TheFormsVBT Reference Manual

Version 3.4

Marc H. Brown and James R. Meehan

April 26, 1996

(©Digital Equipment Corporation 1989,1990,1991,1992,1993,1994,1995,1996

Thiswork may not be copied or reproduced in whole or in part except in accordance with this provi-
sion. Permission to copy inwholeor in part without payment of feeisgranted only to licensees under
(and issubject to the terms and conditions of) the Digital License Agreement for SRC Modula-3, as
it appears, for example, on the Internet at the URL

ht t p: // www. r esear ch. di gi tal . coml SRC/ nBsour ces/ ht m / COPYRI GHT. ht nf |

All such whole or partial copies must include thefollowing: anoticethat such copyingisby permis-
sion of the Systems Research Center of Digital Equipment Corporation in Palo Alto, California; an
acknowledgment of the authors and individual contributorsto the work; and al applicable portions
of thiscopyright notice. All rightsreserved.

http://www.research.digital.com/SRC/m3sources/html/COPYRIGHT.html

1

Contents

Introduction

Presents an overview to the system. Every user needs to read this chapter; read it first.

Tutorial
A gentleintroductionto using FormsV BT for building somesimple, but real, gpplications.

21 GetingStarted
22 RESOUrCES e
23 TheFormsVBT Language ittt
24 TheThree-Cel Caculator Application
25 ImprovingReadability
2.6 SeparatingtheUl fromthe Application.
27 SUbWINdOWS. e e
28 Moda Dialogs
29 AFleViewer

The FormsVBT Language

Describes the syntax and primitives of the language.

31 BasicSyntax e e
32 ComponentS. e
33 Properties

3.3.1 \Vaietiesof Properties
34 SyntacticShortcuts
35 MaCros e
3.6 Layout

36.1 How SizesareSpecified

3.6.2 Precedenceof SizeConstraints.
37 Subwindows. e e
38 Catdogof Components

1

11
13
14
16
19
21
22
24
25

31

2 CONTENTS

4 Programming with FormsvVBT 57

Describes how to writeaFormsVBT applicationand connect ittoa“form.” Almost every
user needs to read this.

41 TheFormsVBT Interface 57
4.2 Cregtion, dlocation, and initialization 57
43 BventsandSymbols. 60
431 Attachingevent-handlers oL 60

432 Accesstothecurrentevent 61

433 Symbolmanagement 61

44 Readingand ChangingState 62
441 AccesstotheMai n and Val ue properties 62
44.2 Accesstoarbitrary propertieso 63

443 AccesstotheunderlyingVBTs. 64

444 RadiosandChoices. 65

445 Geneicinteractors 65

446 Specid controlsforFilterso 65
447 AccesstoSubwindows 66

448 Specid controlsfor text-interactors L. 67

45 Savingandrestoringstate. 67
46 DynamicAlterationof Forms. L 68
4.7 Subclassesof components 69
5 FormsEdit 73

Tdlshowtousef or nsedi t , theFormsVBT interface builder. Not necessary, but makes
using FormsVBT alot more fun.

51 Getingstarted. 73
5.2 Themenubar e e 73
521 Thequill-penmenu 73

522 TheFilemenu 74

523 TheEditmenu 75

524 TheMiscmenu o i i e e e 75

525 The“Dolt"button 75

53 EIMOrs e e e 76

A Full Description of Components 79

This is an in-depth reference section; do not feel obliged to read it on your first reading
of this manual.

CONTENTS 3

Border e 84
Browser e e 85
Button e 87
Chisd e 88
Choice. e 89
CloseButton e 20
DirMenu. e e e 91
FleBrowser e 92
Fill . e e e 95
Filter . . . e 96
Frame e 97
GENENC e e 98
Glue . . . e e 99
Guard e e 100
Help . . o e 101
Helper e 102
HBOX e e e 103
HPackSplit 104
HTile e e e 105
Insart . . . e 106
LinkButton e e 107
LinkMBUttON e e 108
MBULtON e e e 109
Menu e e 110
MUItiBrowser e e e 111
NUMENC e e e 112
PageButton 113
PageMBuUtton 114
Pixmap 115
PopButton e 116
PopMBULtON. e 117
Radio e e 118
Ridge e 119
RIimM . e 120
Scale. . . e 121
Scroller e e 122
Shape 124
SOUICE . . . o o e e e e e e 125
Stable e 126
Target 127
Text . . e e 128

B Miscdlaneous Interfaces

The ColorName Interface
The XTrestle Interface
The XParam Interface
The FVTypes Interface
The Rsrcinterface

B.1
B.2
B.3
B.4
B.5

C An Annotated Example
The top-leve filter

Simple macros
A recursive macro
A macro for menu-items
A macro for aFinder-dialog
A macro for yes/no dialogs

A macro for confirmation dia ogs
A macro for afile-chooser
The background child

Cl1
C2
C3
c4
C5
Co6
C7
C8
C9

Texture
TrillButton
TSplito
Typelno
Typescript
VBOX
Viewport

VPackSplit

VTile

ZBackground

ZChassis.
ZChild.

C.10 The menubar

C.11 The quill-pen menu
C.12 The File menu
C.13 The Edit Menu
C.14 The Misc Menu
C.15 The Finder-dialog
C.16 The Help subwindow
C.17 A disappearing subwindow
C.18 The About... window

CONTENTS

CONTENTS 5

C.19 Theeror-messagesubwindowo 187
C.20 The pretty-print-widthsubwindow 188
C.21 Thesnapshot subwindow 190
C.22 The named-componentssubwindow 191
C.23 Theopen-filedialog 192
C24 Thesaveasdidog i 193
C.25 Theconfirmationdialogs 195

C.26 Theyes/nodialogs e 196

CONTENTS

1. Introduction

FormsVBT isasystem for building graphical user interfaces (GUISs). It consistsof alanguagefor de-
scribing an application’suser interface, a stand-al one application for constructing the user interface,
and aruntime library for communicating between an application’s code and its user interface.

A user interfacein FormsV BT isahierarchical arrangement of components. Componentsinclude
passive visual e ements, basic interactors, modifiers that add interactive behavior to other compo-
nents, and layout operators that take groups of low-level components and organize them geometri-
caly. IntheFormsVBT language, thearrangement iswritten asasymbolicexpression (S-expression).
The outermost expression isthe formor top-level component, and subexpressions are either proper-
tiesthat modify a component or other, subordinate components.

TheFormsVBT interfacebuilder, f or nsedi t , providesatext editor and aresult view of the user
interface, as shownin Fig. 1. The text editor displaysthe S-expression underlying the user interface,
whiletheresult view showsthe user interface asit will look at runtime, with proper reactionto mouse
and keyboard activity, aswell asproper sizingand stretching. Of course, theresult view cannot reved
exactly how an application’suser interface will ook and behave, since there isno application code
running, but it's usually pretty close. The result view is updated as the user edits in the text view.
Interacting in the result view does not update the text view or change the underlying S-expression.

The runtime library provides the communication between an application and its user interface.
There are procedures to convert an S-expression into a window object, procedures to register event-
handlersthat will beinvokedin responseto user actions, proceduresto retrieveand modify thevalues
of the components, proceduresto change the appearance (and even the hierarchy) of the components,
and so on.

Each component in FormsVBT is implemented by a window class (i.e., a VBT) provided by
VBTkit or Trestle. Most of the things that you'd want to do with a component can be done via
FormsVBT. However, there may be occasions when you would like direct access to the underlying
VBT. FormsVBT provides such access. (You'll probably find it helpful to have a copy of the refer-
ence manuals for VBTkit [2] and Trestle[5], aswell asthe Trestle Tutorid [6].)

The FormsVBT systemisimplemented in Modula-3[3, 7]. It isbased on an earlier system imple-
mented in Modula-2+[1]. That version was unique among user interface development environments
for its multi-view editor, and noteworthy for its extensibility and simplicity. In thisimplementation,
the editor isnot multi-view; thereis no graphical, direct-manipulation editor integrated with the text
view. Also, thisimplementation is not extensible by clients.

CHAPTER 1. INTRODUCTION

[@] FV Result 4: /udir/fmhb/m3/cube/src/cube.fv E]

C FV Editor 4: /udir/mhb/m3/cube/sre/cube.fv

~ | File | Edit | Misc | cube.fv Do It

(Glue B
(HBax
{Shape (Midth 503 <(Text LeftAlign "Rotate:"})
(WBox Fill (Mumeric drotate =4 Filld)
(Glue 8)
(WBox
+Shape
Midth + 03
{HBox
iText LeftAlign "Stule:™)
{Radin
{¥Box
{Choice Zwireframe =#TRUE “Wireframe"}
{Choice Esolid "Solid"»::33)

Fill}
(Glue 200
(VBox
(Text LeftAlign "Viewing position:")

(HBox
{Glue 20}
WBox
“HBox
tShape (Width 503 (Text RightAlign "Mu; "3}
{Mumeric Zmu ¢Min -1000) (Max 10003 =10
Fill}
{HBox
iShape (Width 500 (Text RightAlign "Theta: "2
tMumeric Ztheta (Min -1000% (Max 1000) =303
Fill}
{HBox
{Shape (Width 503 (Text RightAlign "Phi: "M}
iNumeric #phi {Min —1000} (Max 1000} =300
Fillyyy
(Glue B
{HBox ¢Boolean Zbuffer =#TRUE "Double Buffer") Fill)
(Glue B3}

) = . * Wireframe
Spin | Rotate: i%| Style: Solid

Viewing position:
Mu: = 1q &n
Theta: = -3 qp
Phi: = 3 5

® [ouble Buffer

Projection:
ScreenR: [4.0 |
+ Orthographie
Perspective
d:[5.0 |

Figure 1.1: The FormsVBT interface builder, f or nsedi t , in action. The Text View is on theright
and the Result View is on the | ft.

Indeed, one of the primary themes shaping the development of the system has been to deliver a
“95% solution.” By that, wemean that 95% of what clientsdo should betrivial to do; of theremaining
5%, 95% of that should be pretty easy to do; and the remaining things should be possible and no
harder to do than without FormsVBT.

10

CHAPTER 1. INTRODUCTION

2. Tutorial

To use FormsVBT, you need acopy of SRC Modula-3 (Version 3.3 or later) and an X server for your
system. If you have these, you may want to compile and run the example programs as you read this
chapter.

2.1 Getting Started

Thefirst example programisinthefileHel | 0. n8:

MODULE Hel | o EXPORTS Mai n;

| MPORT FornsVBT, Trestle;

VAR fv := FornsVBT. NewFronFil e("Hello.fv"); BEG N
Trestle.Install (fv);
Trestl e. Anai t Del et e(fv)

END Hel | o.

The program buildsaform (sometimescaled a“ dialog box” or a“user interface”) whose description
iscontained in afile named Hel | o. f v. It ingtallsthe form in atop-level window, and then waits
until that window is deleted by the user. The window installed by the program is shown in the left
half of Fig. 2.1.

ThefileHel | o. f v contains the following S-expression:

(VBox
(Text "Hello FormsVBT!")
(Bar)
(HBox (Text "Left") (Bar) (Text "Right")))

Thetop-level componentisaVBox. A VBox takesan arbitrary number of “ children” (sub-components)
and arranges them vertically from top to bottom. ThisVBox has 3 children: Text , Bar , and HBox.
A Text displaysatext string, aBar drawsaline orthogonal to the orientation of its parent, and an
HBox arranges its children horizontally, fromleft to right. The HBox has 3 children, two Text sand
one Bar .

The standard way that you compileand link your programsistousenB8bui | d. ThenBmakefi | e
for the “Hello FormsVBT!” applicationisas follows:

11

12 CHAPTER 2. TUTORIAL

T3

ST o

Hello FormsVBT!

Hello FormsVBT!

Left Right

Figure2.1: The* Hello FormsVBT!” example program. Theinitial version ison the l&ft; the second
version on the right.

i mport (fornsvbt)
inmpl enentation (Hello)
program (Hel I 0)

Then you can compile and link the Hel | o program by typing the shell-command n8bui | d - Sin
the directory containing the source code.

Actualy, most Modula-3 programmers follow the convention of storing all of the source files
for an applicationin adirectory called sr ¢c. Then8bui | d command, when runfromsr ¢’s parent
directory, stores al of its derived files (including the executabl€) in a subdirectory whose name de-
pends on the platform on which you are running. For example, on DECstations, the derived directory
is DS; on an Alpharunning OSF, the directory is AOSF. When you follow this directory structure,
you should invokenBbui | d without any arguments.

Here'sadlightly fancier version of the interface (shown in theright haf of Fig. 2.1):

(Rm (Pen 20)
(Border (Pen 1)
(Rm (Pen 2)
(Border (Pen 2)
(VTile
(Text "Hello FormsVBT!")
(HBox
(Label Font (PointSize 240))
(Col or "White")
(Text (BgCol or "Pink") "Left")
(Bar)
(Text (BgColor "VividBlue") "Right")))))))

The top-level component isaRi mwhose Pen property has avalue of 20. A Ri mmust contain ex-
actly onechild (aBor der inthiscase), and it surroundsitschild with some background space. Here,
the Ri mprovides 20 points of background space between each edge of the window manager’s win-
dow frame and therest of theinterface. A Bor der isjustlikeaRi m but drawswith the foreground

2.2. RESOURCES 13

color instead of the background color. We replaced the VBox with a VTi | e, and deleted its Bar

child. A VTi | e islikeaVBox, but it also automatically insertsa dividing bar between its children;
by dragging the dividing bar, the user can control the division of space among the children. In this
example, the HBox hasbeen giventwo properties, Col or and Label Font . These control thefore-
ground color and font used by the HBox and all of itsdescendants. Similarly, theBgCol or property
changes the background color used.

Thefancy version of “Hello FormsVBT!” isinthefileHel | oFancy. f v. Toruntheapplication
usingthisfile, either modify theapplicationtouseHel | oFancy. f v or renamethefileHel | oFancy. fv
tobe Hel | 0. f v. Alternatively, you might find it enjoyable to run the FormsVBT interactive Ul
builder, f or msedi t . Just type the shell-command

formsedit Hel | oFancy.fv

Exercise 1: Writethe FormsVBT S-expression for 7, aTrestle Tiling Monster of Order 4. (Seethe
Trestle Tutorial, Fig. 2 on page 5.)

2.2 Resources

A resourceisconstant dataneeded by an applicationprogram at runtime; oftenitis“loaded” at startup
time. Almost all FormsVBT programs have resources, such asthe . f v (pronounced “dot ef vee")
filesthat specify the user interface. Other typical resources specific to an applicationincludebitmaps,
cursors, and help-texts.

When an applicationisbuilt, its resources can be “bundled” with the executableimage. The pri-
mary benefit of thisfeature is that applications are self-contained with respect to the resources they
need. Thus, you can copy an executable to aremote siteand you won't need to copy theresourcefiles
and install them in the same place asthey were when the applicationwas built. Also, your application
will beinsulated against changesin library resources.

The easiest way to do thisis to name the resources and the bundle in the nBnakefi | e, asin
thisexample:

i mport (fornsvbt)
resource (Hel I 0. fv)
bundl e (Hel | oBundl e)
inmpl enentation (Hello)
program (Hel I 0)

The second line declares that there is aresource named Hel | o. f v. The third line has the effect of
collecting all thenamed resources (only oneinthiscase) and creatinganinterfacecalled Hel | oBundl e
that provides access to them. The program would then be modified to look likethis:

14 CHAPTER 2. TUTORIAL

MODULE Hel | o EXPORTS Mai n;
| MPORT FornsVBT, HelloBundle, Rsrc, Trestle;

VAR

path := Rsrc.Buil dPat h(Hel | oBundle. Get());

fv = NEW (FormsVBT. T).initFronmRsrc ("Hello.fv", path);
BEG N

Trestle.Install (fv);
Trestle. Awai t Del et e(fv)
END Hel | o.

The cal to Hel | oBundl e. Get returns a bundle that is used to create a resource-path, which is
then searched by thei ni t Fr omRsr ¢ method.

But what if you want the application to use new resource files? For example, you might have
changed some details of the. f v filethat don't require any changesto the application code. Do you
have to rebuild the entire application?

Fortunately, theanswer isno. However, youdo need totell FormsVBT that youwant it tolook for
thoseresourcesin thefile system before it looksfor them among the resources that were bundled into
the application. You do thisby changing the resource-path so that it includes one or more directories
before the bundle.

The convention is to use environment variabl es whose names are spelled by combining the pro-
gram’s name with the string " PATH" . Thisvariable should be set to alist of directory-names, each
separated by a colon. So, if you want to runtheHel | o programusingtheHel | o. f v filethat'sin
Smith’shome directory instead of the one that’s bundled with the application, you woul d type some-
thing likethis shell command:

setenv Hel | oPATH /user/smth

In the program, you would construct a resource-path that included thisdirectory by adding the name
Hel | oPATH, prefixed with adollar sign:

MODULE Hel | o EXPORTS Mai n;
| MPORT FornsVBT, HelloBundle, Rsrc, Trestle;

VAR
path := Rsrc.Buil dPath("$Hel | oPATH', Hel |l oBundle. Get());
fv = NEW (FormsVBT. T).initFromRsrc ("Hello.fv", path);
BEG N

Trestle.Install (fv);
Trestl e. Awai t Del et e(fv)
END Hel | o.

2.3 TheFormsVBT Language

Syntacticaly, there are three types of components in FormsVBT: leaves, filters, and splits. A leaf
has no children; afilter has exactly one child; and a split has any number of children.

2.3. THE FORMSVBT LANGUAGE 15

The FormsVBT leaf components include passive objects like texts and pixmaps, as well asin-
teractive objects like scrollbars and type-in fields.

A filter modifiesits child’s looks or behavior in some way. We' ve seen how a Bor der draws
a border around its child. Another common filter is Bool ean. It adds a check box to the |eft of
its child and makes the box and the child sensitive to mouse clicks. It’simportant to realize that the
child may be any arbitrarily complex arrangement of components, although a Text component is
the most common.

The purposeof most splitsisto dividethedisplay areaamong itscomponent-chil dren (sub-components).
In additionto the horizontal and vertical splitsthat we' ve seen, FormsVBT providesatemporal split
(TSpl i t) to display exactly one child at any given time, and a z-axis split (ZSpl i t) to display
children as overlapping subwindows.

Components are written as lists containing the component’ s type, followed by some number of
properties, followed by some number of sub-components. Properties are written as lists containing
akeyword and avaue. For example, in the S-expression:

(HBox
(Label Font (PointSize 240))
(Col or "Wite")
(Text "Left")
(Bar)
(Text "Right")

the parent-component’stypeis HBox. This component has two properties; thefirst property has the
keyword Label Font and the value (Poi nt Si ze 240) ; the second has the keyword Col or

and the value " Whi t e" . It has three sub-components: (Text "Left"), (Bar), and (Text

"Right").

The vaue of each property is type-checked when the description is parsed. The possible types
include strings, integers, and real numbers, as well as more complicated types like color and font
specifications.

So far, we have seen two kinds of properties. Class properties, like Pen, are defined in conjunc-
tion with specific components, and are allowed only on components of that class. Inherited proper-
ties, likeCol or andLabel Font , may be specified for any component, thoughthey are not rel evant
to all component types. The inherited properties have the feature that a val ue specified for one com-
ponent becomes the default value for al descendants of that component. Thus an inherited property
applies not to one component, but to an entire subtree.

FormsVBT supports a third type of property, universal properties. A universal property can be
specified on any component, and its value applies only to that component.

Exercise2: InHel | oFancy. f v,wrapaScal e component aroundthetop-level R m TheScal e
has two class properties: HScal e and VScal e. What happens when the values of both of these
propertiesare set to 1.75? What happens when you nest Scal e filters?

16 CHAPTER 2. TUTORIAL
47
~ divide

=l_s [=[Y o =l_d 2] - -3

~ add

$9%)

Figure 2.2: The three-cell calculator application.

24 TheThree-Cell Calculator Application

A more interesting application is a three-cell calculator.! The user can enter two numbers and an
arithmetic operation to perform on thetwo numbers. The result iscomputed and displayed whenever
the user selects a new arithmetic operation or typesa new number. Fig. 2.2 shows the applicationin
action.

The user interface is described by the following FormsVBT expression:

(Shape (Wdth 300 + 100 - 50) (Height + 25)
(Rm (Pen 20)
(VBox
(HBox
(VBox Fill (MNureric %wunl =5) Fill)
(Radi o % unctions =add
(VBox
(Choi ce %iv "divide")
(Choice %l "multiply")
(Choice %ub "subtract")
(Choice %add "add")))
(VBox Fill (Nureric %wun2 =2) Fill)

(Text "=")
(Text %esult LeftAlign ""))
(G ue 10)

(HBox Fill (Cuard (Button %exit "QUT")) Fill))))

The tokensthat start with percent signs are names assigned to components. For example, the Text
component where the application stores the result of each computation isnamed r esul t . An ap-
plication can access only named components at runtime.

Thisform contains the following components that we have not seen before;

e A Shape isused to give a component explicit size constraints, typicaly as afunction of its
child'ssize. Here, the Shape declaresthat itsacceptabl e width i sbetween 250 and 400 points,

! Readers may wish to comparethe FormsVBT implementation of this example with that of SUIT [8].

24. THE THREE-CELL CALCULATOR APPLICATION 17

and itspreferred width is300 points. The preferred and minimum height of the Shape arethe
same as those of itschild; itsmaximum height is 25 points more than the maximum of itschild.

e Fill and d ue are used as children of an HBox or VBox. Fi | | displays as background
space that will “stretch” as needed in the orientation of its parent. It is used here to keep the
Nuner i ¢ component centered vertically between thetop of thestringdi vi de and thebottom
of the string add. A ue displays as background space that doesn’t stretch. In thisform, it
provides 10 points of space. Judicioususe of Fi I | and A ue will facilitate creating very
regular and pleasing-looking user interfaces.

