo "Undo" "cZ" "C-_" "c-z" "M-z")
14.6.7 (COMMAND %redo "Redo" "csZ" "M-_" "c-Z" "M-Z")
14.6.8 (SEP)
14.6.9 (COMMAND %cut "Cut" "oX" "C-w" "c-x" "M-x")
14.6.10 (COMMAND %copy "Copy" "oC" "M-w" "c-c" "M-c")
14.6.11 (COMMAND %paste "Paste" "oV" "C-y" "c-v" "M-v")
14.6.12 (COMMAND %clear "Clear" "" "" "" "")
14.6.13 (COMMAND %selectAll "SelectAll"
14.6.14 "oA" "M-a" "c-a" "M-a")
14.6.15 (SEP)
14.6.16 (COMMAND %findMButton "Find..."
14.6.17 "oF" "" "c-f" "M-f"
14.6.18 (LinkMButton (For FindInBuffer2)))
14.6.19 (COMMAND %findNext "Find Next" "c," "C-s" "" "")
14.6.20 (COMMAND %findPrev "Find Prev" "cM" "C-r" "" ""))))))

The “Find” button on 14.6.18 is a not a PopMButton controlling a subwindow, although that
would be more typical. Instead, it is a LinkMButton that selects the second child (see lines 7.7–
7.23) of the Finder-dialog at the bottom of the window. The Finder is a TSplit; when its second child
appears, the main window shrinks somewhat, but nothing is hidden. The typical pop-up window
would overlap the main window and could easily obscure the text that the user has highlighted after
a successful search.

182 APPENDIX C. AN ANNOTATED EXAMPLE

C.14 The Misc Menu

14.8.0 (Menu
14.8.1 (Shape (Width 40) "Misc")
14.8.2 (Border
14.8.3 (VBox
14.8.4 (PopMButton %dumpTable (For dumpTablePopup)
14.8.5 "Show the named VBTs...")
14.8.6 (PopMButton %snapshot (For snapshotDialog)
14.8.7 "Show current snapshot...")
14.8.8 (PopMButton (For errorPopup)
14.8.9 "Show last error message")
14.8.10 (SEP)
14.8.11 (Filter %rescreenFilter (VBox %rescreenMenu)))))

The “dumpTable” and “snapshot” buttons bringup windows that give informationabout the form;
they are defined on lines 24–25.

Error messages are reported in a green subwindow in the bottom-right corner (see line 22), but
the application automatically closes this window after 5 seconds. The button on line 14.8.8 gives the
user a way to bring it back without a 5-second timeout, to read the message more carefully.

Note that the VBox on line 14.8.11 is empty. The application dynamically inserts MButtons here,
one pair for each display-screen, for moving the editor window or the result window. On a 1-screen
workstation, no buttons are inserted, and the VBox is grayed-out via the Filter. (Some window man-
agers allow windows to be dragged between screens, which is more convenient than using these but-
tons.)

C.15. THE FINDER-DIALOG 183

C.15 The Finder-dialog

The Finder at the bottom of the main window is generated by the following call:

18.0 (FINDER
18.1 (show FindInBuffer2)
18.2 (first bhelpfindfirst)
18.3 (next bhelpfindnext)
18.4 (prev bhelpfindprev)
18.5 (typein bhelpfindtext)
18.6 (close bhelpfindclose))

The layout is fixed (see Figure C.1); all the parameters are names assigned to the various com-
ponents. The application attaches event-handlers to these names to perform the search.

184 APPENDIX C. AN ANNOTATED EXAMPLE

C.16 The Help subwindow

19.0 (ZChassis %manpage
19.1 (BgColor "VeryPaleBlue")
19.2 (Title "formsedit help")
19.3 (VBox
19.4 (HBox
19.5 (Menu
19.6 (Shape (Width 40) "Edit")
19.7 (VBox
19.8 (COMMAND %mpcopy "Copy" "oC" "M-w" "c-c" "M-c")
19.9 (COMMAND %mpselectAll "SelectAll"
19.10 "oA" "M-a" "c-a" "M-a")
19.11 (SEP)
19.12 (COMMAND %mpfindMButton "Find..."
19.13 "oF" "" "c-f" "M-f"
19.14 (LinkMButton (For FindDialog)))
19.15 (COMMAND %mpfindNext "Find Next"
19.16 "c," "C-s" "" "")
19.17 (COMMAND %mpfindPrev "Find Prev"
19.18 "cM" "C-r" "" "")))
19.19 Fill)
19.20 Ridge
19.21 (Shape (Width 360 + Inf) (Height 150 + Inf)
19.22 (TextEdit ReadOnly %manpagetext))
19.23 (FINDER
19.24 (show FindDialog)
19.25 (first helpfindfirst)
19.26 (next helpfindnext)
19.27 (prev helpfindprev)
19.28 (typein helpfindtext)
19.29 (close helpfindclose))))