¢ Nuneri ¢ componentsare numerical widgets; in our example, theone ontheleft hasaninitial
value of 5, and the one on theright has an initial value of 2. A user can change the displayed
number by clicking on the plus or minus buttons, or by typing in the type-in field located be-
tween the buttons. To start typing, the user needs to move the keyboard focus to the type-in
region by clicking there with the mouse. Also, nothing about the typing is reported to the
application until a carriage return istyped. At that point, the application is notified that the
Nuner i ¢ hasanew value, but not what the user did to enter thisnew value. (If the applica
tion realy wants to find thisout, it can inquire whether the user clicked on the plus or minus
buttons, or entered a new number in the type-in region.)

e The Radi o unitesall of the Choi ce components which are among its descendants into ra-
dio buttons. A Choi ce addsadiamond to the | eft of its child and causes the diamond of the
selected choice to appear dark and recessed. The application is notified whenever the user
changes the selected item. Note that a Radi o does not impose any particular geometric ar-
rangement on the layout of its radio buttons.

e A But t on adds the “look-and-feel” of abutton to its child. The application is notified when
the user clicks on abutton. Again, keep in mind that the contents of a button can be any arbi-
trary arrangement; here, it’'sasimple text string.

e The Guar d component requiresthat you click onit twicein a row before the program” quits’.
Thefirst click removesthe” guard” (shown visibly by thediagonal lines) and all ows subsequent
mouse activity to bereported toitsdescendant, aBut t on inthiscase. The second click causes
the But t on to be invoked, and the guard to be reinstated. A Guar d isusually put around a
But t on, but it may also be put around any component. For example, if you wanted to protect
the “divide’ radio button, you'd simply wrap a Guar d component around the first Choi ce
expression.

In FormsVBT, asin most GUI toolkits, an application is structured as an initialization routine,
which runsin onethread, and a collection of event-handling procedures, which runin other threads.
When an application isrun, it initializes dialogs and then transfers control to the toolkit. The main
thread waits until the toolkit returns control, which it does when all the dialogs have been deleted.

Here isthe complete application for the three-cell calculator (see thefile Cal c3Cel | . nB):

18 CHAPTER 2. TUTORIAL
MODULE Cal c3Cel | EXPORTS Mi n;
| MPORT Fnt, FornsVBT, Text, Trestle, VBT;
PROCEDURE NewForm (): FormsVBT. T =
VAR
fv = FormsVBT. NewFronFile ("Calc3Cell.fv");
gcl := NEW (FornsVBT.d osure, apply := Qit);
ccl := NEW (FornmsVBT. d osure, apply := Conpute);
BEA N
FornsVBT. Attach (fv, "exit", qcl);
FormsVBT. Attach (fv, "nunl", ccl);
FormsVBT. Attach (fv, "nunR", ccl);
FornmsVBT. Attach (fv, "functions", ccl);
RETURN fv
END NewFor m
PROCEDURE Quit (cl For nsVBT. Cl osur e;
fv FornsVBT. T;
name: TEXT,
tinme: VBT.TinmeStanp) =
BEG N
Trestle.Delete (fv)
END Quit;
PROCEDURE Conpute (cl For msVVBT. d osur €;
fv FornsVBT. T;
name: TEXT;
tine: VBT.TinmeStanp) =
VAR
answer: REAL;
first = FLOAT (FornsVBT. GetlInteger (fv, "numl"));
second = FLOAT (FornsVBT. GetInteger (fv, "nunk"));
fn = For msVBT. Get Choi ce (fv, "functions");
BEG N
I F Text.Equal (fn, "add") THEN
answer := first + second
ELSIF Text.Equal (fn, "sub") THEN
answer := first - second
ELSIF Text.Equal (fn, "mul") THEN
answer := first * second
ELSIF Text.Equal (fn, "div") THEN
answer := first / second
END;
For msVBT. Put Text (fv, "result", Fnmt.Real (answer))
END Conput e;
BEG N
VAR fv := NewForm(); BEG N

Trestle.Install(fv);
Trestl e. Anai t Del et e(fv)
END
END Cal c3Cel I .

2.5. IMPROVING READABILITY 19

The parametersto an event-handler (e.g., Qui t and Conput eintheCal c3Cel | program) identify
thedidog (f v) in which the event happened and the name of the interactor causing the event.

The event-handler’ sfirst parameter, named cl inthisexample, isaFor msVBT. Cl osur e that
isspecified whenthe event-handler isattached. Itsappl y method isthe event-handler. The standard
way of passing additional informationtothe event-handler isto create asubtypeof For ns VBT. Cl osur e,
with new fields, and possibly new methods, for handling the new information. Thet i ne parame-
ter is atimestamp associated with the user event that caused the event-handler to be invoked. The
timestamp is needed for certain operations, like acquiring the keyboard focus.

We say that a component “generates an event” when the user does something in a component
that causes the event-handler to be invoked. The semantics of what causes an event to be generated
is specific to each component.

The Three-Cell Calculator application creates aform and passes it to Trestle, the window man-
ager, which “installs’ it, just as the “Hello FormsVBT!” application did. Here, as part of building
aform from the S-expression infileCal c3Cel | . f v, we also attach event-handlers to the compo-
nents to which the application will respond. The Qui t event-handler, which is attached to the com-
ponent named exi t (the buttonlabeled “QUIT"), deletes the window from Trestle. The Comrput e
event-handler, which is attached to both of the Nuner i ¢ components as well as the radio buttons,
retrieves the values stored in both Nuner i ¢ components, determines which arithmetic function the
user selected, performs the operation, and then displaysthe result.

Exercise 3: Add your favorite operator to the application and to the user interface. (If you're unde-
cided about which operator is your favorite, try GCD.)

2.5 Improving Readability

TheThree-cell Calculator S-expression illustratesanumber of common abbreviationsthat hel p make
the FormsVBT language more readable.

A percent sign is an abbreviation for the Nane property. That is, the FormsVBT parser reads
%xyz exactly asif it were (Nane xyz) .

An equalssignisan abbreviation for the property caled Val ue. That is, the FormsVBT parser
reads =xyz exactly asif it were (Val ue xyz) . By convention, any component whose value can be
changed interactively by a user has aVVal ue property.

Componentsthat display some type of object, like astring or a pixmap, specify the object using
aproperty caled Mai n. For example, to display a pixmap from afile named Tr unpet , you'd say
(Pi xmap (Main "Trunpet")). However, the Mai n property can be abbreviated by omitting
the keyword Mai n and the associated parentheses, eg., (Pi xmap " Trunpet ™).

A Text component that has no propertiesother than Mai n can befurther abbreviated simply by
giving a string. For example, (Text (Main "QUI T")) can bereduced to (Text "QUI T")
and thento " QUI T" . Other examples of this are the children of the four Choi ce componentsin

20 CHAPTER 2. TUTORIAL

thelast program. If you want to specify any propertiesonaText component (such as aname, font,
color, or alignment), you can abbreviate Mai n, but you still need towrite(Text ...).

Boolean properties have a value of either TRUE or FALSE. The default value of all Boolean
propertiesis FALSE. Mentioning the name of a Boolean property isan abbreviation for specifying a
truevalue. For example, inthe Three-Cell Calculator, thetoken Lef t Al i gn isan abbreviation for
(Left Align TRUE).

Finally, leaf components without any properties can be written without parentheses, e.g., Fi | | .

The following chart summarizes these abbreviations:

(Text "t") "t

(Name n) %
(Val ue v) =v
(Main m m

(bool prop TRUE) bool prop
(propl essl eaf) propl essl eaf

Exercise 4: The following interface containsatextua label, atype-infield, and a button:

Enter an etude: I |

El

The interface is 250x75 points, and it uses But t on, Fr anme, Pi xmap, R m Shape, Text , and
Typel n components, in addition to some HBoxes, VBoxes, 3 ues, and Fi | | s. Appendix A de-
scribes the class-specific propertiesfor each component. Write a concise FormsvVBT expression for
thisform.

FormsVBT providestwo additional waysto make S-expressionsmorereadable. First, an S-expression
can be split across multiplefiles (resources). To insert afile named Hel pDi al og. f v, just include
the expression

(I'nsert "Hel pDial og.fv")

wherever you want the file to be inserted. Thel nsert expression can appear anywhereinan S
expression; logically, itisreplaced by the contentsof the named filebeforethe S-expressionisparsed.
The second way to make the form more readable is by using macros. Syntactically, a macro is an
inherited property with the name Macr o. For details on macros, see Section 3.5.

2.6. SEPARATING THE Ul FROM THE APPLICATION 21

2.6 Separatingthe Ul from the Application

One of the ways that user interface toolkitslike FormsVBT simplify the construction of interactive,
graphical applicationsisby forcing aseparation of theinteracti on-specific partsfrom the application-
specific parts. Thisallowstheinterface designer to concentrate on the design of the interface and the
application programmer on the implementation of the application-specific code.

In FormsVBT, the only Ul components known to the application are those that are given names.
The applicationisinsensitive to the layout of components and to the existence of all unnamed com-
ponents. There is even some insulation between the application and the Ul for named components:
one component may be replaced with another whose behavior with respect to the applicationisthe
same.

For instance, in the Three-Cell Calcul ator interface from Section 2.4, we could replace the Text -
component named r esul t with any other component that can storetext, such asaTypescri pt.
A Typescri pt would capture ahistory of all values computed by the application. (Wewould aso
need to deletetheLef t Al i gn and Mai n propertiesto make this change.)

We could also replace the radio buttonswith itemsin a pulldown menu by replacing this expres-
sion

(Radi o % unctions
(VBox
(Choice %liv "divide")
(Choice %l "nmultiply")
(Choice %ub "subtract")
(Choice %dd "add")))

with the following expression:

(Menu "?" (Radio % unctions =add
(HBox

(VBox
(Choice MenuStyle %liv "divide")
(Choice MenuStyle %rul "multiply"))

(VBox
(Choi ce MenuStyle %ub "subtract"))
(Choice MenuStyle %add "add")))))

SeeFig. 2.3.

Thefirst child of aMenu isthe“anchor” of apulldownmenu; click onit to get amenu displayed.
Thesecond child of aMenu isan arbitrary S-expression, displayed when theuser clicksontheanchor.
In the example above, the first childisa Text component displaying a question mark. The second
child contains four radio buttons, arranged in a 2-by-2 matrix. The MenuSt yl e property causes a
radio button to react when the mouse rollsinto it rather than on amouse click.

The contents of this menu emphasizes an earlier point about composition. A Menu does not im-
pose any structure on the contents of the menu. One merely composes a Menu out of 2 children: a

22 CHAPTER 2. TUTORIAL

= 6 |efe=l o @] - 3
divide - subtract

I@ multiply - add

Figure 2.3: A modified Ul for the three-cell calculator application. The cursor (not visiblein the
figure) isover the string “ multiply.”

child that is the anchor button, and a child that appears when the anchor buttonis activated. A “tra-
ditiona” pulldown menuis aVBox whose children are MBut t ons.

Exercise 5: Change the program so that a symbol for the current operator is displayed instead of
the question mark. Hint: Assign name to the quoted question mark, by using the expanded format
(Text %op "?"),andcal For msVBT. Put Text to changewhat isdisplayedinaText com-
ponent.

2.7 Subwindows

The three-cell calculator will crash if wetry to divideby 0. Let’s change the application to pop up a
dialog box warning the user if there is an attempt to divide by 0. We need to modify the Conput e
event-handler by adding atest for a divisor equa to zero just before the division:

ELSI F Text.Equal (fn, "div") THEN
I F second = 0.0 THEN
For msVBT. PopUp (fv, "errorWndow');
RETURN
END;
answer := first / second
END;

The call to For ms VBT. PopUp will cause the named dialog to appear.
It iseasy to add adiaog named er r or W ndowto the calculator’s S-expression that was given
in Section 2.4. The S-expression becomes the following:

(Zsplit
(ZBackground (Shape ...))
(ZChassi s %error Wndow
(Title "Error Message")

2.7. SUBWINDOWS 23

(Rm (Pen 20)
(Text %rrorText "Can't divide by zero."))))

A ZSpl it takesan arbitrary number of children and displays them as overlapping windows. The
first child isthe background; it isalways visible. The visibility and location of the other children are
under program control. The ZChassi s wraps a “banner” around its child; the banner is respon-
sive to mouse activity for the common window controls of closing, moving, and resizing. A call to
For ms VBT. PopUp will cause a specified child of aZSpl i t to appear. By default, aZChassi s
isnotinitially visible.

Another common use of subwindowsisto alow a user to specify additional information for a
command. For example, the “Save As...” button found in many applications pops up a dialog box,
which isasubwindow, with away to enter the name of afile. A buttonlike*About Bazinga...” pops
up a subwindow containing information about the application called Bazinga.

Insituationslikethese, it’saburden on the programmer towrite an event-handler that simply calls
For ms VBT. PopUp. To simplify this common case, FormsVBT provides a PopBut t on. This
componentisjustlikeaBut t on, but beforeitsevent-handleriscalled, it causes adesignated subwin-
dow to appear. In practice, applicationsoften don’t need to attach any event-handlertoaPopBut t on.

For grins, we'll now change the original three-cell cal culator user interface so that the radio but-
tons are in a subwindow that is completely controlled by the user. Clicking onthe " ?" menu will
cause the subwindow to appear. The window can be closed and repositioned without any applica-
tion code. We need make two small changes to the original S-expression given in Section 2.4 to add
subwindows. First, replace the radio buttons by a button that causes a subwindow to pop-up. That
is, change

(Radio %unctions ...)
to
(PopButton (For fnWndow) "?")

Second, movethe Radi o expression into a subwindow, by enclosingitinaZChassi s, and wrap-
pingaZSpi t around theroot. Now, Cal c3Cel | . f v lookslikethis:

(Zsplit
(ZBackground (Shape ...))
(ZChassis %errorWndow ...)
(ZChassi s % nW ndow
(Radio % unctions ...)))

Exercise6: Add an “About Three-Cell Calculator...” button. It should pop-up asubwindow with ap-
propriateinformation. If you want to put the button inside of a pull-down menu, use PopMBut t on.

24 CHAPTER 2. TUTORIAL

w117

=|_sgatolal alals
Divide by zero!
elect a function...l G
O]

Jlivide -~ subtract
~ multiply .- add

Figure 2.4: Thethree-cell calculator applicationwith a modal dialog.

2.8 Modal Dialogs

When a subwindow appears, therest of theform and al other subwindowsremain active. Inthe case
of the operator-subwindow in Section 2.7 (i.e., the ZChassi s named f nW ndow), this behavior
was desirable. However, this behavior may not be desirable for the error-message subwindow. That
is, some application writerswould like to force the user to explicitly close the error message subwin-
dow before continuing to interact in the application. In the Ul jargon, thisis called amodal dialog.

A simple way to do thisisto bring up the error subwindow as before, but also to “deactivate”
the background—make it unresponsive to user actions—while the subwindow is displayed. When
the dialog is finished, we “re-activate”’ the background. A FormsVBT component called Fi | t er
is used to set thereactivity of its child to be active (the default case), passive (mouse and keyboard
events are not sent), dormant (like passive, but it also grays out the child and changes the cursor),
or vanished (like passive, but aso draws over the child in the background color, thereby making it
invisible).

Changing the modeless subwindow in the calculator so that it is moda requires only a trivia
change. First,add aFi | t er justinsidetheZBackgr ound. Name thiscomponent zbg. Second,
in the application, add

For msVBT. MakePassi ve(form "zbg")
after thecall toFor ms VBT. PopUp. Finally, you need toregister anevent-handler for theZChassi s

named er r or W ndow. The event handler will be invoked when the subwindow is closed; it con-
tainsthe following line:

For msVBT. MakeActi ve(form "zbg")

You might al so wish to eliminate the banner on the subwindow. To do so, changetheZChassi s
tobeazChi | d,and addaCl oseBut t on somewhereinthesubwindow. TheCl oseBut t on but-
ton will cause the subwindow inwhich it is contained to be taken down. Fig. 2.4 shows the modified
application.

Exercise 7: Make the error window in the three-cell calculator modal in the manner suggested in
thissection: Inthe. f v file,add aFi | t er insidetheZBackgr ound, changetheerror subwindow

29. AFILEVIEWER 25

fromaZzZChassi s toazZChi | d, and add aCl oseBut t on to the error window. Inthe. nB file,
change the application code so that the background is made passive when the error window appesars,
and re-activated after error window disappesars.

Exercise 8: When the error dialog appears while the subwindow containing operatorsisvisible, the
operators are not deactivated, although the main form is deactivated. Changethe form so that every-
thing except the error subwindow is made passive. Don’t modify the application! (Hint: Use two
ZSpl i t s, one the background child of the other.)

29 A FileViewer

It's easy to hook up the FormsVBT text-editing widget to an application to make a bona fide text
editor. Thefile-viewer application, shownin Fig. 2.5, containsatype-in area on the top for entering
the name of afile and a fully functional text editor that occupies the bulk of the window. The text
editor isin read-only mode.

The S-expression for the application, in thefile Vi ewer . f v, isquite smple:

(Rm (Pen 10) (Font (Wi ghtNane "Bol d"))
(VBox

(HBox
(Frane Lowered (Typeln 9%il eName))
(G ue 10)
(Button %exit "QUT"))

(due 10)

(Shape (Height 200 + inf) (Wdth 300 + inf)
(Frame Lowered (TextEdit ReadOnly %ditor)))))

The applicationis structured as in the three-cell calculator application in Section 2.4. A Newor m
procedure converts the S-expression into a runtime object and registers event-handlers. Only one
event-handler is needed here; ReadFi | e isattached to thetype-infieldf i | eNane. It isinvoked
whenever you type a carriage return in the type-in field. The code is straightforward:

26

T TIE
our|

IVieuer.n3

Forns¥BT.PutText{forn, “"editor"”, GetFile{fnanel};
EXCEPT Rd.Failure =>
Forns¥BT ,PutText{forn,
Forns¥BT ,PutText{forn,
EHD;
EHD ReadFile;

“editor™, "");
“fileHane”, ""}:

ROCEDURE GetFile {name: Text,.T>: Text.T
RAISES iRd.Failurel =

rd := FileStrean.OpenRead{nane};
BEGIN
TRY
RETURH Rd.GetText{rd, LAST{CARDIMAL}}
FINALLY
Rd.Close{rd}
EHD
END GetFile;

EGIH

Figure2.5: A simplefile viewer application.

CHAPTER 2.

TUTORIAL

PROCEDURE ReadFile (cl

For nsVBT. Cl osur €;

fv FornsVBT. T;
nane: TEXT;
tine: VBT.TineStanp) =
VAR fnanme := FornsVBT. Get Text (fv, "fileNane");
BEG N
TRY
For nsVBT. Put Text (fv, "editor", CetFile (fnane));
EXCEPT
Rd. Failure =>
For msVVBT. Put Text (fv, "editor", "");
For msVVBT. Put Text (fv, "fileName", "");
END;
END ReadFi |l €;

The event-handler first retrievesthestring you typed intothetype-infield namedf i | eNare. Itthen
callsaninternal procedureCet Fi | e toretrieve the contentsof afile by that name, and finally stores
the contentsinto the text-editor widget. If an error isencountered whiletryingto retrievethe contents
of thefile, ReadFi | e catchesthe exception that is raised and just erases the contents of thetype-in
field and the text editor. The applicationisshowninFig. 2.5.

Exercise 9: Add a Reset button to the left of the Quit button. Clicking on this button should clear
the contents of thetype-infield. For extracredit, interpret a doubleclick to aso clear the contents of
the editor. To detect a double-click, you will need to examinethe VBT. MouseRec that isavailable

29. AFILEVIEWER 27

[i | [auiT]
akefile FormsVBT ,PutText (form, "editor". GetFileifnamel):
kgs! EHCEPT Rd.Failure =>
ewer FormsVBT ,PutText (form, “"editor". ""):
ewer- ReadFile.x FormsVBT PutText (form, "fileMame",. ""):

EMD
ever fv EMD ReacFile:

ewer.m3-~ FROCEDURE GetFile {name: Text,Ti: Text,T
ewer.mo RALSES {Rd.Failurel =
by de FileS OpenRead (name ¥

rd := FileStream ,OpenFeadiname’:
ewerl.fv BECIN
ewerz.fv TRY

ewerBundle.i3
ewerBundle.io
ewerBundle.ix
ewerBundle.m3
ewerBundle.mo
ewerBundle.mx

RETURM Rd,GetText {rd, LAST (CARDIMAL:
FIMALLY
Rd.Closedrd}

EMD
EMD GetFile:

Figure 2.6: Thefileviewer applicationagain, but now, file names can be specified in the type-in field
at thetop or using the file browser at the left.

from For nsVBT. Get TheEvent tothe Reset button’sevent-handler.

Exercise 10: Add apop-upto signa when thefile could not be opened, rather than clearing the type-
infield.

If yousubstituteFi | eBr owser for Typel n,you'll beabletotraversethefile system by double-
clicking on directories (those items ending with a slash) in a browser. The file browser generates an
event when you double-click on afile. Note that the application does not need be changed at all!

Whileit'sniceto beableto traversethe hierarchy by mousing aroundin thefilebrowser, thereare
times when it ismore desirable simply to type in a pathname. No problem. We'll just add atype-in
field to the S-expression. Here'sthe new S-expression (see Fig. 2.6):

28 CHAPTER 2. TUTORIAL

(Rm (Pen 10) (ShadowsSize -1)
(BgCol or "White") (LightShadow "Bl ack")
(Dar kShadow "Bl ack")
(VBox
(HBox
(Frane Lowered (Typeln 9%il eNameString))
(due 10)
(Button %exit "QUT"))
(G ue 10)
(HBox
(Shape (Wdth 100)
(Frane Lowered (FileBrowser %ileNane)))
(G ue 10)
(Shape (Height 200 + inf) (Wdth 300 + inf)
(Frane Lowered (TextEdit ReadOnly %editor))))))

(A negative value for theinherited property ShadowSi ze isaconvention for telling FormsVBT to
give feedback using aflat, 2-d stylerather than aMotif-like, 3-d style.)

We aso need to change the application dightly to register the ReadFi | e event-handler with
thetype-infield (i.e, fi | eNameSt ri ng) as well as with the file browser (i.e,, fi | eNang). In
addition, procedure ReadFi | e itself needsto be changed trivialy to initiaizef nanme from thein-
teractor that caused the event-handler to beinvoked:

VAR fname := FornmsVBT. Get Text (fv, nane);

So far so good, but there' s no tie between the file browser and the type-in field.

Exercise 11: Implement event-handler methods for the file browser (f i | eNane) and the type-in
field (f i | eNanmeSt ri ng) to keep them synchronized. That is, typing a path into the type-in field
should cause the browser to change the directory it is displaying. The directory displayed by thefile
browser isset by calling For ms VBT. Put Text , passinginthename of thedirectory to bedisplayed.
What happens if you specify a directory that doesn’'t exist?

If you didn’t do the last exercise, now isyour last chance ...

It turnsout that FormsVBT already providesa component that tiesatype-infield to afile browser.
The component iscalled aHel per, and it has a class-specific property called For that names the
file browser towhich itistied. So, if you change the expression

(Typeln 9% il eNameSt ring)
to

(Hel per (For fileNane))

29. AFILEVIEWER 29

and replace theinitialization of variablef nane inthe origina program as described above, then the
type-in field and the file browser will stay synchronized, without any application-code intervention.

Exercise 12: What happenswhen you replace“Hel per ” by “Di r Menu”? What happens when you
tieafile browser to bothaHel per and Di r Menu?

30

CHAPTER 2. TUTORIAL

3. The FormsVBT Language

The FormsVBT language provides a mechanism for textually describing a user interface. The lan-
guage is not a general-purpose programming language. It has no variables, control structure, or run-
time computation. Rather, it's a declarative textual description of the hierarchical arrangement of
componentsthat make up the user interface, written as an S-expression. Fig. 3.1 showsasimple user
interface and its S-expression.

3.1 Basc Syntax

Each component iswrittenas an S-expression that beginswith typeof thecomponent, such asBor der
But t on, or VBox. Followingthetype are subexpressions that describe eitherpropertiesor children
(sub-components). Properties provide additiona information that control the appearance or behav-
ior of the component. The S-expression in Fig. 3.1 contains properties Pen, Patt er n, W dt h,
Hei ght , BgCol or, and Col or . Property-expressions are distinguished from child-expressions
by their names. There isoneimportant rule to remember:

In any S-expression, all property expressions must appear before any sub-components.

Properties are discussed in detail in Section 3.3.

3.2 Components

The components of FormsVBT can be categorized in two ways: by the number of children that they
take, or by their function. In thefirst categorization, we have leaves, filters, and splits:

e A leaf hasno children.
o A filter has exactly one child.
o A gplit contains any number of children.

InFig. 3.1, Text and Pi xmap areleaf components; Bor der , But t on, and Shape arefilters;
and VBox isthe only component in the form that is a split.
The second way to categorize the componentsis by their function:

31

32 CHAPTER 3. THE FORMSVBT LANGUAGE

§
(Border (Pen 20) (Pattern "NADi agonal ") §

(Button %or net
(VBox
(Shape (Wdth 50) (Height 40)
(Pi xmap "Trunpet"))
(Text (BgColor "Black") (Color "Wite") "Horn"))))

B

Figure 3.1: A very simple user interface and its description in the FormsVBT language. The user
interface consists of a button that is surrounded by a border. The button itself displays a pixmap of
atrumpet abovetheword “ Horn” . At runtime, the applicationwill register an event-handler for the
component named “ cornet” ; the event-handler will be invoked when the user clicks on the button.

o Passivevisual sestablish appearance and spacing. ExamplesincludeText ,d ue,andBor der .

¢ Basicinteractors contain an editable value that both the user and the application can read and
modify. Examplesinclude Typel n, Nunmeri c,and Fi | eBr owser .

¢ Interactive modifiers add behavior to a child. The prototypical exampleisaBut t on. Most
interactive modifiers also add some type of visua feedback. For example, a But t on adds
a“shadow” around its child to make the child appear 3-dimensional. Some modifiers, like a
Bool ean, asoinvolve an editablevalue.

o Helpersare componentsthat control other componentsin someway. For example, aPopBut t on
isabuttonthat causesasubwindow (ZChassi s or ZChi | d)toappear. ADi r Menu isapull-
down menu that isused with aFi | eBr owser . Theitemsin the menu are the ancestors of
the directory currently being displayed.

o Groupers declare that al their descendants belong to one group for some particular purpose.
A Radi o unitesagroup of radio buttons, which are Choi ce components.

o Geometerstake an arbitrary number of children and lay them out in some way. Examplesin-
cludeVBox, HPackSpl it ,and TSpl i t . AnHPackSpl i t formatsitschildrenlikewords
in an unjustified paragraph. A TSpl it isatemporal split—at any time, exactly one of its
childrenisvisible.

3.3 Properties

Properties provideinformationthat modifies the appearance or behavior of acomponent. A property
subexpression has the following format:

3.3. PROPERTIES 33

(keyword value)

Thekeywordimpliesthe expected type of theval ue; val ues are type-checked when the description
isparsed by FormsVBT.! Nearly all properties have default values and can be omitted.
For example, the expression

(Bool ean (CheckMark TRUE) (MenuStyle TRUE) "Gravity")

definesaBool eaninteractor withtwo properties. TheCheck Mar k property saysto use acheck mark
rather than a check box for visua feedback, and the MenuSt yl e property says that the Boolean
should be responsive to a mouse rolling into it, rather than responding only to a mouse click. You
would use MenuSt yl e when the Boolean is an e ement of a menu.

A value must have one of the following types:

Text A quoted string.
(Border (Pattern "NWAD agonals") ...)
Cardinal A positiveinteger.
(TSplit (Value 4) ...)
Integer Aninteger.
(Nuneric (Mn -100) (Max 100))

Real A real number. A whole number does not need a decimal point, and a number be-
tween -1 and 1 does not need aleading zero.

(Border (Pen 4.25) ...)
Boolean The token TRUE or FALSE.
(Bool ean (MenuStyle TRUE) ...)
CardinalList A list of positiveintegers.
(Mul tiBrowser (Value 1 5 3 19))

TextList A list of quoted strings.

1| you are developingaform using the f or msedi t interface-builder, then type- and syntax-errorswill be reported and
highlighted each time that you issue the “Do It” command. If an application givesthe FormsVBT runtime system a syntacti-
cally incorrect S-expression to parse, FormsVBT will raise an exceptionto signal the syntax error.

34 CHAPTER 3. THE FORMSVBT LANGUAGE

(Fil eBrowser (Suffixes "i3" "n8"))
Symbol A name. For example, the For and Nane properties are of thistype:

(PageButton (For letters) "Next")
(Button (Nanme no) "Cancel")

Names are either identifiers (a letter followed by any number of |etters, digits, or
underscores), or non-empty sequences of characters from the set

L #$%&* +- ./ :<=>2@[] _{1}"

or asequence of characters and escape sequences surrounded by vertica bars(e.g.,
| Sue’ s butt on|). The escape sequences are

\n \t \r \f A\

and\ followed by three octal digits.

Font The name of afont conforming to the specificationsin “X Logica Font Descrip-
tions’ [9]. Thefont can be specified intwo ways. A quoted string in the form that
x| sf ont s printsand accepts as a pattern (we call thisthe string format), or alist
of parenthesized keyword pairsfor the parts of afont (wecall thisthelist format).
Consider the following example:

(VBox
(Text (Label Font "hel vetica_bol d14")
"Hel vetica Bold @ 14pts")
(Text (Label Font "-*-courier-nedi um*-140-*")
"Courier @ 1l4pt")
(HBox (Label Font (Famly "Tines")
(Poi nt Si ze 140))
(Text "Tines@i4pt")
(Text (Label Font Reset
(Family "*")
(Wdth "sem condensed"))
"Sem Condensed@ny")
(Text (Label Font (PointSize 180)
(Slant "i"))
"lItalics@d4pt"))))

The font specification for the top two children of the VBox use the string format.
The other font specifications arein thelist format. Here's what the example looks

3.3. PROPERTIES 35

Color

like:

Helvetica Bold @ 14pts

Courier Bold @ I1dpt

Times@14pt SemiCondensed@any Italics@i4pt

Inthelist format, the keywords for the parts of afont are

Foundry Fanily Wei ght Nane Sl ant
W dt h Poi nt Si ze HRes VRes
Spacing AvgWdth Regi stry Encodi ng

Poi nt Si ze, HRes, VRes, and AvgW dt h take cardina values or the string
"*" _All the otherstake strings.

Unspecified parts of afont take on the value of the nearest ancestor component for
which the part was specified using the list format. However, the keyword Reset
causes all unspecified partsof afont totake on thedefault valuesassigned by FormsVBT.

The description of a color either as atriplet of rea humbers between 0.0 and 1.0
representing RGB or HSV values, or as a string. The following example shows
both formats:

(Pi xmap
(BgColor .5 0.23 1.0)
(Col or "VeryPal eRed") "Mail Box")

The triplet may be preceded by one of the symbols RGB or HSV. The default is
RGB. The symbol HSV represents hue-saturation-value. Example:

(BgCol or HSV 0.1 0.45 0.222)

Appendix B.1 describes the conventions used for naming colors.

An S-expression in the FormsVBT language. For example, the Ti t | e property
of aZChassi s (aframe for a subwindow) has thistype:

36 CHAPTER 3. THE FORMSVBT LANGUAGE

(ZSplit
(ZBackground ...)
(ZChassi s
(Title
(HBox
Fill
"W ndow # "
(Border (Text 9wid =""))
Fill))
)
Enumeration A set of mutually exclusive tokens. FormsVBT supports the following enumera-
tions:
Type Keywords
. Center, LeftAlign,
Alignment R ght Al i gn
AXis Hori zontal , Verti cal
FeedbackStyle CheckBpx, CheckMar k,
I nverting
o Active, Passive,
Reactivity Dor mant, Vani sh
Hor Only, VerOnly,
ScrollStyle NoScrol |, Al aVi ewport,
Aut o
ShadowStyle Fl at, Raised, Lowered,

Ri dged, Chi sel ed

Think of each enumeration as a collection of Boolean properties, at most one of
which may be specified as TRUE. If no choices are specified, thenit'sasif the de-
fault choice was given. Here are some examples:

(Viewport (VerOnly TRUE) (Horizontal TRUE) ...)
(Filter (Dormant TRUE) (Vani sh FALSE)

(Button ...))
(Frane (Raised TRUE)

(RRm (Frame (Lowered TRUE) ...)))

3.3. PROPERTIES 37

Size The description of the dimensions of a component along some axis. It hasthe syn-

At

tax
[size] [+ stretch] [- shrink]

where size, stretch, and shrink are specified as pointsin real numbers. Stretch and
shrink, if both specified, may be in either order. Spaces are required around the
plus and minus signs. The keyword | nf isused to indicate avery large value for
stretch. See Section 3.6.1 for more details.

Thelocation of a subwindow component relativetoitsparent. There are two ways
to specify thislocation: you can say where the center or a particular corner should
be positioned; or you can specify where the four edges should appear. To position
a subwindow by its center or corner, you write

(At hv [Center | NW| NE| SE| SW [Scaled | Absolute])

If you don't specify the center or a corner, the default is Cent er . If you don't
specify whether h and v arescaled or absol ute, thedefault for thisformisScal ed,
which means that h and v indicate the proportionate placement in the horizontal
and vertical directionsof the center or corner; inthiscase, h andv must benumbers
in therange 0—1. Otherwise, in the absolute case, h and v represent the horizontal
and vertical distance, in points, between the subwindow’scenter or corner, and the
parent window’s northwest corner.

To position a subwindow by its edges, you write
(At west east north south [Absolute | Scal ed])

The default in thiscase is Absol ut e, not Scal ed; it indicates the distance in
poi ntsbetween the subwindow’ sedges and the parent’ swest and north edges. Note
that thisisthe only case in which you can specify the subwindow’sexact size.

Scal ed indicates the proportion of the parent window’s width and height that
mark the subwindow’sboundaries. For example,

(At .10 .10 .90 .90 Scal ed)
iseffectively a“10% Rim” around the subwindow, while
(At .50 .50 1 1 Scal ed)

places the subwindow in the parent window’ s southeast quadrant. See Section 3.7
for more details.

38 CHAPTER 3. THE FORMSVBT LANGUAGE

3.3.1 Varietiesof Properties

Properties come in three varieties. class-specific, inherited, and universal.

Class-Specific Properties

Class-specific propertiesare defined in conjunction with a specific component class, and are alowed
only on components of that class. It isfinefor several componentsto use the same specific property.
There are two very common class-specific properties: Mai n and Val ue.

e Main

Many passive leaf components exist to display some object; such an object is specified by
aproperty called Mai n, whose type varies. If this property exists, it is usualy required. Its
valueisusualy specified by ashorthand: it simply follows the component keyword, without
theword Mai n or parentheses. Here are two examples, in the abbreviated format:

(Texture "G ay")
(Pi xmap " QOpenRi ght Arrow")

e Val ue

The Val ue property specifiestheinitial state of some user-modifiable value. The type of this
property depends upon the valuetype of theinteractor. No class hasbothaMai n property and
aVal ue property. Here are two examples, in the abbreviated format:

(Nureric =5)
(Text Browser (From "choices.txt") =(2 5 1))

Other specific properties (and there are many) are described with their component classesin Ap-
pendix A.

Universal Properties

Universal propertiesare applicableto componentsof all classes, and have a system-defined meaning.
Thereis currently only one such property: Nane.

e Nane (type: Symbol; default: none)

The name of a component, for access by the application. The type of the Nane property isa
Symbol and it has no default value. A form may not contain duplicate names; not all compo-
nents need to have aNarre property. The property may be abbreviated: (Name goButt on)
can be written as %goBut t on.

3.3. PROPERTIES 39

Inherited Properties

Inherited properties, like universal properties, may be specified for any component, though they are
not relevant to all classes. But they have the special feature that a value specified for one compo-
nent becomes the default value for all descendants of that component. Thus an inheritable property
specification applies not to one VBT, but to an entire subtree. The inherited properties are: Font

and Label Font ; Col or and BgCol or ; Li ght Shadow, Dar kShadow, and ShadowSi ze. In
essence, theinherited properties determine the overall “look and fedl” of the user interface.

e Font (type Font; default: see below)

The font for components that display selectable text, such as Text Edi t and the type-in part
of aNuner i c. Thetypeof theFont property isFont, and the default valuewould bewritten
inlist format as follows:

(Font
(Foundry "*")
(Famly "fixed")
(Wei ght Nanme " nmedi um')
(Slant "r")
(Wdth "normal ")
(Poi nt Si ze 120)
(HRes "*")
(VRes "*")
(Spacing "*")
(AvgWdth "*")
(Registry "iso8859")
(Encoding "1"))

Essentialy, it'sa 12-point, fixed-width font that can be scaled (using the Scal e component).
o Label Font (type: Font; default: see below)

Thefont for componentsthat display non-selectabletext, such as Text , and various browsers
suchasMul ti Browser andFi | eBr owser . Thetypeof theLabel Font propertyisFont,
and the default value would be writtenin list format as follows:

(Label Font
(Foundry "*")
(Famly "helvetica")
(Wi ght Nanme "bol d")
(Slant "r")
(Wdth "*")

40

CHAPTER 3. THE FORMSVBT LANGUAGE

(Poi nt Si ze 120)
(HRes "*")

(VRes "*")

(Spacing "*")
(AvgWdth "*")
(Registry "iso8859")
(Encoding "1"))

Essentialy, it's a 12-point, boldf ace hel vetica font that can be scaled (using the Scal e com-
ponent).

Col or (type: Color; default: 0 0 0)

The foreground color; used for displaying text, bars, borders, the “on” pixels of pixmaps and
textures, and so on. The default foreground color is black.

BgCol or (type: Color; default: . 8 . 8 . 8)

The background color; used for displaying text background, glue, and the “off” pixels of tex-
tures. The default background color isalight gray.

Li ght Shadow(type: Color; default: 1 1 1)

The color used for the“light shadow” inimplementing aMotif-like3-d look. The default light
shadow iswhite.

Dar kShadow (type: Color; default: . 333 . 333 . 333).

The color used for the “dark shadow” inimplementing aMotif-like3-d look. The default dark
shadow isadark gray.

ShadowSi ze (type: Real; default: 1. 5).

The absolute value of this property is the size of the “shadow” in implementing a Motif-like
3-d looks. The default valueis 1.5 points.

Look and Fed

In order to have an effective Motif-likelook and feel, you need to change the Li ght Shadowand
Dar kShadowwhenever you change the BgCol or . Shiz Kobara[4] provides an excellent set of
guiddinesfor choosing harmonious color triples.

On a graysca e monitor, objects are displayed using the intensity of their color.
On amonochrome monitor, FormsVBT does not support a Motif-likelook and fedl. Rather, the

user interface appears “Macintosh-like.” For example, feedback on buttonsis given by inverting the

34. SYNTACTIC SHORTCUTS 41

image of an abject rather than raising and lowering the object; a Radio button uses bitmaps showing
afilled or empty circlerather than a 3-d diamond that is either raised or recessed. Behind the scenes,
two things are happening. First, on monochrome displays, BgCol or displays as background and
the other colors display in foreground. Second, the FormsVBT interactors are implemented in such
away asto give feedback using a 2-d style when displaying on a monochrome dispay.

Actualy, theFormsVBT interactorsusetheMotif-likestyleonly when they are on anon-monochrome
display and the ShadowSi ze property is positive. Therefore, you can force anon 3-d look for a
color or gray-scale monitor by setting the ShadowSi ze to be 0. You should probably aso change
theBgCol or tobewhiteinthiscase. Alternatively, you may findit convenient to set ShadowsSi ze
to be a negative number and the shadow colors to be black, as follows:

(BgCol or "White")

(Li ght Shadow "Bl ack")
(Dar kShadow "Bl ack")
(Shadowsi ze -1.5)

This setup will cause the shadows on various objects, like buttons, to appear as black borders.

3.4 Syntactic Shortcuts

This section describes various shortcuts that make FormsVBT descriptions more readable.

1. The Mai n property may be given simply by giving its value, without the keyword or paren-
theses. Thisisalowed only for leaf components.

(Texture (Main "LightGay")) =(Texture "LightGay")

2. TheVal ue property may be abbreviated by an equal sign, without parentheses, and with no
intervening space.

(Nurreric (Value 27)) = (Nuneric =27)
Exception: If it'saTextList or CardinalList, then parentheses are needed.
(MultiBrowser (Value 4 9 2)) =(MultiBrowser =(4 9 2))
3. The Narre property may be abbreviated by a percent sign.
(Button (Nane xyz) ...) =(Button %&yz ...)

4. Any Boolean-valued property may be set true simply by giving its name, without parentheses.
By convention, the default value of all Boolean propertiesisfalse.

42 CHAPTER 3. THE FORMSVBT LANGUAGE

(Typeln (Scroll able TRUE)) = (Typel n Scroll abl e)
An element of an enumeration is a Boolean.
(Viewport (Auto TRUE) ...) =(Viewport Auto ...)

5. A component of classText may begiven simply asaquoted string, providedthat no properties
other than the string are specified.

(Text "Hello") ="Hell 0"
6. Any leaf component from the following list
Bar Chisel Fill due Ridge
may be given by itskeyword, without parentheses.

(HBox "A Heading" (Fill)) =(HBox "A Heading" Fill)

3.5 Macros

The FormsVBT language supports macros. A macro is a procedure that returns an S-expression,
caled the expansion, that replaces the macro call; that is, the expansion isitself a FormsVBT ex-
pression. The parameters passed to the macro are not evaluated by the call, although they may be
evaluated in the body of the macro. A macro definition can appear anywhere a component or prop-
erty can appesr.

A macro-definition has the following syntax:

(Macro name[BQA] (formal ... formal) expression)

A formal parameter iseither aname or alist of theform (name default) wheredefaultisany
S-expression, the default value for the parameter.

A macro uses either positional binding or keyword binding, but not both. If the definition in-
cludes the keyword BQA (“By Order of Arguments’), then the macro uses positional binding, and
the macro-call must have theform

(name actual ... actual)
The actuals are bound to the formalsin | eft-to-right order.

If the definition does not include the keyword BQOA, then the macro uses keyword binding, and
the macro-call must have theform

35. MACROS 43

(name (formal actual) ... (formal actual))

The actuals are bound to the formal parameters with corresponding names.

The number of actual parameters may not exceed the number of formal parameters. If there are
fewer actuals than formals, then all the remaining formals must have default values.

The body of the macro-definition is an expression that is evaluated (expanded) when the macro
iscalled. Typicaly, the body is a quoted or backquoted S-expression. Asin Common Lisp macros,
guoted S-expressions are constants; they expand into themselves. Backquoted expressions are tem-
plates; all of the subexpressionsare treated as constantsexcept for expressions preceded by acomma
or a commaratsign combination. In the expression‘ (A , x B), the value of x is substituted as
the second element of the list; the expanded list will always have length 3. In the expression * (A
, @ B), thevaue of x must be alist, and the elements of that list are “spliced in” between A and
B; the expanded list will have length 2 (if the value of x isthe empty list) or more.

For example, here is a macro that puts a 2-point border around its argument, after surrounding
the argument by 16 points of background space on all four sides:

(Macro Boxed (x)
‘(Border (Pen 2) (Rim (Pen 16) ,x)))

Thecall (Boxed (x (Text (BgColor "Red") "Warning"))) expandsto
(Border (Pen 2)
(Rm (Pen 16)
(Text (BgColor "Red") "Warning"))))

If the definition of Boxed had included the keyword BOA then the expression could have been
written as

(Boxed (Text (BgColor "Red") "Warning"))

Thus, for al practical purposes, we' ve effectively added anew filter-component called Boxed tothe
FormsVBT language.
Here isan example showing the use of default values:

(Macro H BQOA (v (n 16)) ‘(Shape (Height ,n) ,v))

With thisdefinition, thecall (Ht (Button "Go!") 20) expandsinto
(Shape (Height 20) (Button "Go!"))

Thecall (H (Button "Stop")) usesthedefaultvalue of n and expandsinto
(Shape (Height 16) (Button "Stop"))

An example using comma-atsign:

44 CHAPTER 3. THE FORMSVBT LANGUAGE

(Macro V (itens)
‘(VBox (Color "Red") Fill ,@tens Fill))

Given thisdefinition, thecal (V (itens ("abc" "def" "hij"))) expandsinto
(VBox (Color "Red") Fill "abc" "def" "ghi" Fill)

Macros must be defined beforethey arecalled. The effect of usingamacro to redefine an existing
name (e.g., VBox) is undefined.