This is the subwindow that pops up when the user clicks the Help button on line 14.2.6. (See
Figure C.5.) Its structure is similar to that of the main window. It contains a menubar (HBox) with
one menu, Edit, which has items appropriate for a read-only buffer (e.g., Copy but not Cut). The
Edit menu also includes a LinkMButton for another Finder-dialog, just as the main editing window
does. Below the menubar is a read-only text-editor, which the application fills with the manpage for
FormsEdit. At the bottom of the subwindow is the Finder-dialog, which is shown in the open position
in Figure C.5.

C.17. A DISAPPEARING SUBWINDOW 185

Figure C.5: The “manpage” window

C.17 A disappearing subwindow

20.0 (ZChild %notfound (BgColor "Red") (Color "White")
20.1 (Rim (Border "Not found")))

This is a small subwindowthat the applicationdisplays—there is no PopButton for this component—
whenever a search has failed, either in the editor window or in the “manpage” window. The appli-
cation removes it after 2 seconds.

186 APPENDIX C. AN ANNOTATED EXAMPLE

Figure C.6: The “About FormsEdit...” window

C.18 The About... window

21.0 (ZChild %aboutFE (BgColor 0.8 0.8 1)
21.1 (BOX (pens (1.5 2 1 12))
21.2 (child
21.3 (VBox
21.4 (Pixmap (Color "Blue") "digitalLogo.pbm")
21.5 (Glue 6)
21.6 "FormsEdit version 2.7"
21.7 "Written by Jim, Marc, and Steve."
21.8 "Copyright \251 1993 Digital Equipment Corp."
21.9 "Send comments to meehan@src.dec.com"
21.10 (Glue 6)
21.11 Ridge
21.12 Ridge
21.13 (Glue 6)
21.14 (HBox
21.15 Fill
21.16 (CloseButton (BgColor "VeryPaleBlue")
21.17 (LightShadow "White")
21.18 (Text (Margin 5) "Close"))
21.19 Fill)))))

This is a completely static window. Note that the CloseButton (21.16) does not need a For-
property, since it closes the subwindow that contains it. The use of the BOX macro (21.1) produces
the double-bordered effect. (The 4-character sequence \251 in the middle of the text on line 21.8
is converted into a single character by the S-expression reader; that character’s code is 251 in octal,
which is the ISO Latin-1 standard code for the copyright symbol, c
.)

C.19. THE ERROR-MESSAGE SUBWINDOW 187

C.19 The error-message subwindow

22.0 (ZChassis %errorPopup
22.1 (At 1. 1. SE)
22.2 (BgColor "VeryPaleGreen")
22.3 (Title "Error")
22.4 (LightShadow "White")
22.5 (DarkShadow "DarkGreen")
22.6 (Shape (Width 300 + Inf - 200) (Height 50 + Inf - 50)
22.7 (TextEdit %stderr ReadOnly)))

The error-message window is displayed by the application whenever there is a parsing error. The
application also removes it after 5 seconds. (The Misc menu has an item to make this window re-
appear.)

188 APPENDIX C. AN ANNOTATED EXAMPLE

Figure C.7: The “PrettyPrint width” window

C.20 The pretty-print-width subwindow

23.0 (ZChassis %PPwidthNumeric
23.1 NoClose
23.2 (BgColor "PaleGold")
23.3 (Title (Text "PrettyPrint width"))
23.4 (At 0.1 0.1 NW)
23.5 (Shape (Width 250 + Inf)
23.6 (Rim
23.7 (Pen 10)
23.8 (VBox
23.9 (HBox
23.10 Fill
23.11 (Shape (Width 80) "Line width:")
23.12 (Glue 10)
23.13 (Shape (Width 70)
23.14 (Numeric %ppwidth FirstFocus
23.15 (BgColor "VeryPaleGold")
23.16 =78 (Min 30) (Max 200)))
23.17 Fill)
23.18 (Glue 10)
23.19 (HBox
23.20 (Shape (Width 0 + 1000)
23.21 (Rim (Pen 1) (Button %ppwRevert "Revert")))
23.22 (Shape (Width 0 + 1000)
23.23 (Rim (Pen 1) (Button %ppwApply "Apply")))
23.24 (Shape (Width 0 + 1000)
23.25 (Rim (Pen 1) (CloseButton "Cancel")))
23.26 (Shape (Width 0 + 1000) (ShadowSize 2.5)
23.27 (Button %ppwOK "OK")))))))

Some people would argue that having a pretty-printer built in to the editor is an essential tool
in one’s programming environment, regardless of the source language. It is especially helpful when
the entire program is a single expression. (A parenthesis-balancer would help, too!) This pop-up
window allows the user to specify the maximum line-width that the pretty-printer will use, measured
in characters. (The pretty-printer is available as the “PPrint” item in the file menu; see line 14.1.19.)
It is sometimes helpful, especially on a 2-screen workstation, to make the window as wide as possible
and then to increase the pretty-print width; 150 is a reasonable maximum.