Itis permitted for amacro to expand into another Macr o-expression, or into an expression con-
taining another Macr o-expression. Nested backquotes are permitted; they follow Common Lisp
evaluation-semantics.

The expressions that are permitted in the body of a macro are not restricted to quoted and back-
guoted expressions. Aswe have already seen, an expression may be the name of aformal parameter;
thevalue of such an expression isthe value of the corresponding actual parameter. Other expressions
that are permitted include the following:

e (Cat xyz...)
There must be at least two arguments, and all of them must have type TEXT. The result has
type TEXT. Example: (Cat "Gate-" x "-button")

o (Enpty X)
The argument must be a TEXT; the result has type BOOL EAN.

e (Equal xvy)
The arguments may have any type; the result has type BOOLEAN.

e (Length x
The argument must be a TEXT or alist; the result hastype | NTEGER. (FormsVBT does not
support a separate type for cardinals.)

e (Sub sdart count)
The argument s must be a TEXT; start and count must be non-negativeintegers. Theresultis
aTEXT.

e (Synbol Narme x)
The argument must be a symbol; theresultisa TEXT.

e (Intern x
The argument must be a TEXT; the result isa symbol.

e (Cons xy)
The first argument may have any type. (All S-expressions are REFs.) The second argument
must bealist. Theresultisalist.

35. MACROS 45

e (List xyz..))
The arguments may have any type; theresultisalist.

o (List* xy...2
There must be at least two arguments. The last argument must be a list; the others may have
any type, and they are “consed” onto the front of the last argument.
Example: (List* 1 2 3 '(a b)) =(1 2 3 a b)

e (Append xyz..))
All the arguments must be lists; theresult isalist.

e (Nth xn)
Thefirst argument must be alist; the second argument must be aninteger intherange[O . .
Ref Li st. Lengt h(x) - 1]. Theresultisthenth element of thelist.

e (NthTail xn)
Thefirst argument must be alist; the second argument must be aninteger intherange[0 . .
Ref Li st. Lengt h(x) - 1]. Theresultisthenthtail of thelist.

o (I F predxy)
The value of thefirst argument must be aBOOLEAN. If thevaueis TRUE, then xis evaluated,
anditsvalueisthevalueof thisexpression. Otherwise, yisevauated, anditsvalueisthevalue
of thisexpression. l.e, thisis| F asin Lisp, not asin Modula-3.

e (AND xyz...)
All the arguments must be of type BOOLEAN, as is the result. The arguments are evaluated
fromleft toright. If any argument evaluatesto FALSE, theval ue of thisexpressionis FALSE,
and the remaining arguments are not evaluated. If al the arguments evaluate to TRUE, or if
there are no arguments, then the value of this expression is TRUE.

e (R xyz..)
All the arguments must be of type BOOLEAN, as is the result. The arguments are evaluated
from left to right. If any argument evaluates to TRUE, the value of this expression is TRUE,
and the remaining arguments are not evaluated. If al the arguments evaluate to FALSE, or if
there are no arguments, then the value of this expression is FALSE.

e (NOT x)
The argument must be a BOOLEAN, asisthe result.

o (= xyz..)
There must be at least two arguments. If x isanumber (integer or rea), then al the other ar-
guments must be numbers of the same type as x, and the result is TRUE if they are al equal,
and FAL SE otherwise. If xisnot a number, thentheresultis TRUE if all thearguments arethe
same REF.

46 CHAPTER 3. THE FORMSVBT LANGUAGE

o (< xyz..)

(<= xyz..)
(> xyz..))
(>= xyz..)

There must be at least two arguments, and they must all be numbersof the same typeasx. The
result is of type BOOLEAN.

(< xyz...) =(AND (< xy) (<y2 ...)

Likewisefor the other operations.

e NI L
Thisisa constant.

Meacros provide onekind of extensibility to the FormsVBT language. Another kind of extensibil-
ity isprovided by ther eal i ze method for aFor ms VBT. T object. Ther eal i ze method alows
the programmer to define subtypesof the VBT classes that FormsVBT uses, suchastheFVTypes. FVBut t on.
However, itisnot currently possiblefor the client to extend thelanguage with any other VBT classes,
suchasTr ansl at eVBT. T or aclient-defined subtype of VBT. Leaf . See Section 4.7 for details.

3.6 Layout

Every component hasanatural sizeinthe horizontal and vertical axes; these areitswidthand height.
It may also have shrinkability and stretchability in each axis, toallow it to adaptin avisually pleasing
way as thewindow isresized. The minimum size of a child in each axisisits natura size minusits
shrinkability, and the maximum size in each axis isits natura size plus its stretchability. The size
range of a component in each axisistheinterval between its minimum and its maximum.

The sizerangesin each axis are computed for atop-level window by a bottom-up process. Each
split computes its ranges as a function of the size ranges of its children; the function used depends
on the type of the split.

FormsVBT uses TeX's “boxes-and-glue” layout model. At the center of the layout strategy are
two split classes, HBox and VBox. These organize the layout of their children aong the horizon-
tal and vertical axes, respectively. To keep the discussion simple, we will explain the algorithm for
HBoxX.

An HBox reportsitssize asfollows. An HBox’snatural width isthe sum of the natural widthsof
itschildren; itswidth shrinkability isthe sum of the width shrinkabilitiesof itschildren (but no more
thanitsnatura size), and itswidth stretchability isthesum of thewidth stretchabilitiesof its children.
An HBox’s height range is the intersection of the height ranges of its children (if the intersection
is empty, the children’s maximum heights are increased until the intersection is non-empty). The
HBox’snatural height isthe maximum of the natural heightsof its children, projected into therange.

Ultimately, the shape of each top-level window is controlled by the user through a window man-
ager. The window manager allows the user to shrink and grow a top-level window in each axis.
However, the window manager will not let user grow atop-level window beyond its maximum size
bounds, or shrink atop-level window bel ow its minumum size bounds, in each axis. When atop-level

3.6. LAYOUT 47

window’s size is changed, the new size-information is propagated down through the top-level win-
dow’stree of subwindows. How each split component communicates thisinformationto itschildren
depends on the type of the component.

When an HBox is given some screen real estate to allocate among its children, here’ swhat hap-
pens. Inthe vertical dimension, it gives each child the same vertical height it has been given; that’s
easy. In the horizontal dimension, things are more interesting. The HBox computes the sum of the
natural widths of the children; thisis the natura width of the HBox. Ideally, the HBox would give
each childitsnatural width and that’sall thereistoit. If thisisnot possible, then either the HBox has
extraspace it must divide among the children, or the HBox must take away space from its children.

Inthefirst case, the HBox allocates itsextraspace in proportionto the children’sstretchabilities.
For example, if thefirst child has twice as much stretchability as the middle child, and threetimes as
much as thethird and last child, then the extraspaceisdivided6/11,3/11,and 2/11 to thechildren,
from left to right. In the second case, the HBox takes away space from the children in proportion to
the amount that each child can shrink.

If the sum of the minimum sizes of the children is greater than the size of the HBox, then the
HBox issaid to be overfull. Inthiscase thechildren are considered in order and given their minimum
sizes, aslong as thereisroom. Thefirst child that doesn't fit is given all the space that’sleft, and the
remaining children are given size zero.

If the sum of the maximum sizes of the children isless than the size of the parent, the splitissaid
to be underfull. This produces a state in which the children are stretched larger than their maximum
sizes, but in proportionto their relative stretchabilities.

3.6.1 How Sizesare Specified

Most of thetime, sizes are not given explicitly; natural sizes are allowed to take effect. Leaf compo-
nents have an inherent natural size that is usually data-dependent. For example, the size of a Text
isthe size of the rectangle needed to display it in the appropriate font. In each axis, it has no shrink-
ability but “infinite” stretchability. A vertical Scr ol | er has afixed width (a natura size with no
stretch and no shrink). Itsnatural vertical sizeis quite small (enough to show a “thumb™), it has no
vertical shrinkability, and it has infinite vertical stretchability. In practice, a vertical scrollbar is an
element of an HBoX, so it takes on the size of the other el ements of the HBox.

A filter component derivesits size informationfromitschild. A Bor der component, for exam-
ple, takes the size of its child, but adds twice the border’s thickness in both dimensions. A Guar d
takes on precisely the size of its child. Appendix A describes how each component computes its
shape.

A property of type Size isused to describe the size of acomponent a ong one dimension. It has
the syntax

[size] [+ stretch] [- shrink]

where size, stretch, and shrink are specified as pointsin real numbers. Stretch and shrink, if both
specified, may bein either order. Spaces are required around the plusand minussigns. The keyword
I nf isused to indicate avery large value for stretch; it may aso bespelledi nf or | NF.

48 CHAPTER 3. THE FORMSVBT LANGUAGE

A natural size may be overridden, completely or in part, by specifying the W dt h and Hei ght
propertiesonaShape filter. For the sake of simplicity, let’sconsider just the W dt h property. There
areeight situationsto consider: when size, stretch, and shrink areall missing; when just sizeisgiven;
when just stretch and shrink appear; and so on.

See Figure 3.6.1 for details.

A few common paradigms merit mention. First, to remove whatever inherent stretchability a
component has, use

(Shape (Wdth + 0) ...)

Second, to make a component stretchy regardless of itsinherent stretchiness, use
(Shape (Wdth + Inf) ...)

And third, to set a component to a particular size, e.g, 100, use:

(Shape (Wdth 100) ...)

3.6.2 Precedence of Size Constraints

The various constraints on the size of an object sometimes come into conflict. They take precedence
asfollows:

1. Downward-propagating constraints: window size forced by Trestle, vertical size forced by an
HBox, and so on.

2. Explicit sizeinformation, given by a Shape filter.

3. Upward-propagating natural size information: inherent size of leaves, filterstaking size from
their children, an HBox taking width from the sum of its children’swidths, on so on.

3.7 Subwindows

In addition to organizing child components by grouping them horizontally or vertically, FormsVBT
allows child components to overlap. The split that doesthis organizationiscalled aZSpl it .
There are two very different waystouseaZSpl it .

1. If you don't like arranging elements in horizontal and vertical boxes, you could place each
element at a specific location. Many Ul Buildersfollow thismodel; it has its advantages and
disadvantages. We rarely usethis style at SRC.

2. Youcan useZSpl i t sasacontainer for overlapping, often transient subwindowsthat are not
installed as top-level windows.

Without loss of generality, we'll talk just about the second style of use.
A ZSplit iswrittenlikethis:

3.7. SUBWINDOWS

49

all missing

<g-p, q, gq+r>
A no-op; reportsthe child’'ssize

si ze

<si ze, size, size>

Constrains child’s natural size to si ze, with no
stretch or shrink

- shrink

<g-shrink, q, g+r>

Forces child’s shrink to be shri nk; doesn’t
change child'snatural size or stretchability

+ stretch

<g-p, q, g+stretch>

Forces child’s stretch to be st ret ch; doesn't
change child’ s natura size or shrinkability

- shrink + stretch

<g-shrink, q, g+stretch>

Changes child’s shrink to be shri nk and its
stretch to be str et ch; doesn't change child's
naturd size

size - shrink

<si ze-shrink, size, size>

Changes child’'ssizeto besi ze with no stretcha-
bility and with shr i nk shrinkability

size + stretch

<size, size, size+stretch>

Changes child'ssizeto be si ze with no shrinka
bility and with st r et ch stretchability

size - shrink + stretch

<si ze-shrink, size, size+stretch>

Changes child's size to be si ze with shri nk
shrinkability and with st r et ch stretchability

Thistabledescribeswhat Shape reports, asafunctionof itschild’ ssize. Thenotation< ¢—p, ¢, ¢+
r > referstothechild’ssize: thenatura sizeisgq; it hasp shrinkability, so it can shrink to aminimum
of ¢ — p, and it can stretch to amaximum of ¢ + r.

50 CHAPTER 3. THE FORMSVBT LANGUAGE

(ZSplit
Thefirst child:
(ZBackground ...)
Any number of other z-children:
(ZChild ...)
(ZChassis ...)

Thefirst child is called the background. It is displayed below al other children.

The other children are ordered from bottom to top in the z-dimension. A non-background child
of aZSpl it shouldbeazChil d oraZChassi s. It hasan Open property to say if it should be
initially visible (“mapped”) or invisible (“unmapped”).

It also has an At property to control where it should appear when it is made visible. The syntax
of the At property is described bel ow.

A PopBut t on is a button that causes a named subwindow to appear. A PopMButton isa
version of PopBut t on that is appropriate for inclusion in a menu.

A O oseBut t on isabutton that causes a named subwindow to disappear.

A ZG owis abutton that is used to change the size of a subwindow. A ZMove-component is
used to change a subwindow’ s position by dragging.

A ZChassi sisjustaZChi | d that has a standard configuration, including a frame whose ban-
ner includesaCl oseBut t on, atitleinsideaZMove, and aZG ow.

The"At” Property

The location of asubwindow (denoted by aZChi | d and ZChassi s component) is specified using
aproperty named At . The At property isalistthat can takeoneof twoforms: the®corner” form (two
numbers, an optional corner, and an optional coordinatetype); or the“edges’ form (four numbersand

an optiona coordinatetype). The coordinatetypesare either Absol ut e, which meansthat the coor-
dinatesrepresent thedistancein pointsfrom the background window’ snorthwest corner, or Scal ed,

which means that the coordinates represent a fraction (a number in the range 0-1) of the background
window’swidth or height. Here are the two forms of the At property: (At h v [Center |

NW| SW| NE | SE] [Scaled | Absolute]) (At west east north south [Absol ute
| Scal ed])

If the list contains two numbers, then these coordinates specify the center of the subwindow. If
thelist containstwo numbers and a corner, then these coordinates specify the position of that corner
of the subwindow. In either case the default coordinatetypeis Scal ed.

Forexample, (At 0.5 0. 5) meansthat thecenter of the subwindow should be placed halfway
across and halfway down the background window, i.e., that it should be centered in the background
window. (If thereisno At property, thisisthe default.)

3.7. SUBWINDOWS 51

(At 0.2 0.3 NW means that the northwest corner of the subwinbdow should be place 20%
of theway acrossthebackgroundwindow, and 30% down. Thiscan dsobewrittenas(At 0.2 0.3
NW Scal ed) . Scaled coordinates must be written as numbers (integers or reals) in the range 0-1.

(At 100 237.5 Absol ut e) meansthat the center of the subwindow should be placed 100
points east and 237.5 points south of the background window’s northwest corner.

(At 100 237.5 SE Absol ut e) means that the subwindow’s southeast corner should be
placed at that position.

Alternatively, you may specify the edges of the subwindow by using a list with four numbers,
representing the west, east, north, and south edges, in that order. The numbers may be followed by
a coordinate type; the default coordinate type in the 4-number form is Absol ut e, not Scal ed as
itisinthe 2-number form.

If the coordinate type is Absol ut e, then the coordinates represent the distance in pointsfrom
the background window’ s northwest corner; thisisthe only form in which you can specify the sub-
window’s actual size. For example, (At 20 120 60 300) means that the subwindow’swidth
should be 100 pointswide (120 — 20) and 240 pointstall (300 — 60), and that its northwest corner
should be 20 pointseast and 60 points south of the background window’s northwest corner.

(At .10 .90 .30 1 Scal ed) meansthat the subwindow occupiesthe middle 80% hori-
zontally (.90 — .10) and the bottom 70% (1 — .30) of the background window.

(At .51 .5 1 Scal ed) would placethe subwindow inthesoutheast quadrant of the back-
ground window.

52 CHAPTER 3. THE FORMSVBT LANGUAGE

Here are some additional examples:

(ZChassis YA (At .2 .3 NW ...)
(ZChassis 98B (At 130 200 SE) ...)
(ZChassis %€ (At .1 .6 .2 1) ...)
(ZChassis %O (At 20 120 60 300)

If theZSpl i t containing the subwindow is 200 pointswide and 300 pointshigh, here iswhat each
specification means:

o Subwindow A hasitsnorthwest corner at (40, 90). That is, its northwest corner is40 pointsto
theright of the ZSpl i t 'sleft edge and 90 points below the top.

¢ Subwindow B hasits southeast corner at (130, 200).

o Subwindows C and D have the same positions: The northwest corner is at (20, 60) and the
southeast corner isat (120, 300).

The actual location of a subwindow hastwo additiond restrictions. First, FormsVBT will ensure
that the size it gives a subwindow will be withinthe subwindow’sacceptable dimensions: the north-
west corner staysfixed, and the southwest corner is adjusted. Second, FormsVBT will not pop up a
subwindow with its northwest corner north or west of the visible portion of its parent; it will move
the subwindow away from the specified positionin order to bring it into view.

3.8 Catalog of Components

This section provides a brief description of current FormsVBT components. Appendix A describes
the detail s of each component.
Visual components

These leaf and filter components have no interactive behavior; they are used to provide appearance
and positioning control.

3.8. CATALOG OF COMPONENTS 53

Bor der
Rm

Pi xmap
Text
Texture

Bar
d ue
Fill

Frame
Chi sel
Ri dge

Scal e
Shape

displays space, in the foreground color, around its child
displays space, in the background color, around its child
displays a pixmap, centered

displaysasingle-linetext

displays atextured rectangle

alinein the foreground color; child of HBox or VBox
a piece of background filler; child of HBox or VBox
an infinitely stretchable background filler; child of HBox or VBox

draws a 3-d border around its child
like Bar, but line appears 3-d, chiseled into background
like Bar, but line appears 3-d, raised above background

enlarges or shrinks child
constrains shape of child

Thefollowing filtersrespond to mouse activity. They do not report eventsto the application pro-

gram.

Vi ewpor t
Filter

Basic Interactors

adds scrollbars around a child for panning
controlsreactivity and visibility of child

These are leaf components that have a user-modifiable value. They should always be named so that
the application will have access to the value.

Nuneri c
Br owser

an editable integer
agroup of lines of text, of which one may be selected

Mul ti Browser aBrowser inwhich multiplelinesmay be selected

CGeneric
Scrol | er

a placehol der to be taken over by the application
avertica or horizonta scrollbar

Text Editing Interactors

These leaf components provide extensive text editing facilities.

54 CHAPTER 3. THE FORMSVBT LANGUAGE

Typel n an editable-text region, typically single-line
Text Edi t ascrollable text-editing area
Typescript aText Edit withareader and writer

File Browser Interactors

A Fi | eBr owser displaysthe names of thefilesin adirectory, initialy the current working direc-
tory. The user can traverse thefile system by double-clicking on elementsin the browser. There are
two related leaf interactorsthat facilitatetraversal.

Fi | eBrowser thelist of filenames

Hel per an areafor typing filenames
Di r Menu a pulldown menu contai ning the names of parent directories
Basic Buttons

These filterstake a child and add some interactive behavior to it.

Butt on generates an event when clicked
Quard click once to remove and expose underlying component
Trill Button generatesan event while mouseisdown

Boolean and Radio Buttons

A Bool ean and Choi ce aretypesof buttonsthat al so maintain somestate. A Radi o isa“grouper”:
it takes achild and changes neither its appearance nor its behavior. Rather, it specifiesthat it and all
its descendants are members of one “group” for some particular purpose.

Bool ean toggleson/off when clicked
Choi ce aradio button; selectsitself when clicked
Radi o defines a group of Choice components

Drag and Drop

These buttons provide a way to implement “drag-n-drop” and to get semantic feedback.

3.8. CATALOG OF COMPONENTS 55

Sour ce abuttonthat is dragged
Target thethingintowhich aSour ce isdropped

Menus

Menu a pull-down menu; pulls down when anchor is clicked
MBut t on apull-down menu element; generates an event on up-click

Other buttonsthat can be put into a menu are Bool ean, Choi ce, and PopMBut t on.

Horizontal and Vertical Splits

Splitstake an arbitrary number of children and lay them out in some fashion. These splitsimplement
the TEX-like “ boxes-and-glue” layout model.

HBox horizonta layout

VBox vertical layout

HTil e an HBox with user-adjustable divider bars between children
VTil e VBox with user-adjustabl e divider bars between children

HPackSpl it arranges children like wordsin aparagraph
VPackSplit arranges children like paragraphsin a multi-column newspaper

Thelayout algorithmfor HTi | e and VTi | e isdightly different than for HBox and VBox when
the size of one of its children changes. In the case of the tiles, the algorithm tries to keep existing
children with their same rel ative sizes, which might have been adjusted by the user from their initial
assignments. The HBox and VBox aways re-assign sizes, independent of the current sizes of the
children.

Subwindows

A ZSpl i t organizesitschildren as overlapping subwindows. The following components allow the
user to control the appearance, location, and size of subwindows.

56 CHAPTER 3. THE FORMSVBT LANGUAGE

Cl oseButton closesasubwindow

PopBut t on pops up a subwindow

PopMBut t on amenu item that pops up a subwindow
ZBackground needed around the background child

ZChil d needed around non-background children

G ow abuttonfor resizing a subwindow

ZMove abutton for repositioning a subwindow

ZChassi s ahandy combination of ZChi | d, Cl oseBut t on,

ZMove, and ZG ow

Temporal Windows

TSplit atempora window that organizes its children so that
exactly one childisvisibleat any giventime.

Li nkButton displaysaspecificchildinaTSplit.

PageBut t on switcheschildren displayedinaTSplit.

A common useof aTSpl i t isto make an arbitrary component appear or disappear under user
control. The component whose visibility is to be toggled is put into a TSpl i t with one sibling:
a component with no size. A Li nkBut t on to the component will cause it to appear, and another
Li nkBut t on to the sibling will effectively cause the component to disappear.

4. Programming with FormsVBT

All ordinary client accessto the FormsVBT systemishandled by the For s VBT interface. The other
interfaces exported by the FormsVBT package are given in Appendix B.

4.1 TheFormsVBT Interface

FormsVBT isasystem for building graphical user interfaces. FormsVBT provides aspecial-purpose
language for describing user interfaces, an interface-builder that allowsediting of such descriptions,
and aruntime library for applicationsto make use of the user interfaces.

Thelocking level for any procedurein thisinterface that may alter aninstalled VBT isLL. sup
= VBT. mu. (Seethe Trestle Reference Manual for a complete description of locking levels [6].)
Most applications don’'t need to worry about VBT. mu because their event-handlers don't fork any
threads that call FormsVBT.

| NTERFACE For nsVBT;

| MPORT AnyEvent, Color, Filter, Rd, Rsrc, Sx, Thread, VBT,
W, ZSplit;

EXCEPTI ON
Error (TEXT);
Uni npl enent ed;
M smat ch;

4.2 Creation, allocation, and initialization

Anobject f v of typeFor ms VBT. T (or simply, aform) iscreated by parsing an S-expression. These
expressions are usualy stored in files with the suffix . f v. Oneway of creating aformisto call the
procedure Newfr onFi | e, or themethod f v. i ni t Fr oni | e, with the name of such afile; the
expression is parsed, and if there are no errors, a new VBT is created and stored in the form, which
isreturned.

57

58 CHAPTER 4. PROGRAMMING WITH FORMSVBT

It isaso possiblefor a program to generate a description “on the fly” and then use it to create a
form. The methodsfv.init,fv.initFronRd,andfv.initFronBx support these options.
Forms can also be stored in resources (f v. i ni t Fr omRsr ¢) andin URLs(f v. i ni t Fr onJRL).

TYPE
T <: Public;
<* SUBTYPE T <: MultiFilter.T *> (* ... *)
Public = Filter. T OBJECT

METHODS
<* LL.sup <= VBT.nmu *>
init (description : TEXT;
raw . BOOLEAN FALSE;
path : Rsrc.Path := NL): T
RAI SES {Error};

initFronFile (filenane : TEXT;
raw . BOOLEAN .= FALSE;
path : Rsrc.Path := N L): T
RAI SES {Error, Rd.Failure, Thread. Al erted};

initFronRd (rd D RA.T;
raw : BOOLEAN FALSE;
path : Rsrc.Path := NL): T
RAI SES {Error, Rd.Failure, Thread. Al erted};

initFromBx (sx T SX.T;
raw : BOCLEAN : = FALSE;
path : Rsrc.Path := NL): T
RAI SES {Error};

initFromRsrc (name : TEXT;
path : Rsrc. Path;
raw : BOOLEAN ;= FALSE): T
RAI SES {Error, Rd.Failure,
Rsrc. Not Found, Thread. Al erted};

ini tFromJRL(baseURL : TEXT;
raw : BOOLEAN := FALSE): T
RAI SES {Error, Rd.Failure, Thread. Al erted};

realize (type, name: TEXT): VBT.T RAISES {Error};

<* LL.sup = VBT.nu *>
snapshot (w: W.T) RAISES {Error};
restore (rd: Rd.T) RAISES {Msnmatch, Error};

END;

4.2. CREATION, ALLOCATION, AND INITIALIZATION 59

Thecdl fv.init(description, raw, path) initidizesfv asaformand returnsfv. It
createsa VBT, v, fromdescri pti on, which must contain asingle, valid S-expression. The meth-
odsi ni t FronFi | e,i ni t FronRd,i ni t Fr onBx,i ni t Fr onRsr ¢,andi ni t Fr omJRL pro-
vide analogous support for files, readers, S-expressions, and named resources.

The r aw parameter is used to control that actual interna structuref v. Regardless of the value
of raw, fvisamulti-filterandMul ti Fil ter. Chil d(fv) will dwaysreturnv. Interndly, f v
isafilter; if r awis TRUE, then thefilter’schildisv. Otherwise, f v is*cooked”, which means there
are severd filtersinserted between v and f v, so that the filter’s child has the following structure:

(ZSplit
(Filter
(Hi ghli ght VBT
(Filter v))))

The filter above v supports the common case of making an entire form passive without requiring
an explicit Fi | t er interactor in the description. It aso functions to restore the keyboard focus
to whichever of the form’s descendant-VBTs had most recently acquired the keyboard focus. The
ZSpl i t supports menus and other pop-up operations, even if thereisno ZSpl i t explicitly men-
tioned in the description. To get theZSpl i t that isinserted, use Get ZSpl i t . Clientsshould not
traverse a cooked form directly. We reserve theright to change thefilters that are inserted.

The pat h parameter is used for looking up all resources that are mentioned in the form: the
name of aPi xmap or| mage; afilefor| nsert ;thel t enfr onFi | e property on Br owser and
Mul t i Br owser ;andtheFr ompropertyon Text , Typel n,and Text Edi t . (Thei ni t Fr omJRL
looks up resources as URLSs, relativeto baseURL .)

Briefly, the description of aform is an S-expression whose first element is the name of a com-
ponent (e.g., HBox), and whose other elements are either properties (e.g., Col or), or other compo-
nents, typically describing the VBT-children of the outer component.

The VBT-treeiscreated during adepth-first traversal of the S-expression. Ontheway down, each
VBT isallocated, typically withacal toNEW(. . .) . Then the subexpressions, if any, aretraversed.
On the way back up, each VBT isinitialized, typicaly withacall tov.init(...). Theresultis
returned to the caller, where it istypically an argument to the parent’si ni t method.

In other words, allocation occurs top-down, and initialization occurs bottom-up. (For more de-
tailson allocation, see Section 4.7.)

For each subexpression, the parser produces a VBT whosetypeisdefined inthe FVTypes inter-
face, and whose name corresponds to the first element of the subexpression. For example, from the
S-expression (HBox . . .), theparser creates an object of type FVTypes. FVHBoX.

PROCEDURE NewFronFile (filenane: TEXT;
raw
path : Rsrc.Path :
RAI SES {Error, Rd.Failure, Thread. Al erted};

Create anew form from the descriptionin thefile. Rd. EndCf Fi | e issignalledasEr r or .
EquivalenttoNEWT) . i nitFronFile (nane, raw, path)

FALSE;
NI L). T

60 CHAPTER 4. PROGRAMMING WITH FORMSVBT

PROCEDURE Get ZSplit (fv: T): ZSplit.T RAISES {Error};
ReturntheZSpl i t that “cooked” modeinserts. Anexceptionisraisediff v wascreatedwithr aw = TRUE.

4.3 Eventsand Symbols

431 Attachingevent-handlers

Most interactivecomponentsin the user interface generate events. (Seethe Appendix A for adescrip-
tion of all components.) To register an event-handler for such a component, the component must be
named, and the client must call At t ach or At t achPr oc, giving the name of the component and
aprocedure to be called when an event occurs in that component.

PROCEDURE Attach (fv: T; name: TEXT; cl: Cosure) RAISES {Error};

Attach an event-handler (“callback”) to the component of f v whose name is given by narne. If thereis no
such component, or if that component does not generate events (e.g., Text), thenEr r or will beraised. If cl
isNI L, then any existing event-handler for that component is removed. Otherwise, when an event occursin
the named component, the implementation calls

cl.apply(fv, nanme, time

TYPE
Cl osure = OBJECT
METHCDS
apply (fv: T; name: TEXT; tinme: VBT.Ti neStanp);
END;
PROCEDURE AttachProc (fv T
name . TEXT,;
o] . Proc;

event Data: REFANY := NI L) RAISES {Error};

Thisis an alternate, somewhat simpler way to attach an event-handler. When an event occursin the named
component, the implementation calls

p(fv, nane, eventData, time)

TYPE
Proc = PROCEDURE (fv T
name . TEXT,;
event Dat a: REFANY;
tine : VBT. Ti meSt anp) ;

These event-handlersdo not provide any other detail s, such as what key or mouse button was pressed,
or whether it was a double-click. If such information is needed, call Get TheEvent toretrieveit.

PROCEDURE AttachEditCps (fv DT

4.3. EVENTSAND SYMBOLS 61

edi t or Nanme: TEXT;
cut, copy, paste, clear,

sel ect All, undo, redo,
findFirst, findNext, findPrev: TEXT := NL)
RAI SES {Error}; <* LL.sup = VBT.nmu *>

Create and attach event-handlers for common editing operations.

edi t or Name must be the name of a text-editing component: Text Edi t , Typel n, Nuneri c,
or Typescri pt . If cut isnot NI L, then it must be the name of a component (typically a menu-
button), and At t achEdi t Ops will create an event-handler for it that will invokethe Cut operation
on the text-editing component. Similarly, if copy isnot NI L, then it should name a component for
which At t achEdi t Ops will create an event-handler that invokesthe Copy operation on the text-
editing component. Likewise for past e, cl ear, and so on.

432 Accesstothecurrent event

PROCEDURE Get TheEvent (fv: T): AnyEvent.T RAI SES {Error};
PROCEDURE Get TheEvent Tinme (fv: T): VBT.TineStanp RAISES {Error};

Retrieve the details of the event that is currently in progress. These routines may be called only during the
dynamic extent of an event-handler attached to some component viaAt t ach or At t achPr oc.

PROCEDURE MakeEvent (fv: T; nanme: TEXT; tine: VBT.Ti neStanp)
RAI SES {Error};

MakeEvent invokesthe event-handler for the component of f v whose nameisnane. A component has an
event-handler if attached viaAt t ach or At t achPr oc, or if the component is a PopButton, PopMButton,
PageButton, PageMButton, LinkButton, or LinkMButton.

MakeEvent isuseful when one part of alarge program wishes to communicate with another part,
by pretending that the named event occurred. For example, a client might want typing a particul ar
control-character in a text-editing component to have the same effect as sel ecting a menu-item such
as“Quit.” MakeEvent providesaway to link the two events to the same handler.

VAR MakeEvent M scCodeType: VBT. M scCodeType; (* CONST *)

Theexact typeof theresult of Get TheEvent dependson the user action that causedthe event to be generated,
akey, amouse-click, etc. If the event was actually caused by acall toMakeEvent , the type of the result will
beAnyEvent . M sc, andthe value of itst ype fieldwill beMakeEvent M scCodeType.

4.3.3 Symbol management

PROCEDURE AddSynbol (fv: T; name: TEXT) RAISES {Error};

62 CHAPTER 4. PROGRAMMING WITH FORMSVBT

Add a “virtual” component to f v with the givennanme. The form will behave as if there was a component
callednane (i.e, thecall Get VBT(fv, nane) will returnavalid VBT).

This procedureis most useful as a means to communicate between distant parts of alarge program. One
part of the program would use AddSynbol to create a new symbol; another part would call MakeEvent to
invoke an event-handler for the symbol.

Er r or israisedif name isalready definedinf v.

PROCEDURE AddUni queSynbol (fv: T): TEXT;
Just like AddSynbol , but finds a name that has not been used yet. The nameis returned.

4.4 Reading and Changing State

Inresponseto an event or other occurrence, aprogram may want to read or change the state of various
interactorsin the form. Thisishandled by the various Get and Put procedures. Get procedures take
the form and the name of the interactor, and returnitsvalue. Put procedures take the form, the name
of theinteractor, and the new valueto be set.

There are several Get procedures and several Put procedures, for convenient handling of various
Modula-3 types. These should be used as appropriate to the type of theinteractor: Get Text for a
Typel n, Get | nt eger for aNumeri ¢, Get Bool ean for aBool ean or Choi ce, etc. How-
ever, someconversionsare supported: Put | nt eger toaTypel n will convert theinteger intotext;
CGet | nt eger will likewise attempt to convert thetext of the Ty pel n to aninteger (and return O in
case of failure). All Get and Put procedures, however, will raise Er r or if applied to a component
that does not have avalue.

44.1 AccesstotheMai n and Val ue properties

PROCEDURE Get Text (fv: T; name: TEXT): TEXT
RAI SES {Error, Uninpl enent ed};

This is implemented for Br owser, Fi | eBr owser, Nuneri c, Text, Typescri pt, and the text-
interactors: Text Edi t, Typel n, andText Ar ea.

PROCEDURE Put Text (fv: T; name: TEXT; t: TEXT; append := FALSE)
RAI SES {Error, Uninpl enent ed};

Thisisimplementedfor Br owser , Fi | eBr owser, Pi xmap, Text , Typescr i pt, andthetext-interactors:
Text Edi t, Typel n, andText Ar ea. For Text andthetext-interactors, if append istrue, thent isadded
to the end of the current text, rather than replacingit.

PROCEDURE CGetlnteger (fv: T, nane: TEXT): | NTEGER
RAI SES {Error, Uninpl enent ed};

PROCEDURE Put I nteger (fv: T, nane: TEXT; n: |NTEGER)
RAI SES {Error, Uninpl enented};

4.4. READING AND CHANGING STATE 63

These are implemented for Br owser, Nuneri c, Scrol l er, and TSplit. Putlnteger onlyis
implemented for Audi o.

If youusePut | nt eger to select thenth child of aTSpl i t and that child has atext-editing com-
ponent that hasthe Fi r st Focus property, then the text-editor will acquire the keyboard focus, and
if itsaTypel n,itstext will be selected in replace-mode.

PROCEDURE GCet Bool ean (fv: T, nane: TEXT): BOCOLEAN
RAI SES {Error, Uninpl enent ed};

PROCEDURE Put Bool ean (fv: T; nane: TEXT; val: BOOLEAN)
RAI SES {Error, Uninpl enent ed};

These are implemented for Bool ean andChoi ce.
442 Accesstoarbitrary properties

FormsV BT providesaccess to propertiesother than Mai n and Val ue. Theintentionisto provideac-
cessto all theinherited and class properties. For example, theScr ol | er component has an integer-
valued property named M n, so it should be possibleto call

Get | nt eger Property(fv, name, "Mn")
to retrieve that value, or
Put | nt eger Property(fv, nane, "Mn", 6)

to change the valueto 6.

WARNING: The current implementation provides access only to the inherited properties,
and even that accessislimited.

Note al so that changing the value of a property inacomponent will not affect itssubcomponents.

PROCEDURE GCet Text Property (fv: T, nane, propertyName: TEXT): TEXT
RAI SES {Error, Uninpl enent ed};

Thisisimplemented for theFont andLabel Font propertiesfor all components, aswell asthel t ens and
Sel ect propertiesof Br owser s, andtheAct i veTar get property of Sour ces.

PROCEDURE Put Text Property (fv: T; nane, propertyNane: TEXT; val ue: TEXT)
RAI SES {Error, Uninpl enent ed};

This isimplemented for the Col or , BgCol or, Font, and Label Font propertiesfor all components, as
well asthel t ens and Sel ect propertiesof Br owser s.

PROCEDURE Cet | nteger Property (fv: T; nanme, propertyNane: TEXT):
| NTEGER RAI SES {Error, Uninpl enented};

64 CHAPTER 4. PROGRAMMING WITH FORMSVBT

PROCEDURE Put | nt eger Property (fv DT
name, propertyName: TEXT,
val ue . | NTEGER)

RAI SES {Error, Uninpl enent ed};
This is implemented for the M n and Max properties of Nuneri cs; theM n, Max, St ep, and Thunb
propertiesof Scrol | er s; andtheQual i ty, | mageW dt h, | mageHei ght and MSecs properties of
Vi deos, andtheNor t hEdge, Sout hEdge, East Edge andWest Edge propertiesof all VBTSs.

PROCEDURE Cet Real Property (fv: T, nane, propertyNane: TEXT): REAL
RAI SES {Error, Uninpl enent ed};

PROCEDURE Put Real Property (fv T,
name, propertyName: TEXT;
val ue . REAL)

RAI SES {Error, Uninpl enent ed};
Thisisimplemented for theHScal e andVScal e propertiesof Scal es.

PROCEDURE Get Col or Property (fv: T; name, property: TEXT): Color.T
RAI SES {Error, Uninpl enent ed};

Return the color used by the named component. property must be one of Col or, BgCol or,
Li ght Shadow, or Dar kShadow.

PROCEDURE Put Col or Property (fv T,
name, property: TEXT,
READONLY col or : Color.T)

RAI SES {Error, Uninpl enent ed};
Set the color used by the named component. pr oper t y must be Col or orBgCol or .

PROCEDURE Cet Bool eanProperty (fv: T; nanme, propertyNane: TEXT):
BOOLEAN RAI SES {Error, Uninpl enented};

PROCEDURE Put Bool eanProperty (fv DT
name, propertyName: TEXT,
val ue : BOCLEAN)

RAI SES {Error, Uninpl enent ed};

(* This is inplemented for the "ReadOnly" property of
"TextEdit"s, and the shadow styles of "Frane"s. The
" Put Bool eanProperty” is inplenented for the "Synchronous",
"Paused" and "Fi xedSi ze" properties of "Video", and for the
"Miute" and "Mt eWienUnmapped" properties of "Audio" *)

44.3 Accesstotheunderlying VBTs

PROCEDURE Get VBT (fv: T; name: TEXT): VBT.T RAISES {Error};

4.4. READING AND CHANGING STATE 65

Returnthe VBT correspondingto anamed interactorinf v. Er r or israisedif thereisno suchVBT.

PROCEDURE Get Nanme (vbt: VBT.T): TEXT RAISES {Error};

Ifvbt istheVBT correspondingto a named interactor in some form, returnsthe name given to that interactor.
Otherwise, raissesEr r or .

444 Radiosand Choices

PROCEDURE Get Choice (fv: T; radi oName: TEXT): TEXT
RAI SES {Error, Uninpl enent ed};

PROCEDURE Put Choi ce (fv: T; radi oName, choi ceNanme: TEXT)
RAI SES {Error, Uninpl enent ed};

Get/Put the name of the selected Choi ce in a radio-button group. If thereis no selection, Get Choi ce
returnsNI L. If choi ceNanre isNI L, the radio-groupwill have no selection.

PROCEDURE MakeSel ected (fv: T; choi ceNanme: TEXT) RAISES {Error};
PROCEDURE | sSel ected (fv: T; choiceNane: TEXT): BOCOLEAN
RAI SES {Error};

Set/test aChoi ce-button without referring to its group.

445 Genericinteractors

PROCEDURE Get Generic (fv: T, genericNane: TEXT): VBT.T
RAI SES {Error};

Retrievethe VBT used by the named Gener i ¢ interactor.

PROCEDURE Put Generic (fv: T, genericNanme: TEXT; vbt: VBT.T)
RAI SES {Error};

Replacethe named Gener i ¢ interactor withvbt , which may beNI L. WhenNI L is specified, a default (and
initial) VBT isused: aText ur eVBT with 0 size and O stretch in each dimension.

4.4.6 Special controlsfor Filters

The(Filter ...) expressioninFormsVBT supportsafeature called reactivity. Thishas oneof
four states: Active, Passive, Dormant, or Vanished. The state can be specified in the description and
changed by theapplicationat runtime. The default stateisActive. Inthe Passive state, the component
and its descendants, if any, are unresponsive to mouse clicks. The Dormant stateis like Passive, but
the component and descendants are “grayed out.” Dormant is often to be preferred over Passive,
because it provide additional feedback to the user. In the Vanished state, the component becomes
unreactive and disappears entirely.

A cursor is specified when the state is set, and the name is interpretted by the Trestle implemen-
tation. An empty string (the default value) indicates that you don't care about the cursor shape.

66 CHAPTER 4. PROGRAMMING WITH FORMSVBT

Standard X screentypes support the cursors named in X Window System by Scheifler et. al. [7]
Appendix B. Therefore, for example, XC_ar r owreturnsacursor that behaves likethe X arrow cur-
sor on X screentypes, and likethedefault cursor on screentypesthat have no cursor named XC_ar r ow.

PROCEDURE MakeActive (fv:
PROCEDURE MakePassi ve (fv:

; nane: TEXT; cursor:
; nane: TEXT; cursor:="") RAISES {Error};
PROCEDURE MakeDormant (fv: T; name: TEXT; cursor:= "") RAISES {Error};
PROCEDURE MakeVani sh (fv: T; name: TEXT; cursor:="") RAISES {Error};

Find the nearest ancestor of the named component that is of type FVFi | t er , and set its state and cursor as
indicated. The exceptionisraised if no such ancestor can be found.

RAI SES {Error};

-~ -

PROCEDURE | sActi ve (fv: T, name: TEXT): BOOLEAN RAI SES {Error};
PROCEDURE | sPassive (fv: T, nane: TEXT): BOCLEAN RAI SES {Error};
PROCEDURE | sDormant (fv: T, nane: TEXT): BOCLEAN RAI SES {Error};
PROCEDURE | sVani shed (fv: T, nane: TEXT): BOCLEAN RAI SES {Error};

Find the nearest ancestor of the named component that is of type FVFi | t er , and test its state as indicated.
Theexceptionis raised if no such ancestor can be found.

447 Accessto Subwindows

PROCEDURE PopUp (fv T,
narme . TEXT;
forcePl ace: BOOLEAN = FALSE;
tine : VBT.TinmeStanp := 0)
RAI SES {Error};
Pop up the named subwindow.

Assuming that nane isthe name of an element of f v that can be popped up, pop it up. That is, the
named element must be a non-background child of aZSpl i t , or some descendant thereof. In the
latter case, the ancestor that isadirect child of the ZSpl i t will be the thing popped up. Cdl this
ancestor zchild. PopUp isequivaent to activating

(PopButton (For zchild) ...)

If the target zchild is already open or has been opened before and has been moved by the user (to a
location that isnow visible), it will normally beleft wherethe user Ieftit. Thef or cePl ace option
will force it instead to be returned to its canonical place.

If the subwindow contains a text-editing component that has the Fi r st Focus property, then
that component will acquire thekeyboard focus, and if it'saTypei nVBT. T, itstext will be selected
in replace-mode.

PROCEDURE PopDown (fv: T; nanme: TEXT) RAISES {Error};

4.5. SAVING AND RESTORING STATE 67

The inverse of PopUp: make the named element (or suitable ancestor) invisible. This is implemented using
ZSpl i t 's unmapping. (Unfortunately, this doesn’t cause the keyboard focusto be lost.) The exceptionis
raised if nane is not the name of an element of f v..

4.4.8 Special controlsfor text-interactors

PROCEDURE TakeFocus (fv T
name . TEXT,;
event Ti me: VBT. Ti neSt anp;
sel ect ;= FALSE)

RAI SES {Error};

Give the keyboard focus to a specified interactor. An exception is raised if the interactor is not of a suitable
classto takeit; however, no exceptionis raised if the keyboard focus cannot be taken becauseof atimeott, i.e.,
aninvalidevent Ti me. If sel ect is TRUE and the focus was taken, then select the entire contents of the
interactor’sText Port asaprimary selectionin replace-mode.