C.20. THE PRETTY-PRINT-WIDTH SUBWINDOW 189

This subwindowuses the NoClose property (see line 23.1), which removes the button labeled “C”
from the top-left corner. We do this so that we can be more precise about the side-effects of closing
the window. There are two ways to close it. Clicking the Cancel button closes it without permanently
changing the desired width, that is, the width that will be used on all subsequent calls to the pretty-
printer. Clicking OK, or typing Return in the Numeric type-in, will invoke the pretty-printer with the
new width, setting that to be the desired width, and finally closing the subwindow.

On line 23.14, the FirstFocus property has the effect that the type-in field within the Numeric
will grab the keyboard focus whenever this subwindow pops up, and it selects the text (the width)
in replace-mode, to make it easy for the user to type a new width, hit Return, and have the form
prettyprinted.

Note that the first three buttons have a 1-point Rim around them, but that the last button, OK,
does not. Instead, it has a shadow that is 1 point larger than the default (which is 1.5 points). The
effect is to make the OK button stand out a little more: it is the “default” button, so it has the same
effect as typing Return in the Numeric. In 2-D style, as on a monochrome screen, “default” buttons
are usually given a black border. This is the same convention we used in the Finder window; see
Section C.5 on page 169.

190 APPENDIX C. AN ANNOTATED EXAMPLE

C.21 The snapshot subwindow

24.0 (ZChassis %snapshotDialog
24.1 (At 0.1 0.9 0.2 0.8 Scaled)
24.2 (BgColor "VeryPaleTurquoise")
24.3 (Title (Text (BgColor "White") (Color "DarkTurquoise")
24.4 "Current Snapshot"))
24.5 (Shape (Height 250 - 100 + Inf)
24.6 (TextEdit %SnapshotText ReadOnly)))

This is a subwindow used primarily for debugging “snapshot” and “restore” operations. See Sec-
tion 4.5 on page 67.

C.22. THE NAMED-COMPONENTS SUBWINDOW 191

C.22 The named-components subwindow

25.0 (ZChassis %dumpTablePopup
25.1 (BgColor "PaleGold")
26.2 (At 0.1 0.9 0.2 0.8 Scaled)
26.3 (Title (Text (BgColor "White") (Color "Blue") "Named VBTs"))
26.4 (Shape (Height 300 - 100 + Inf)
26.5 (TextEdit %VBTtable ReadOnly)))

This is also primarily a debugging window, but it’s useful for debugging layout problems. Each
named component in the form is described on a separate line that includes its type, its size-range,
and its actual size, in both the horizontal and vertical dimensions. For example, the following line
appears for the ZChassis on line 23:

PPwidthNumeric : FVTypes.FVZChassis
H: [330, 330, 100001] = 330. V: [113, 113, 114] = 113.

The name of the component isPPwidthNumeric. Its runtime type isFVTypes.FVZChassis.
Its horizontal size-range has a “lo” and a “pref” of 330 pixels, with a very large “hi” value (essen-
tially unlimited stretchability). Its actual width is 330. Its vertical size-range has no stretchability;
“lo” and “pref” are 113 pixels, and “hi” is 114. Its actual size is 113. (The actual size will be 0 for
components that are not visible.)

192 APPENDIX C. AN ANNOTATED EXAMPLE

C.23 The open-file dialog

26.0 (FILEDIALOG %OpenDialog
26.1 (BgColor "VeryPaleGreen")
26.2 (DarkShadow "RatherDarkGreen")
26.3 (Title "Open an existing file")
26.4 (fbName openfile)
26.5 (ReadOnly TRUE)
26.6 (OKName open)
26.7 (OKLabel "Open")
26.8 (cancelName cancelOpen)
26.9 (helperName fbh)
26.10 (other
26.11 ((Glue 6)
26.12 (HBox
26.13 (Radio =newwindow
26.14 (VBox
26.15 (Choice %reuse (TLA "Use this window"))
26.16 (Choice %newwindow (TLA "Open a new window"))))
26.17 Fill
26.18 (Radio =fvonly
26.19 (VBox
26.20 (Choice %fvonly (TLA "*.fv only"))
26.21 (Choice %notfvonly (TLA "Any file"))))))))

This is a standard file-dialog, produced by the macro on line 10, described in section C.8 on
page 173.