45 Saving and restoring state

FormsVBT allows clients to save and restore the entire state of aform.

A snapshotisan S-expressionthat capturesthestate of componentsinaform. Thecal f v. snapshot (wr)
writes asnapshot of f v to thewriterwr , andthecall f v. r est or e(r d) readsasnapshot from the
reader r d and restores the components of f v to the state in the snapshot.

A snapshot produced by the default method contains only those named components that have
a modifiable value. More precisely, a component is part of a snapshot if (1) it has a name and (2)
thecall to Get Text , Get | nt eger , Get Real , Get Bool ean, or Get Choi ce doesnot raise an
exception. If you want to include a component into the snapshot that has state but does not respond
to Get Text , Get | nt eger, etc., then you need to override the defaults methods.

The snapshot method raisesthe Er r or exception if there is a problem writing the snapshot
to the writer.

Ther est or e method raisesthe Er r or exception if there isa syntax error in the S-expression
or if thereisany type of problem with the reader.

When restoring, the snapshot need not precisely match the set of interactorsin the form. If the
snapshot lacks vaues for some fields that the form contains, those fields will be Ieft alone. If the
snapshot has values for some fields that the form does not contain, the r est or e method should
raiseM smat ch, but only after restoring al the valuesthat do match. If the snapshot hasavaluefor
afield that the form contains, but thetypes do not agree, thisis ashow-stoppingerror; ther est or e
method should raise Er r or . Catching M smat ch is useful when you want to continue to tolerate
snapshots from old versions of aform.

The default snapshot and r est or e methods write S-expressionsin the following format:

((namel val uel)
(name2 val ue2) ...)

68 CHAPTER 4. PROGRAMMING WITH FORMSVBT

4.6 Dynamic Alteration of Forms

FormsVBT providesfacilities for modifying a form while a program is running. For example, one
might want to add or delete itemsin a menu.

The procedurel nsert parses adescription of new form in the context of an existing form, and
Del et e removes a component and all of its descendents.

Theprocedurel nser t VBT isused for formswithin forms, where the subformsare independent
from the forms containing them to avoid name clashes. You need to use Del et eVBT to delete a
subform inserted thisway.

Any resizing that may be appropriate after the modifications to the form is performed automat-
ically. For the common case of modifying menus, thisis not an issue because the menu is (almost
certainly) not visible at the time the alteration takes place.

PROCEDURE | nsert (fv T
par ent . TEXT,;
description: TEXT;
n : CARDI NAL := LAST(CARDINAL)): VBT.T

RAI SES {Error};
<* LL.sup = VBT.mu *>

| nsert parsesadescription in the context of an existing form, that is, inf v’s namespace, so that names
already definedinf v arevisible whilethe descriptionis being parsed, and with the state (color, resource-path,
etc.) that wasin effect for par ent .

Once the new VBT is created, it is inserted into the named component, which must be a Split, as the nth
child. Itisalso returned.

PROCEDURE I nsertFronFile (fv T
parent : TEXT,
fil enane: TEXT;
n : CARDINAL := LAST(CARDINAL)): VBT.T

RAI SES {Error, Rd.Failure, Thread. Al erted};
<* LL.sup = VBT.nmu *>

PROCEDURE | nsert FronRsrc (fv T
parent: TEXT,
name . TEXT;
path : Rsrc. Path;
n : CARDI NAL := LAST(CARDI NAL)): VBT.T
RAI SES {Error, Rd.Failure, Rsrc.NotFound, Thread. Al erted};
<* LL.sup = VBT.mu *>

I nsert Fronfi |l e andl nsert Fr onRsr ¢ read a description from afile or named resource, and then call
I nsert.

PROCEDURE Del ete (fv T

4.7. SUBCLASSES OF COMPONENTS 69

parent: TEXT,

n : CARDI NAL;

count : CARDI NAL := 1) RAISES {Error};
<* LL.sup = VBT.mu *>

Delete the children whose indices are in the range[n .. (n + count - 1)] from the named
component, which must be a Split. The names of the n components, as well as the names of all of the
desendantsof those components, are removed from f v’s namespace.

PROCEDURE | nsert VBT (fv T
name . TEXT,;
child : VBT.T;
n : CARDI NAL := LAST (CARDI NAL))
RAI SES {Error};
<* LL.sup = VBT.mu *>

Insertchi | d asthenth child of the named component, which must be a Split. The names of componentsin
chi | d arenot addedtof v’s namespace. Thus,| nser t VBT istypically used for “forms within forms.”

PROCEDURE Del et eVBT (fv T
name . TEXT,;
n : CARDI NAL;
count : CARDINAL :=1)

RAI SES {Error};
<* LL.sup = VBT.mu *>

LikeDel et e, this proceduredeletesthe children whose indicesareintherange[n .. (n + count -
1)] from the named component, which must be a Split. UnlinkeDel et e, the names of then components, as
well as the names of all of the desendantsof those components, are NOt removed fromf v’s namespace. Thus,
Del et eVBT istypically only used with children that were inserted using | nser t VBT.

END For nsVBT.

4.7 Subclasses of components

As the subexpressions describing the form f v are being parsed, the VBT-components are created
(allocated) by caling
fv.realize(type name)

where type is the name of the first element of the subexpression, and name is the Nane property
specified in the subexpression, or the empty string if no such property was specified. For example,
if the description containsthe expression

(Menu %rai nMenu .. .)

70 CHAPTER 4. PROGRAMMING WITH FORMSVBT

then the FormsVBT parser will call
fv.realize("Menu", "mai nMenu")

to create the VBT.

By overriding ther eal i ze method of f v, the client can create subtypes for any or al of the
components. For each kind of form, there is a corresponding type in the FVTypes interface. For
example, theresult of parsing (Menu . . .) isanobject that isasubtype of FVTypes. FVMenu.
Ther eal i ze method must allocate and return a VBT that isa subtype of the corresponding typein
FVTypes.

For example, suppose you wanted the form to keep a count of the number of menus it contains,
and for each menu to store its own index.

TYPE
MyForm = FormsVBT. T OBJECT
count: CARDINAL := 0O
OVERRI DES
realize := Realize
END;
FVTypes. FVYMenu OBJECT
i ndex: CARDI NAL
END;

MyMenu

PROCEDURE Real i ze (fv: MyForm type, nane: TEXT):
VBT. T RAI SES {FornmsVBT. Error} =
BEG N
| F Text. Equal (type, "Menu") THEN
WTH m = NEW (MyMenu, index := fv.count) DO
INC (fv.count);

RETURN m
END
ELSE (* use the default *)
RETURN FornsVBT. T.realize (fv, type, namne)
END
END Real i ze;

Notethat ther eal i ze method doesnotinitializethe VBT thatit allocates. Actualy, it may initialize
any privatefields, suchasthei ndex fieldinthisexample, but the VBT’si ni t method should not be
cdledinsidethecall tof v. r eal i ze, sinceitwill becalledlater duringa“bottom-up” initialization
phase. Of course, the client may also override thei ni t method to control what happens in that
phase.

4.7. SUBCLASSES OF COMPONENTS 71

A more complicated case arises with text-editing components. Textports are contained in three
forms: Text Edi t, Typescri pt,andNuneri c. InaText Edi t components, thetextportisin
anexportedfield, Text Edi t VBT. T. t p. Ifther eal i ze method alocatesaText Port. T, even
aprivatesubtypeof Text Port . T, it should not call thetextport’si ni t method, since FormsVBT
will do that in the initialization phase, passing some of the current state information (such as back-
ground color and thewidth of the“turn margin™) tothetextport’si ni t method. The same appliesto
Typescri pt components, since Typescri pt VBT. T isasubtype of Text Edi t VBT. T. Sim-
ilarly, the textport in a Nuner i ¢ component is in an exported field, Nurer i cVBT. T. t ypei n;
again, it may be allocated but not initializedin ther eal i ze method.

If you wish to redefine the interpretation of keystrokes, you do so by overridingthefi | t er
method of the textports. The following code illustrates how to do this.

TYPE
MyForm = FormsVBT. T OBJECT
OVERRI DES realize := Realize END;

PROCEDURE Real i ze (fv: MyForm type, nane: TEXT): VBT.T
RAI SES {FornmsVBT. Error} =
BEG N
| F Text. Equal (type, "TextEdit") THEN
RETURN
NEW (FVTypes. FVText Edi t ,
tp := NEW (TextPort. T, filter := MyFilter))
ELSI F Text. Equal (type, "Nurmeric") THEN
RETURN NEW (FVTypes. FVNuneri c,
typein := NEW (Nuneri cVBT. Typei n,
filter := MyFilter))
ELSI F Text.Equal (type, "Typescript") THEN
RETURN NEW (FVTypes. FVTypescri pt,
tp := NEW (Typescri pt VBT. Port,
filter := MyFilter))
ELSI F Text.Equal (type, "Typeln") THEN
RETURN NEW (FVTypes. FVTypein, filter := MyFilter)

ELSE (* use the default *)
RETURN FornsVBT. T.realize (fv, type, namne)
END
END Real i ze;

Ther eal i ze method can aso be used to integrate any VBT, including leafs and filtersinto a
form. ThecomponentsAny, AnyFi | t er ,and AnySpl i t aredefinedtobeVBT. Leaf ,VBT. Fi |l t er,
and VBT. Spl it respectively.

72

CHAPTER 4. PROGRAMMING WITH FORMSVBT

5. FormsEdit

FormsEdit is a stand-alone application that allows you to develop a FormsVBT user interface: the
layout, the colors, the fonts, the text, the buttons, the pop-up windows, the shadows, ... everything
except the application code that does whatever it isyou' re building a user interface to.

The shell-command f or msedi t takes an optiona argument, thename of an . f v fileyou wish
to edit. It also takes optional X11 parameters for specifying the initial display and geometry; the
manpage has the details.

The following sections describe the user interface.

5.1 Getting started

When you start the program, you’ll see two windows: an editor and a result view (see Figure 5.1).
The editor has asimple FormsVBT S-expression in it:

(Rm (Pen 10)
(Text (Name ignoreMe) "This space available for a small fee"))

Theresult view issimply awindow that contai nsthetext, surrounded by 10 pointsof whitespace,
or inthiscase, “greyspace’, since the default background color islight grey.

5.2 Themenubar

The menubar has four menus and a button.

521 Thequill-pen menu

This menu has four items:

About FormsEdit ... shows the copyright notice and other information.

Help popsup awindow with an online help-file, containing alist of al the components and their
properties.

73

74 CHAPTER 5. FORMSEDIT

@ G FY Result3:

This space available for a small fee

(@ G FY Editor 3:

£ | File | Edit | Misc | Do 1t |

{Rim {Pen 10} {Text {Mame ignoreMe) "Thisz zpace awailable for a small fee")}

Figure5.1: Theinitial text-editor window shown by f or nsedi t .

Editing M odd includes a choice of keybindingsand selection controls; they also determine the
keyboard equivalentsthat appear inthe menu items. The four choices, Ivy, Emacs, Mac, and Xterm,
are documented in the VBTkit Reference Manual[Z].

Quit This terminates FormsEdit.

5.2.2 TheFilemenu

Thismenu (see Figure 5.2) contains astandard list of items:

New creates another pair of windows, using the same, simple S-expression.

Open..., which is selected in the figure, brings up afile browser.

Close closes the window. If you click Close or Quit while there are unsaved changes, you will
be asked whether you want to save them.

Save and Save As... are self-explanatory.

Revert to Saved re-reads the expression from the disk file.

PP setup... brings up awindow with a Nuner i ¢ component that lets you establish the width
that the pretty-printer should use; typing Return causes the S-expression to be pretty-printed at the
new width. The user-interface descriptionsin. f v filestend to grow fairly quickly. If you can afford
the screen real-estate, you might try reshaping the editor window to be as wide as possible, setting
the pretty-printer width to 150, and typing Return.

52. THE MENUBAR 75

£ | File | Edit | Misc | Do 1t |
1 H (Rin { New oN |ete? "This space available for a small fee"})
Open... old
Close
Save oS
Save As..

Revert To Saved

PP setup..
PPrint oP
CQuit ol

Figure5.2: The File menu.

PPrint invokes the pretty-printer, and rewrites the S-expression in the window.

5.2.3 TheEdit menu

The Edit menu has buttons for Undo and Redo; buttons for the standard editing commands Cut,
Copy, Paste, Clear, and Select All; aFind... button that brings up a diaog box for specifying the
string you wish to search for; and buttonsfor Find Next and Find Prev, which look for the current
Source selection.

524 TheMisc menu

The Misc menu contains an item for examining the named componentsin the form you’ re editing—
it shows their names, types, and shapes; an item for producing a snapshot (see Section 4.5); and a
button to bring up the error-message window, which normally disappears 5 seconds after it displays
amessage. Thismenu also containsitemsthat allow you to move the editor and result windowsfrom
one screen to another.

525 The“Dolt” button

The space to theright of the Misc button containsthe name of thefile being edited (if thewindow is
showing afile). When there are unsaved changes to the window, a“note” icon a so appears here.

76 CHAPTER 5. FORMSEDIT

£ | File | Edit | Misc | in| Do 1t |

(Rim
(Pen 103
(Text
ignorefle
iFont (Famly "new century schoolbook":s
"Thiz space available for g "

c Error |G

T Bad font-specy (Famly "new century schoolbook"}

Figure5.3: The error window.

After you've edited the file describing your user interface, you’ Il want to see what it lookslike.
ClicktheDo It button. On some keyboards, there'sa (big) key labeled Do; you can press that instead
of clicking the button. The key labeled Enter may also be used.

Every timeyou click the Do It button (or pressthe Do key or the Enter key), FormsVBT parses
theentireS-expression, and updatestheresult view accordingly. Theresult-view window will change
its shape, if necessary, to give theform its preferred shape.

53 Errors

What if there’s an error in your form? The parser will detect it and highlight the nearest enclosing S-
expression. An error window will pop up, explaining what the error was. If you click the OK button
in the error window, the highlighting will disappear.

For example, suppose you wanted to change the font in the sample S-expression, and instead of
writing Fami | y, you misspelled it as Fam y. When you hit the Do It button, the error window
pops up; see Figure 5.3. The Text subexpression is highlighted, and the error message says. Bad
font-spec: (Famly "new century school book").

5.3. ERRORS 77

When an error has been detected, the result view is not changed. If you open a window onto a
filethat contains an erroneous S-expression, itsresult window will be in some undefined state.
If we correct the misspelling and click Do It, the error window will disappear.

78

CHAPTER 5. FORMSEDIT

A. Full Description of Components

Thisappendix containsacompl ete description of each FormsVBT component. Each description con-
tains the following sections:

¢ A banner containing the component’s name and syntactic classification (Leaf , Fi | t er, or

Split). A box around the name, eg., indicates that the component generates an
event; For ms VBT. At t ach and For ms VBT. At t achPr oc can be used to attach an event-
handler to such a component.

o A short description of the component.

o The class-specific properties, if any, for the component.

o A description of the component’sinteractive behavior, if it generates an event.
o The component’s shape information.

o Additional notes (optional).

Thefirst line of each class-specific property containsthe property name, the access information,
the type, the default value, and a description of the property. Example:

Val ue o (Boolean, FALSE)

Theproperty name, Val ue inthisexample, isthe symbol that would appear inthe S-expression. The
access informationisindicated by the small letters G and P. G means that the value of this property
can be retrieved at runtime (“Get”); P means that the value can be set at runtime (“Put”).

If the name of the property isVal ue or Mai n, then you can retrieve the value of the property
by calling Get Text , Get | nt eger, or Get Bool ean, depending on the type of the property, and
you can set the value by calling Put Text , Put | nt eger, or Put Bool ean.

For properties other than Val ue or Mai n, you can retrieve the value of the property by calling
Get Text Property or Get | nt eger Propert y,and you can set thevalue by calling
Put Text Property or Put | nt eger Pr operty. These procedures take the name of the prop-
erty as an argument.

79

80 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

The descriptionsin thisappendix do not include the components' inheritable properties (see sec-
tion 3.3, page 39). All (well-behaved) components use these properties for displaying information.
Some of these can be accessed at runtime, as the following list indicates:

Font < (Font, default on page 39)
Thefont used for Browser, DirMenu, FileBrowser, Hel per, MultiBrowser, Nu-
meric, TextEdit, Typein, and Typescript.

Label Font < (Font, default on page 39)
The font used for Text and the Title of a ZChassis.

Color » (Color," Bl ack") The foreground color.
BgCol or » (Color,0.8 0.8 0. 8) The background color.
Li ght Shadow (Color, " Wi t e")
Dar kShadow (Color, 0. 333 0.333 0.333)
ShadowsSi ze (Real, 1. 5)

Some components define enumerations that specify mutually exclusive choices for asingle, un-
named property. Syntactically, these are all Boolean properties, but unlike other Boolean properties,
which aways have a FAL SE default value, one of these will default to TRUE. Furthermore, specify-
ing any of them as TRUE has the effect of declaring al the othersto be FALSE.

For example, the shadow-style of a Frame may be raised, flat, lowered, ridged, or chiseled. The
default isRai sed, but if you write

(Frane Lowered ...)
or, equivalently,
(Frane (Lowered TRUE) ...)

then that has the effect of declaring Rai sed, Fl at , etc., to be false.

81

Bar Leaf

Displaysahorizontd or vertical line, using the foreground color, with the specified size and stretch-
ability in the principal direction of its parent. Bar isexactly like @ ue except that it uses the fore-
ground color (Col or) instead of the background color (BgCol or).

Mai n (Sze,1 + 0 - 0)
The size and stretchability in the principa direction of its parent.

Shape The principal direction is explicitly specified; the other direction has zero preferred
and minimum size and is infinitely stretchable, thereby taking on the parent’s shape.

Notes Must be a child of ahorizonta or vertical split (HBox, HVTi | e, VBox, or VTi | e).

See Also Ridge and Chisel

82

APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Filter

A Boolean, on-off interactor.

Val ue ¢ (Boolean, FALSE)

The current state.

MenuSt yl e (Boolean, FALSE)

When set, theinteractor should beachild of aMenu, inwhich caseit will react
on the upclick. Otherwiseg, it reacts on the downclick.

Feedback choices (mutually exclusive):

CheckBox (Boolean, TRUE)

Give feedback with a*“ check-box” icon.

CheckMar k (Boolean, FALSE)

Give feedback with a*“ check-mark” icon.

I nverting (Boolean, FALSE)

Givefeedback by displaying a border around the child VBT.

Behavior

Shape

Notes

See Also

If CheckBox (the default) is set, FormsVBT adds a three-dimensional check-box
icontotheleft of itschild. Toindicateafa sevalue, the check-box israised and empty;
toindicateatrueval ue, the check-box islowered andfilled-in. Any click onthecheck-
box or on the child toggles state and generates an event on the upclick. CheckMar k
causes a different set of bitmaps to be used to indicate state. | nverti ng causes
no bitmaps to be used. Actualy, “inverting” is a (historical) misnomer: on a non-
monochrome display, a three-dimensional shadow is put around the child, and the
shadow israised (when false) and lowered (when true).

When | nverti ng isfase, the shape of thisinteractor isthe shape of itschild, plus
16 pixelswider on the west side. When | nver t i ng istrue, the shape of the inter-
actor isthe shape of the child plus the shadow.

The CheckMar k property, in conjunctionwith MenuSt yl e, can be used to imple-
ment the M acintosh-style” checks’ on menuitems. However, because the check-mark
isput to theleft of itschild, menu elementswill look misaligned if some elementsare
MBut t onsand othersare Bool eanswith check-marks.

Choice and Radio

Checkbox, #False
= Checkbox, #True

CheckMark, #False
v CheckMark, #True

Inverting, #False

Inverting, #True

83

84 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Border Filter
Displays aborder around its child.

Pen (Redl, 1.0)
The thickness of the border.

Pattern (Text)
The name of a pixmap-resource used for the border’s texture, which defaults

toPi xmap. Sol i d.

Shape The shape of itschild, plustwice the value of Pen in each dimension.

See Also Rim and Frame

A browser on a collection of text strings.

85

L eaf

Contents (1 t enrs takes precedence):

Itens o (TextList)
The contents of the browser.
Example: (Itenms "red" "blue"). When this property is accessed at
runtime, the TextList is passed a singletext string, with \ n used to separate
entries. Put Text Pr oper t y replaces the entire contents of the browser and
sets the selection to NI L. Get Text Pr operty returns the elements in the
browser, from top to bottom.
From (Text)
If present, names a resource from which the initial browser contents will be
taken.
Choices (Val ue takes precedence):
Val ue e (Integer,-1)
The position of the selected item. 0 meansthefirst item; - 1 meansnoitemis
selected.
Sel ect o (Text)
The text of the selected item. Put Text Pr operty sdects the first match-
ing item if there is one; otherwise it selects nothing. Get Text Property
returnsthe text of the selected item, or NI L isthereisno selection.
Qui ck (Boolean, FALSE)

If true, every selection action isreported as an event. Otherwise, only double-
click actions are reported.

Behavior

Shape

See Also

Displaysitems vertically, with a scrollbar at the left. Clicking selects the item under
the mouse. Double-clicking on an item generates an event on the second up-click. If
Qui ck istrue, single-clicking on an item generates an event on the up-click.

At minimum, large enough to hold its scrollbar plusthe single string " XXXX" inthe
font being used. Infinitely stretchable in both dimensions.

MultiBrowser

86 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

THRolling Lettuce Chicken
hg Pao Beef

Shang Scallops
AHappy Family Delight

87

Filter

A button. Surroundsits child with a raised shadow, and generates an event when clicked.

Behavior On adown-click, the shadow becomes recessed; restores the rai sed shadow on an up-
click or chord-abort, and generates an event if the mouse is till within the button on
the up-click.

Shape The natural shape of its child (i.e., with no shrink or stretch), plus the border around
the button.

See Also MButton

88 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Chisel L eaf

Displaysachiseled, three-dimensiona horizonta or vertical line with the specified size in the prin-
cipal direction (horizontal or vertical) of its parent.

Mai n (Red, 1. 5)
The sizein the principal direction.

Shape The principal directionis explicitly specified; the other direction has zero preferred
and minimum size and is infinitely stretchable, thereby taking on the parent’s shape.