As an addition to the standard file-dialog controls, this one allows the user to specify whether a
new pair of windows (editor and result) should be used when displaying a new file. When this macro-
call is expanded, the expressions on lines 26.11–26.21 are simply appended (see line 10.34) to the
forms inside the VBox that starts on line 10.12.

The radio buttons on lines 26.15 and 26.16 are used by the application to determine whether to
open the new file in a separate window.

The radio buttons on lines 26.20 and 26.21 are used to control the value that is passed to the
procedure (FileBrowserVBT.SetSuffixes) that reads directories.

C.24. THE SAVE-AS DIALOG 193

C.24 The save-as dialog

This window, shown in Figure C.4 on page 175, is simpler than the preceding open-file dialog: it has
no “other” parameter, so it contains exactly what the macro specifies. It uses a different background
color to distinguish it from the open-file dialog.

194 APPENDIX C. AN ANNOTATED EXAMPLE

27.0 (FILEDIALOG %SaveAsDialog
27.1 (BgColor "VeryPaleBlue")
27.2 (DarkShadow "Blue")
27.3 (Title "Save As...")
27.4 (fbName saveasfile)
27.5 (OKName saveas)
27.6 (OKLabel "Save")
27.7 (cancelName cancelsaveas)
27.8 (helperName sfbh))

C.25. THE CONFIRMATION DIALOGS 195

C.25 The confirmation dialogs

The three “confirmation” subwindows all perform a similar function, so the use of a macro makes it
easy to give them a similar appearance. All that varies is the text they display. The macro itself is
described in Section C.7 on page 172.

28.0 (CONFIRM %quitConfirmation
28.1 (question "Save changes before quitting?")
28.2 (yesName saveandquit)
28.3 (noName quitAnyway)
28.4 (cancelName dontquit)
28.5 (cancelLabel "Don’t quit"))
29.0 (CONFIRM %switchConfirmation
29.1 (question "Save changes before switching?")
29.2 (yesName saveandswitch)
29.3 (noName switchAnyway)
29.4 (cancelName cancelSwitch)
29.5 (cancelLabel "Don’t switch"))
30.0 (CONFIRM %closeConfirmation
30.1 (question "Save changes before closing?")
30.2 (yesName saveandclose)
30.3 (noName closeAnyway)
30.4 (cancelName cancelClose)
30.5 (cancelLabel "Don’t close"))

196 APPENDIX C. AN ANNOTATED EXAMPLE

C.26 The yes/no dialogs

The “yes/no” subwindows are similar to the “confirmation” windows. The macro is described in
Section C.6 on page 171.

31.0 (YESNO %overwriteConfirmation
31.1 (msg "That file already exists. Overwrite it?")
31.2 (yesName overwrite)
31.3 (noName dontOverwrite))
32.0 (YESNO %RevertDialog
32.1 (yesName revert)
32.2 (noName dontRevert)
32.3 (msg "Revert to the last version saved?"))

Acknowledgments

Gidi Avrahami implemented an embryonic FormsVBT prototype in during the summer of 1988. Ken
Brooks helped to implement the original FormsVBT system in Modula-2+ during 1989.

197

198 APPENDIX C. AN ANNOTATED EXAMPLE

Bibliography

[1] Gideon Avrahami, Kenneth P. Brooks, and Marc H. Brown. A Two-View Approach To Con-
structing User Interfaces. Computer Graphics, 23(3):137–146, July 1989. A videotape of the
system was part of the Video Program at the CHI’90 conference. The CHI ’90 Video Program is
available in the SIGGRAPH Video Review series.

[2] Edited by Marc H. Brown and James R. Meehan. VBTkit reference manual. Technical report,
DEC Systems Research Center, in preparation.

[3] Samuel P. Harbison. Modula-3. Prentice Hall, 1992.

[4] Shiz Kobara. Visual Design with OSF/Motif. Addison Wesley, 1991.

[5] Mark S. Manasse and Greg Nelson. Trestle Reference Manual. Technical Report 68, DEC Sys-
tems Research Center, December, 1991.

[6] Mark S. Manasse and Greg Nelson. Trestle tutorial. Technical Report 69, DEC Systems Research
Center, May 1, 1992.

[7] Greg Nelson, editor. Systems Programming with Modula-3. Prentice Hall, 1991.

[8] Randy Pausch, Nathaniel R. Young II, and Robert DeLine. SUIT: The Pascal of User Interface
Toolkits. In Proc. of the ACM Symposium on User Interface Software and Technology, pages
117–125, November 1991.

[9] Robert W. Scheifler, James Gettys, and Ron Newman. X Window System, 2nd edition. Digital
Press, 1990.

199

200 BIBLIOGRAPHY