Notes Must be a child of ahorizonta or vertical split (HBox, HVTi | e, VBox, or VTi | e).

See Also Bar and Ridge

89

Filter

A choice buttonisone of agroup of “radio buttons.” There must be a Radio component somewhere
in itsancestry. Choice components must be named.

Val ue e (Boolean, FALSE)

Whether currently selected.

MenuSt yl e (Boolean, FALSE)
When set, theinteractor should beachild of aMenu, inwhich caseit will react
on the upclick. Otherwiseg, it reacts on the downclick.
Feedback choices (mutually exclusive):

CheckBox (Boolean, TRUE)

Givefeedback with a“check-box” icon.

CheckMar k (Boolean, FALSE)
Givefeedback with a“check-mark” icon.

I nverting (Boolean, FALSE)

Givefeedback by drawing a border around the child VBT.

Behavior If CheckBox is TRUE, Choice adds a three-dimensional diamond to the left of its
child. The diamond israised and empty for false, lowered and filled-infor true. Any
click on thediamond or on the child sel ects this* button,” unsel ectsany other member
of the group that might have been selected, and generates an event. MenuStyle causes
different reaction to the mouse clicks, as described above.

Shape The shape of itschild, plus 16 pixel swider on thewest sidewhen not Inverting. When
Inverting, the shape of the child plus the border.

See Also Boolean and Radio

90 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

CloseButton Filter

A button that closes a subwindow when clicked. Itstarget may be specified using the For property;
otherwise, it isthe nearest subwindow ancestor of the CloseButton itself.

For (Symbol)
If given, thisnamesthetarget. The named component must be either an over-
lapping (non-background) child of aZSpl i t , or a descendant of something
that is. In the latter case, the actual target will bethe ZSpl i t child, not the
named descendant.

Behavior Like aButton, but before generating an event, closesitstarget (if the target is not al-
ready closed).

Shape The natural shape of its child (i.e., with no shrink or stretch), plus the border around
the button.

91

Ledf

A “directory menu” isabutton connected to a FileBrowser. The button displaysthe name of thelast
(nearest) component of the FileBrowser’s current directory.

For (Symbol)
The name of a FileBrowser. This property isrequired.

Behavior The directory menu shows the FileBrowser’s parent-directories, one parent per line,
downto first component of the path, whichistypically theroot directory. Selecting an
item in thismenu makes that parent-directory be the FileBrowser’s current directory.

Shape The shape of a TextVBT containing the name of the parent, plusthe shadow.

Notes A DirMenu never generates events in its own name. It can be accessed in its own
name, but thisis not recommended.

In atypica "Open File..” didog, the DirMenu is above the FileBrowser, and the
Helper isbelow. See Figure A

See Also FileBrowser and Hel per

92

APPENDIX A. FULL DESCRIPTION OF COMPONENTS

L eaf

A FileBrowser isused for examining directories and selecting files.

Val ue o (Text,".")

Suf fi xes

ReadOnl y

Onretrieva, thevaueisthefull pathname of the selected file, or NI L if nofile
isselected. When specified, the value may be absolute or relative (to the cur-
rently displayed directory), and may name afile or adirectory. If adirectory
is specified, that directory is displayed but no file is selected, hence the new
retrievablevalueis NI L. Aninitial specification, if relative, isreativeto the
current working directory of the application. Thus, the default initial val ue of
“.” displaysthe current working directory.

(TextList)

If this property is specified, the file-browser will show only those files whose
suffixes are in thislist. The strings should not include the period; to include
filesthat have no suffix, use the empty string.

Example: (Suffixes "i3" "nB" "" "fv")
(Directories are always shown.)
(Boolean, FALSE)

If true, the browser will only accept selection or naming of files that already
exist. Otherwise, user may nameanew fileby typinginthehel per (see Hel per).

CONTINUED...

Behavior

Shape

Notes

See Also

93

The FileBrowser displaysalist of thefilesinthe current directory, in alphabetic order.
The user can select afile by clicking on its name, and activate it by double-clicking.
Auto-scrolling works as for Browser. In the default setup, only activating afile gen-
erates an event. Activating a directory makes that the current directory, and changes
the display to show it.

If a helper is present (see Helper), it displays the pathname of the current directory
whenever the current directory is changed. The user may aso type afilename in the
helper, and press Return to activateit.

There are three “states’ of selection in a FileBrowser with a Helper. After a new di-
rectory has just been set, thereisno selection; thevalueisNI L. When the user clicks
on an itemin the browser, the browser has the selection, shown by ahighlighteditem,;
when the user types any character in the hel per, the hel per has the sel ection; the high-
light vanishes from the browser. Thusit ispossibleto give aname for afile that does
not yet exist, providedthat ReadOnly isfalse. A relative pathnametypedintheHel per
isrelative to the current directory.

We recommend using (Label Font "fi xed") for afilebrowser.

At minimum, large enough to hold its scrollbar plusthe single string " XXXX" inthe
font being used, plusthe shadow. Infinitely stretchable in both dimensions.

A Helper never generates eventsin itsown name. It can be accessed initsown name,
but thisis not recommended.

OS-related errors can occur: nonexistent directory in path, current directory became
inaccessible, protection violation, etc. The default reaction to these errorsis just to
refuse to activate anything. In such a state, Get Text will return NI L. The user can
get out of this state by typing an absolute pathname of a directory that is known to
exist. The underlying Fi | eBr owser VBT interface has a mechanism (the er r or

method) whereby the client can be notified of such errors, to report them to the user

appropriately.
Helper and DirMenu

CONTINUED...

94 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

It is common (and recommended) practice to combine a FileBrowser, a DirMenu, and a Hel per,
with activation and cancellation buttons, in an arrangment like the following, which could be used
inan “Open...” diaog.

(ZChassi s
(VBox
(HBox
(Shape (Wdth 150) (Hei ght 150)
(VBox (Label Font "fixed")
(DirMenu (For fb))
(4 ue 6)
(Frame Lowered (BgCol or "Wite")
(FileBrowser % b ReadOnly))))

Fill
(Shape (Wdth 100)
(VBox Fill
(Button %open "Cpen")
(4 ue 10)
(C oseButton "Cancel "))))
(HBox

(Shape (Wdth 30) (Height 16) "File:")
(Frame Lowered (BgCol or "Wite")
(Hel per (For fb) (Font "fixed"))))))

S

Main,m3

Main,m3,~1"

Main,m3,~2"

Hain,m3,~3"

TimeStamp, i3

TimeStamp,m3

Typescript.,m3

YBTutils,i3

VBTutils,m3

VERSS Open

Cancel

95

Fill L eaf

Thisisused for spacing other objects. Fill usesthe background color, and it isessentially ashorthand
for(Que O + Inf).

Shape Both dimensions have zero preferred and minimum size and areinfinitely stretchable.
Thus, the non-principal direction takes on the same shape as its parent.

Notes Must be a child of ahorizonta or vertical split (HBox, HVTi | e, VBox, or VTi | e).

See Also Glue

96

Filter

APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Filter

Overlaysits child with reactivity.

Shape

Notes

Cur sor

Active

Passi ve

Dor mant

Vani sh

(Text)
Namesthe cursor that will be displayed when themouseisover thechild. The
default is cursor is defined by the Trestle implementation.

Reactivity choices (mutually exclusive):

(Boolean, TRUE)
When true, mouse and keyboard eventsarerelayed to child. Thisisthenormal
case.

(Boolean, FALSE)
When true, doesn’'t allow mouse or keyboard events to go to the child; in ad-
dition, the cursor is changed to Cur sor . Not Ready, awatch-face.

(Boolean, FALSE)
When true, doesn’t send mouse or keyboard eventsto the child; it also draws
agrey screen over the child.

(Boolean, FALSE)
When true, doesn’t send mouse or keyboard eventsto the child; in addition, it
draws over the child in the background color thereby making it invisible.

The shape of itschild.

Of the four state properties, exactly one can be in effect at any instant. If more than
oneisspecified, they areconsidered intheorder Vani sh, Dor mant , Passi ve, and
Act i ve to find thefirst one that istrue. If al are false (including Act i ve, which
defaultsto true), an error israised.

To test thereactivity of aFilter, you can call one of thefollowing proceduresin the FormsvVBT inter-
face: | sActi ve, | sPassi ve, | sDor mant, or | sVani shed. To change the reactivity or the
cursor, call MakeAct i ve, MakePassi ve, MakeDor mant , or MakeVani sh.

FormsVBT providesamechanism for accessing the nearest Filter component above anamed in-
teractor. Thus, Filter interactors are typically left unnamed, and some named descendant is used to
reference the Filter from the application program.

As mentioned, the default is cursor is defined by the Trestle implementation. Standard X screen-
types support the cursors named in X Window System by Scheifler et. al. [9] Appendix B. Therefore,
for example, XC_ar r owreturnsacursor that behaves likethe X arrow cursor on X screentypes, and
like the default cursor on screentypes that have no cursor named XC_ar r ow. *)

97

Frame Filter

Displays athree-dimensional border around its child.

Shadow-styl e choi ces (mutual ly exclusive):
Rai sed < (Boolean, TRUE)
Fl at o (Boolean, FALSE)
Lower ed o (Boolean, FALSE)
Ri dged < (Boolean, FALSE)
Chi sel ed e (Boolean, FALSE)

Shape The shape of itschild, plus twice the value of ShadowSize in each dimension.

See Also Border and Rim

98 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Generic Leaf

A placeholder, intended to be taken over by the application. Should always be given a name, so the
application can access it. Often has some application-defined interactive behavior. Until taken over,
this has the shape and appearance of

(Shape (Wdth 0 + 0) (Height 0 + 0) "")

Notes To take over a Generic, use Put Gener i c; toretrievethe VBT, use Get Ceneri c.
A Genericisimplemented asaFilter.T, whosechildisthe VBT specified using Put Generi c.
Whenever Put Gener i ¢ isinvoked, the size of the new VBT is propagated appro-
priately.

Generic should be used only when thereisno comparabl einteractor provided by FormsVBT, or when
the VBT will change dynamically. If you want to use a subtype of an interactor, you should override
ther eal i ze method of the FormsVBT object; see For ms VBT. i 3.

99

Glue Leaf

A piece of filler for spacing other objects. Glue displays using the background color, BgColor. (To
use the foreground color, use a Bar component.) Unlike Fill, Glue has specified size and no stretch-
ability in the principal direction (horizontal or vertical) of its parent.

Mai n (Sze,1 + 0 - 0)
The size and stretchability in the principa direction of its parent.

Shape The principal directionis explicitly specified; the other direction has zero preferred
and minimum size and is infinitely stretchable, thereby taking on the parent’s shape.

Notes Must be a child of ahorizonta or vertical split (HBox, HVTi | e, VBox, or VTi | e).

See Also Fill

100 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Filter

A filter that coversitschild with a striped shadow. On thefirst click, the guard isremoved, exposing
and activating the child. If the mouse moves out of the guarded area, the guard returns.

Behavior On down-click, the shadow becomes recessed; restores the rai sed shadow on up-click
or chord-abort, and generates an event if the mouseis still withinthe button on the up-

click.
Shape The shape of itschild plusthe shadow.
Notes A guard is often used around a component whose action has has potentialy serious

side-effects; eg., (Button "Del ete"),(Bool ean "Override").

101

Help Split

A “helper bubble.” Thefirst child, the“anchor,” isdisplayed asif Help were not present. The second
child, the“bubble,” is popped up when themouseisover theanchor for a* sufficiently longtime” (the
amount of time isimplementation-specific), and the bubble remains displayed as long as the mouse
isin over the anchor.

Shape The shape of the anchor child.

Notes The bubble appearsin the southwest corner of theanchor. It would probably be better
wereit displayed closer to where the mouse first entered the anchor.

The following macro creates a helper bubble that contains some text on ayellow background.

(Macro Text Bubbl e BOA (child text)
‘(Help ,child
(Border (Pen 1) (Color "Black") (BgColor "LightYellow")
(Rim (Pen 4)
(Text ,text)))))

102

APPENDIX A. FULL DESCRIPTION OF COMPONENTS

L eaf

A type-infield connected to a FileBrowser. A Helper is used for typing filenames, either to select a
new file or to switch to another directory.

For

Fi r st Focus

TabTo

ExpandOnDenand

(Symbol)
The name of a FileBrowser. This property isrequired.

(Boolean, FALSE)

If this Helper isin a subwindow or TSplit-child, then when that component
appears, the keyboard focus will go to thisHelper, and itstypein field will be
selected inreplace-mode. Seethe noteabout the Typel n’sFirstFocus property.

(Symbol)

If given, thisisthe name of the component to which the keyboard focus wil
be transferred when the user types Tab.

(Boolean, FALSE)
If true, thetext areawill grow and shrink vertically, asrequired, to contain the
entiretext.

Behavior The helper displays the pathname of the FileBrowser’s current directory. The user
can also type a name in the Helper; typing Return will then activate that file in the
FileBrowser.

In anon-ReadOnly FileBrowser, a Helper is necessary in order to specify afile that
doesnot yet exist (e.g., that the application should create), asina” Save As...” dialog.

We recommend using (Font " fi xed") inthehelper.

Shape The width is zero with infinite stretchability, and the height is as high as onelinein
the current font.

Notes A Helper never generates eventsin itsown name. It can be accessed initsown name,
but thisis not recommended.

See Also DirMenu and FileBrowser

103

HBox Split

Organizesits children horizontally, in order from left to right. If it iswider than the sum of its chil-
dren’s widths, the excess is distributed equally among &l stretchable children, as far as they will
stretch. If al stretchability is exceeded, the excess will be given to the last child. If it is narrower
than the sum of its children’swidths, it clips on the right, perhaps making some children entirely in-
visible. All children have height equa to the height of the HBox. Section 3.6 explains the layout
model in detail.

Shape The width isthe sum of its children’swidths; the height is the maximum of the chil-
dren’s heights, but is stretchable only if al of them are.

See Also VBox

104 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

HPack Split Split

Organizesitschildren likewords of text in aragged-right paragraph. The children in any given row
havetheir north boundariesaligned, and all children that are first intheir row have their west borders
equal to thewest border of the parent. A child ishorizontally clipped only if itsrequested horizontal
size exceeds the parent’s horizonta size; in this case the child will be donein itsrow.

HGap (Red, 2. 0)
This many points separate each child horizontally.

VGap (Red, 2. 0)
This many points separate each row of children.

Backgr ound (Text,"Whi te")
Inter-children (HGap), inter-row (VGap), and end-of -linespaces are displayed
inthistexture.

Shape The shape is unconstrained in the principal axis and fixed in the other axis.

See Also V PackSplit

105

HTile Split

Organizes its children horizontally, in order from left to right, with an adjusting bar between each
child. The adjusting bar allows the user to move the boundary between the children, subject to the
size range alowed by each child.

Shape Same as HBox.

See Also VTile

106 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Insert Leaf

Insert is not a component at al. It isa syntactic form for specifying the name of another resource
whose contents are to be included at this point in the S-expression. (It isthe only such formin the

language.)

Mai n (Text)
Thetext argument isthe name of aresource containing one or more S-expressions.

Behavior Insert isconvenient for breaking alarge FormsVBT descriptionintoseverd files. Typ-
ically, such files contain ZChild, ZChassis, and Macro forms.

107

LinkButton Filter

A button that provides*“random access’ to achild of aTSplit. Switchesa TSplit to display the spec-
ified child.

For (Symbol)
The target, which must be specified. The named component must be either a
TSplit child, or adescendant of something that is. In thelatter case the TSplit
child isthe true target.

Behavior Like a Button, but before generating an event, switches a TSplit to display a specific

child.

Shape The natural shape of its child (i.e., with no shrink or stretch), plus the border around
the button.

Notes The LinkButton need not be a descendant of the TSplit it controls. You may specify

more than one LinkButton for the same TSplit.

See Also LinkMButton, PageButton, and TSplit

108 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

|LinkM Button Filter
Thisisthe“menu-style” equivaent of LinkButton; it provides”random access’ toachild of aTSplit.

For (Symbol)
The target, which must be specified. The named component must be either a
TSplit child, or adescendant of something that is. In thelatter case the TSplit
child isthe true target.

Behavior Like an MButton, but before generating an event, it switches a TSplit to display a
specific child.

Shape The natural shape of its child (i.e., with no shrink or stretch), plus the border around
the button.

See Also LinkButton, PageM Button, and TSplit

109

Filter

A “menu button” isusually amember of aMenu. It can be used anywhere, but itsbehavior will seem
weird in almost any other context.

Behavior Itschild is surrounded by aflat shadow that isrecessed whenever the mouserollsinto
it. Restoresthe flat shadow on up-click or chord-abort, and generates an event if the
mouse is still within the button on the up-click.

Shape The natural shape of its child (i.e., with no shrink or stretch), plus the border around
the button.

See Also Button

110 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Menu Split

A pull-down menu. The first child, the “anchor”, looks just like a button, and when it is clicked,

it pops up the second child. The second child can be any component, and is surrounded by araised
shadow. All other childrenareignored. A menu requiresaZSplit somewhereinitsancestry; FormsvVBT
provides one of these by default.

Not I nTrestl e (Boolean, FALSE)
If true, the menu isinstalled into alocal ZSplit, rather than directly into Tres-
tle, when popped up. Menus installed in Trestle may exceed the size of the
contai ning window.

Behavior Pops up the second child when the first child is clicked, and keeps it there until the
mouse button is released. Typically, the the second child contains a VBox of menu
buttons (M Button, PopM Button, PageM Button, LinkM Button).

An event is generated just after the anchor button is activated, and before the sec-
ond child of Menu is popped up. Thisisuseful for clients whose menu contents are
changing dynamically and should be made consi stent only when the menu is about to
be displayed.

Shape The shape of itsfirst child plusits shadow.

m

| MultiBrowser Leaf

A browser on a collection of text stringsthat allows multipleitemsto be selected.

Contents (1 t enrs takes precedence):

I'tens (TextList)

The contents of the browser.
Example: (Itens "a" "b" "c")

From (Text)

If present, this names a resource from which the initial browser contents will
be taken, oneitem per line.

Initial choices (Val ue takes precedence):

Val ue (CardinalList)

The positions of selected items.
Example: (Value 1 3 5 2).

Sel ect (TextList)

Thelist of initially selected items.
Example: (Itenms "c" "a"

Qui ck (Boolean, FALSE)

If true, every selection action isreported as an event. Otherwise, only double-
click actions are reported.

Behavior

Shape

See Also

Displaysitemsvertically, with a scrollbar at the left. The left button modifies the se-
lection: If theitem under the cursor is not currently selected, it becomes selected; if
itiscurrently selected, it isdeselected. Dragging setsthe state of the additional items
to the state it gave to the first item. Middle and right buttons clear any existing se-
lection, and select theitem under the cursor. Dragging selects additional items as the
mouse passes over them; retreating unselects items. Autoscrolling is implemented,
and it continuesto select or unselect items as they scroll by.

When Qui ck istrue, every selection action aso generates an event, on the up-click.
Otherwise, an event is not generated until the second up-click of a double-click.

At minimum, large enough to hold its scrollbar plusthe single string " XXXX" inthe
font being used, plusa shadow. Infinitely stretchablein both dimensions.

Browser

112

APPENDIX A. FULL DESCRIPTION OF COMPONENTS

L eaf

An interactor for integer values. Numeric has an editable displayed number, as well as “increment”
and “decrement” buttons.

Va

| ue e (Integer)
The currently displayed number.

Al | onEnpt y (Boolean, FALSE)

Hi deBut t

Ta

FirstFo

If true, the component supportsadistinct “empty” state. See Notes.

M n o (Integer, Fl RST(| NTECER))
The minimum alowed value.

Max o (Integer, LAST(| NTEGER))
The minimum alowed value.

ons (Boolean, FALSE)
If true, the numeric interactor appears without increment and decrement but-
tons.

bTo (Symbol)
If given, thisisthe name of the component to which the keyboard focus wil
be transferred when the user types Tab.

cus (Boolean, FALSE)
If thisNumeric isin a subwindow or TSplit-child, then when that component
appears, the keyboard focus will go to thisNumeric, and itsnumber field will
be selected in replace-mode. See the note about the Typeln’s FirstFocus prop-
erty.

Behavior

Shape

Notes

The increment button (+) increments the number, whereas the decrement button (—)
decrementsit, up to therespective limits. The number field iseditableas asingle-line
Typeln. Typing Returninthe number field checksthe number; if itisout of range, itis
forced to the nearest acceptable value. Increment, decrement, and Return all generate
an event.

The shape depends on the ShadowSize and Font in effect. When the default shadow
and font are used, the size of aNumericis 76 by 19 pixels.

Get | nt eger can be used to retrieve the current value, and Put | nt eger can be
used to set it.

When AllowEmpty is true, emptiness is a specia, out-of-band state for the interac-
tor. Inthisstate theincrement and decrement functions are disabled. The value of an
empty Numeric isreported as FI RST(| NTEGER) .

Emptiness can be tested explicitly by Nurrer i cVBT. | sEnpt y, and can be set by
Nuneri cVBT. Set Enpt y.

113

PageButton Filter

A button that switchesto the next or previous child of a TSplit. Itstarget isa TSplit, which may be
specified by the For property; otherwise the target is the nearest TSplit ancestor of the PageButton
itsalf.

For (Symbol)
If given, names the target, which must be a TSplit.

Back (Boolean, FALSE)
If true, the button advances backward among children of the TSplit, otherwise
it advances forward.

Behavior PageButton is like a Button, but before generating an event, it switches the children
of aTSplit. However, if the TSplitisnot Circular, and if the last (first) childisaready
being displayed, nothing happens and no event is generated.

Shape The natural shape of its child (i.e., with no shrink or stretch), plus the border around
the button.
Notes If aPageButton isadescendant of the TSplit it controls, it will naturally vanish when

activated, due to the nature of TSplits.

You may specify more than one PageButton for the same TSplit.

See Also LinkButton, PageM Button, and TSplit

114 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

PageM Button Filter

Thisis the “menu-style’ equivalent of PageButton. It switches to the next or previous child of a
TSplit. Itstarget is a TSplit, which may be specified by the For property; otherwise the target the
nearest TSplit ancestor of the PageM Button itself.

For (Symbol)
If given, names the target, which must be a TSplit.

Back (Boolean, FALSE)
If true, the button advances backward among children of the TSplit, otherwise
it advances forward.

Behavior PageM Buttonislike an MButton, but before generating an event, it switchesthe chil-
dren of a TSplit. However, if the TSplit isnot Circular, and if the last (first) child is
already being displayed, nothing happens and no event is generated.

Shape The natural shape of its child (i.e., with no shrink or stretch), plus the border around
the button.

See Also LinkMButton, PageButton, and TSplit

115

Pixmap Leaf

Displays a pixmap, centered in the space available. Theimage in the pixmap isaresourcein “pnm’
format, representing one of three types of images: “pbm” is a 1-bit-deep (bitmap) image; “pgm” is
agreyscale image; “ppm” isacolor image.

Main » (Text)
The name of aresource containing the image for a pixmap. The image must
bein“pnm” format.

Accurat e (Boolean, FALSE)
If theimage isis greyscale or color (pgm or ppm), this property determines
how each RGB value in the pixmap should be displayed on a color-mapped
display.

NeedsGanmma (Boolean, FALSE)
If theimageisisgreyscaleor color (pgmor ppm), thisproperty indicateswhether
to let Trestle gamma-correct the colors.

Notes The current foreground and background colors are used for bitmap (pbm) images. In
all three formats, if the image is smaller than the space available, the current back-
ground color is used for the surrounding space.

Shape The shape of the pixmap, with infinite stretchability in both dimensions.

See Also Texture

116 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

A button that pops up an overlapping subwindow when clicked. Itstarget must be specified with the
For property.

For (Symbol)
If given, thisnamesthetarget. The named component must be either an over-
lapping (non-background) child of aZSpl i t , or a descendant of something
that is. In the latter case, the actual target will bethe ZSpl i t child, not the
named descendant.

Behavior LikeaButton, but before generating an event, it popsup itstarget (or bringsthetarget
to thetop of it sibling, overlapping windows, if it isaready visible).

Shape The natural shape of its child (i.e., with no shrink or stretch), plus the border around
the button.

See Also PopMButton

117

PopM Button Filter

Thisisthe “menu-style” equivalent of PopButton.

For (Symbol)
If given, thisnamesthetarget. The named component must be either an over-
lapping (non-background) child of aZSpl i t , or a descendant of something
that is. In the latter case, the actual target will bethe ZSpl i t child, not the
named descendant.

Behavior Like an MButton, but before generating an event, it pops up its target (or bringsthe
target to the top of it sibling, overlapping windows, if it is already visible).

See Also PopButton

118 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Filter

Unites those descendants that are Choice components into “radio buttons.” Within a Radio, at most
one Choice component is selected at any given time.

Val ue (Symboal, " ™)
The name of the Choice element currently selected. Note that the application
can clear the selection, so that no member of the group is selected, but the user
cannot. The current selection can be accessed viaFor nsVBT. Get Choi ce
and For nsVBT. Put Choi ce.

Behavior An event is generated whenever the user changes which element of the group is se-
lected. If the Choice element has an attached event procedure, it will be called; oth-
erwise, the event falls through to the Radio group, which may also have an attached
procedure. Thusan event can occur inthe name of the Radio group, though the group
itself has no interactive behavior.

Shape The shape of itschild.

See Also Boolean and Choice

119

Ridge Leaf

Displaysaridged, three-dimensional divider bar withthe specified sizeintheprincipal direction (hor-
izontal or vertical) of its parent.

Mai n (Red, 1. 5)
The sizein the principal direction.

Shape The principal directionis explicitly specified; the other direction has zero preferred
and minimum size and is infinitely stretchable, thereby taking on the parent’s shape.

Notes Must be a child of ahorizonta or vertical split (HBox, HVTi | e, VBox, or VTi | e).

See Also Bar and Chisdl

120 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Rim Filter

Displaysarimaround itschild. A rimislikeaborder, but uses the background color rather than the
foreground color.

Pen (Real, 1. 0)
The thickness of therim.

Texture (Text)
The name of a pixmap-resource used for the border’s texture, which defaults

toPi xmap. Sol i d.

Shape The shape of itschild, plus twice the value of Pen in each dimension.

See Also Border and Frame

Scale

121

Filter

Scale provides afilter that changes the resolution, not the size, of its child. Both graphics and fonts

are scaled.

HScal e ¢ (Red,1.0)

The horizontal scaling factor.

VScal e « (Red, 1. 0)

The vertica scaling factor.

Aut o (Boolean, FALSE)

Dynamically set the scaling such that the child’s natura size dways fills its
domain.

Aut oFi xed (Boolean, FALSE)

Like Auto, but aways use set the horizontal and vertical scaling factorstothe
same number.

Shape

Notes

(Font

The shape of the child.

Auto takes precedence over AutoFixed, which takes precedence over HScaleor VS-
cae.

There are two ways you can use a” Scale” component: With the HScale and VScale
properties, the” Scale” allowsyou to explicitly set a horizontal and vertical scale fac-
tor. Alternatively, with Auto the scale factorsare set so that the child’snatural sizeal -
ways fillsthe screen real estateit’sbeen given. A varient of Autois AutoFixed: here,
the child is scaled by the same amount both horizontally and vertically. The amount
is chosen so that the natura size of child just fitsin the larger direction given and fits
finein the other direction.

You should only retriveand modify theva ues of HScale and V Scal e if the component
was created without Auto or AutoFixed.

Scale does not change the size of the child, just the size of the “pixels.” Graphic ele-
mentswill be scaled fairly precisely. Fontswill be scaled to the nearest availablefont.
If you are scaling components that include text, for best results, HScale and VScae
should have the same value.

If you are specifying a Font or Label Font in a component that is going to be scaled,
you should use the “long form” of the font’s name in order to specify the point size;

eg.,

(Famly "fixed")
(Wi ght Nanme " nmedi um')

(Sl ant

)

(Wdth "normal ")
(PointSize 120))

122 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Leaf

An integer-valued scroll bar interactor. The full range of the scroll bar is gray, and the “thumb” isa
whiterectangul ar stripe somewherewithinthescroll bar. The scroll bar representstheinterval [M n
Max] , and the thumb represents the subinterval [Val ue .. (Val ue+Thumb)].

Val ue ¢ (Integer, 50)
The current value; always between Min and Max-Thumb, inclusive.

M n e (Integer, 0)
The minimum value alowed.

Max e (Integer, 100)
The maximum value alowed. Vaue iswithin Min and Max-Thumb.

Thunb < (Cardinal, 0)
A non-negative number no greater than Max-Min.

Step o (Cardind, 1)
The amount to increment or decrement Value when “continuous scrolling.”

Verti cal (Boolean, FALSE)
If true, the scroll bar is oriented vertically, from south (Min) to north (Max).
Otherwise, the scroll bar goes from west to east.

CONTINUED...

Behavior

Notes

Shape

<= Hin

<= Yalue

<= Hax

123

The user can adjust the position of thethumb withthe mouse. For the sake of explana
tion, suppose that the scroll bar is adjacent and attached (viaan application program)
to a column containing the numbers Min through Max. At any given time, Thumb+1
of the numbers (i.e., Value through Value+Thumb) are visible in the attached view.

The semantics of the mouse are as follows: A left click scrolls the view towards its
end by moving the number at the mouse so it becomes the first number visiblein the
view. A right click scrollstheview towardsits beginning by bringing thefirst number
visiblein the view to the position of themouse. A middleclick scrollstheview tothe
mouse by bringing the top of the thumb to the position of the mouse. Holding theleft
or right button without moving the mouse will cause (after a short time) continuous
scrolling to begin. 1f you then drag the mouse, any continuousscrolling isterminated
and the view scrollswith the mouse.

An event is generated after each time the Value of the scroll bar is changed. That can
happen after any click, while continuous scrollingisin effect, and while dragging the
mouse. When continuous scrolling causes the thumb to reach itslimit, the scroll bar
doesn’t continueto generate events, since the value is no longer changing.

It is not unreasonable for the application to modify properties of the scroll bar (the
thumb, in particular) while processing an event.

The scroll bar does not allow canceling.

Vertica diders have a minimum size of 13x27 pixels, with infinite vertical stretch.
Horizonta dlidershaveaminimumsizeof 27x13 pixels, withinfinitehorizonta stretch.

<= Yalue + Thunb

€= Hax - Thunb

124 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Shape Filter

The Shape filter is used for putting size-constraints on a component.

Hei ght (Size)
W dt h (Size)

See Also Sections 3.6 and 3.6.1

125

Filter

A Source component is afilter, used for drag-and-drop actions. It generates an event on an uncan-
celled upclick. A typical event-handler will theninquirethe Act i veTar get property to determine
whether the Source is over a Target and take some action if it is. For example, a source-icon repre-
senting a file might delete the file when it is dragged and released over a target-icon representing a
“trash can.” A tilingwindow manager might make every window both a Source and Target to permit
windowsto be exchanged.

Acti veTarget < (Text) The name of the component over which the Source islocated. This
property isignored when the Source is defined; it only has a value while the
callback associated withthe Sourceisactive. Thecal toFor ms VBT. Get Text Pr operty
raises an Er r or exception if the Sourceis not over avalid Target on an un-
cancelled upclick or if the Target does not have a name.

Behavior If the Source is located over a Target when the mouse-button is down, the Source's
hi t method is called.

See Also Target

126 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Stable Filter
The Stablefilter is used to mask out changes to its child's preferred size.

Shape Themax and min areitschild’smax and min size. The preferred sizeisthe projection
of itsown sizeinto the child'ssizerange. Itsown sizeisitscurrent sizeif thisisnon-
empty, or itslast non-empty size otherwise.

Notes A Stableis part of a ZChassis. In this way, whenever the user changes the size of
a subwindow, that size will take precedence over any new size preferences given by
the ZChassis's child. A Stableis also inserted automatically by Trestle whenever a
window isinstalled.

127

Target Filter

A Target isafilter that marks its child as a destination for a Source component.

Behavior By default, a Target component inverts its highlighting when there is a Source com-
ponent overlapping it.

See Also Source

128 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Text Leaf
Displaysasingle-linetext string. By default, the string is centered horizontally and verticaly.

Contents (Mai n takes precedence):

Mai n o (Text)
The text.

From (Text)
The name of aresource from which the text will be taken.

Centering choices (mutually exclusive):

Cent er (Boolean, TRUE)
Causes the text to be centered.

Left Align (Boolean, FALSE)
Causes the text to be | eft-aligned.

Ri ght Al'i gn (Boolean, FALSE)
Causes the text to be right-aligned.

Mar gi n (Real, 2. 0)
Forces thismany pointsof margin on the east and west sides of the text.

Shape The bounding rectangle of the text when rendered in the current Label Font, plus2 *
Mar gi n in each axis.

Notes Text components use the Label Font property, not the Font property.

129

TextEdit L eaf

A multi-line, editable text with a scrollbar.

Contents (Val ue takes precedence):

Val ue (Text," ™)
The contents.

From (Text)
The name of aresource from which the text will be taken.

ReadOnly e (Boolean, FALSE)
If true, the text will not be editable.

dip (Boolean, FALSE)
If true, thelong lineswill be clipped, not wrapped.

Tur nMar gi n (Real, 2. 0)
If long lines are wrapped, then a small grey bar will appear at the end of the
first line and the beginning of the next to indicate that the line was wrapped.
TurnMargin specifies the width of the grey bar.

NoScr ol | bar (Boolean, FALSE)
If true, there will be no scrollbar or thin line to the | eft of the text area

Fi r st Focus (Boolean, FALSE)
If true, and if this TextEdit isin a subwindow or TSplit-child, then when that
component appears, this TextEdit will acquire the keyboard focus. See the
note about the Typeln’'s FirstFocus property.

Posi tion e (Cardinal, N/A)
The position of the cursor.

Lengt h e (Cardinal, N/A)
The number of charactersin the text.

Notes The Positionand Length propertiesare unusua because they cannot be specified inthe
s-expression; they may only beaccessed at runtimeusing For nsVBT. Get | nt eger Property
and For ms VBT. Put | nt eger Property.

Notes For details on the editing commands, see the description of TextPort in the VBTkit
Reference Manual[2].

Notes Thisform produces an object that isa subtypeof Text Edi t VBT. T, which contains
aText Port. Tand (optionaly)aText Port . Scr ol | bar . To override methods
suchasfilt er onthetextport, the client should use ther eal i ze method of the
For ms VBT. T; see Section 4.7, page 69 for an example.

See Also Typeln and Typescript

130 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Texture Leaf

Displays arectangle in some texture.

Mai n (Texture)
The name of a pixmap-resource used for the texture. The default isto use

Pi xmap. Sol i d for thetexture.

Local Ali gn (Boolean, FALSE)
If true, the textureis aligned to the northwest corner of the underlying VBT.
Otherwiseg, it's aligned with the coordinate origin. Note that al other interac-
torsthat use textures are necessarily aligned with the coordinate origin.

Shape Zero size and infinitely stretchable in both dimensions.

See Also Pixmap

131

TrillButton Filter

A button, generates an event on the down-click and continuesto generate events whilethe mouseis
held down over the button.

Behavior Highlights on down-click, and generates an event. If held long enough, generates
eventsrepeatedly until released, canceled (by chording), or moved outsidethedomain
of the button. When moved outside the button and till held, events are suspended
until the mouse isreturned to the domain of the button. At that point, the buttonisre-
highlighted and event generation is resumed. The button is unhighlighted when the
button isreleased or cancel ed.

Notes The initial hold-period and the repeat-period should ultimately be governed by an
application-independent user profile.

Shape The natural shape of its child (i.e., with no shrink or stretch), plus the border around
the button.

132 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

T Split Split

Organizesits children temporally: exactly one childisvisibleat any given time.

Val ue ¢ (Cardinal, 0)
Which child is currently shown. The first child is numbered O.

VWi ch (Symbol)
The name of the currently visiblechild. If both Value and Which are specified,
they must refer to the same child.

Circul ar (Boolean, FALSE)
If true, makes the TSplit view itschildren asacircular rather than alinear list,
thereby changing the behavior of PageButton.

Fl ex (Boolean, FALSE)
If true, the TSplit will change shape to fit the shape of the child on display at
themoment. Otherwise switchingthevisiblechild never changesthe TSplits's
shape. A change of shape can lead to resizing that cascades throughout the
entireform, so use with care.

Behavior TSplit hasno direct interactive behavior, but theuser can change which childisshown
by using PageButton and LinkButton.

Shape If Flex isfase, the natural width and height are separately computed as the maximum
of the natural widths and heights of the children. If Flex istrue, shapeisidentica to
the shape of the currently displayed child.

See Also LinkButton, LinkM Buttonm, PageButton, and PageM Button

133

L eaf

A single-line editable text.

Contents (Val ue takes precedence):

Val ue e (Text,"")
The current text.
From (Text)
If present, names a resource from which the initial text will be taken.
ReadOnl y (Boolean, FALSE)
If true, the text-areawill not be editable.
ExpandOnDenand (Boolean, FALSE)

Fi r st Focus

TabTo

Tur nMar gi n

If true, thetext areawill grow and shrink vertically, asrequired, to contain the
entiretext.

(Boolean, FALSE)

If true, and if this Typeln isin a subwindow or TSplit-child, then when that
component appears, this Typeln will acquire the keyboard focus, and its text
will be selected in replace-mode. See the notes bel ow.

(Symbol)

If given, thisisthe name of the component to which the keyboard focus wil
be transferred when the user types Tab.

(Red, 2. 0)

If long lines are wrapped, then a small grey bar will appear at the end of the
first line and the beginning of the next to indicate that the line was wrapped.
TurnMargin specifies the width of the grey bar.

CONTINUED...

134 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Behavior Thisisatext editor, normaly used for small type-infields.
Typing Return generates an event.

Extensive application control can be exercised by direct calls on procedures in the
Text Port interface.

Shape Thewidthisinitially 30 timesthewidth of thewidest character inthefont. It hasinfi-
niteshrinkability and stretchability. Itisinitially onelinehigh. If ExpandOnDenand
isfalse, thenit awayskeepsthat height; otherwise, the height changesto accomodate
the entiretext, but never lessthan oneline. In any case, thereisno vertica stretch or
shrink.

Notes For detail s on the editing commands, see the description of the TypeinVBT interface
in the VBTkit Reference Manual[2].

Notes The FirstFocus property only works when the Typeln isin a subwindow or TSplit-
child. If you'd like a Typeln in the top-level window to grab the keyboard when the
mouse first enters the window, you can override the position method of the form to
grabthefocusthefirst time(and only thefirst time!) that the mouse entersthewindow.
Here's how to do that.

Here's how to subclass the form:

TYPE
MyForm = FormsVBT. T OBJECT
graphFocus: BOOLEAN : = TRUE;
firstFocus: TEXT; (* nane of widget to grab focus *)
OVERRI DES
position := MyPosition;
END;

And here is what the position method | ooks |ike:
\ begi n{ver bati nt
PROCEDURE MyPosition(sel f: MyForm READONLY cd: VBT. PositionRec) =
BEG N
FormsVBT. T. posi tion(sel f, cd);
| F sel f.grabFocus THEN
For meVBT. TakeFocus(sel f, self.firstFocus, cd.tine);
sel f. grabFocus : = FALSE
END
END MyPosi tion

See Also TextEdit and Typescript

135

Typescript Leaf

Thisislike a TextEdit component, but the underlying VBT class provides areader and a writer for
accessing the text. The lines of text that have been read become read-only as far as the editor is
concerned. It isuseful for “transcripts.” With a small amount of Modula-3 code, you can connect
the reader and writer to pipesthat run a command interpreter. Typescripts always have scrollbars.

ReadOnl y (Boolean, FALSE)
If true, the text-areawill not be editable.

dip (Boolean, FALSE)
If true, thelong lineswill be clipped, not wrapped.

Tur nMar gi n (Real, 2. 0)
If long lines are wrapped, then a small grey bar will appear at the end of the
first line and the beginning of the next to indicate that the line was wrapped.
TurnMargin specifies the width of the grey bar.

Fi r st Focus (Boolean, FALSE)
If true, and if this component is in a subwindow or TSplit-child, then when
that component appears, this component will acquire the keyboard focus, and
itstext will be selected inreplace-mode. Seethe noteabout the Typeln’sFirst-
Focus property.

Notes For details on the editing commands, see the description of TextPort in the VBTkit
Reference Manual[2]. The following code showsthe Modula-3 code for accesses the
underlying reader and writer:

WTH v = FornmsVBT. Get VBT(fv, "typescript") DO

rd : = Typescript VBT. Get Rd(V) ;
wr = Typescri pt VBT. Get W (V) ;
END;

See Also TextEdit and Typeln

136 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

VBox Split

Organizes its children vertically, in order from top to bottom. If it is taller than the sum of its chil-
dren’s heights, the excess is distributed equally among al stretchable children, as far as they will
stretch. If al stretchability is exceeded, the excess will be given to thelast child. If it isshorter than
the sum of itschildren’sheights, it clipson the bottom, perhaps making some children entirely invis-
ible. All children have width equal to thewidth of the VBox. Section 3.6 explainsthe layout model
in detail.

Shape The height isthe sum of its children’s heights; the width is the maximum of the chil-
dren’swidths, but is stretchable only if al of them are.

See Also HBox

137

Viewport Filter

A Viewport is afilter that provides scrollbars (horizontal and/or and vertical) to let you scroll over
its child-component when the child’s preferred size is bigger than the Viewport'ssize.

Step (Cardinal, 10)
The number of pixelsto move while auto-scrolling.

Scrolling choices (mutually exclusive):

Hor AndVer (Boolean, TRUE)
Thisputsahorizontal and vertical scrollbar on every view, and a“reset” button
in the southwest corner that moves the northwest corner of the child to the
northwest corner of the view.

Hor Onl y (Boolean, FALSE)
Places ahorizonta scrollbar at the bottom of the Viewport, and none at theleft
side.

Ver Only (Boolean, FALSE)
Places avertical scrollbar on theleft side of the Viewport, and none at the bot-
tom.

Behavior Meta|eft-click in ascrollbar splitsthe view, and meta-right-click removesthe current
view.

See Also Scroller

138 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

VPack Split Split

Organizes its children vertically, in order from top to bottom, like paragraphs in a newspaper. The
childrenin any given column havetheir west boundariesaligned, and al childrenthat arefirstintheir
column have their north borders equal to the north border of the parent. A child isvertically clipped
only if itsrequested vertical size exceedsthe parent’svertical size; inthiscase thechild will bealone
initscolumn.

HGap (Redl, 2.0)
This many points separate each column of children.

VGap (Red, 2.0)
This many points separate each child vertically.

Backgr ound (Text, “White”)
Inter-children (HGap), inter-row (V Gap), and end-of -linespaces are displayed
inthistexture.

Shape The shape isunconstrained in the vertical axis.

See Also HPackSplit

139

VTile Split

Organizes its children vertically, in order from top to bottom, with an adjusting bar between each
child. The adjusting bar allows the user to move the boundary between the children, subject to the
size range alowed by each child.

Shape The height isthe sum of its children’sheights; the width is the maximum of the chil-
dren’swidths, but is stretchable only if al of them are.

See Also HTile

140 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

ZBackground Filter

ZBackground is afilter that should be put around the first (background) child of a ZSplit. Thisfil-
ter will clip highlighting that takes place within the background child from the other children of the

ZSplit.

See Also ZSplit, ZChassis, and ZChild

141

ZChassis Filter

A handy setup for a standard, titled, draggable subwindow (a non-background child of a ZSplit).
The top of the subwindow contains a banner with a close button, atitlethat can be used to drag the
window, and a grow button.

At (List,0.5 0.5)
This determines theinitial position of the subwindow. See ZChild.

Open (Boolean, FALSE)
If true, the subwindow isinitially visible. See ZChild.

Title (Sx, (Text "<Unnaned>"))
Thisisthe text inside the draggabl e part of thetitle bar.

NoCl ose (Boolean, FALSE)
If true, the close button is omitted.

Shape Shape of itschild plus borders, frames, and thetitle bar.

See Also ZSplitand ZChild

142 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Except for some detail s of the feedback and the handling of keywords, ZChassi s could be defined
by a macro:

(Macro ZChassis ((Open FALSE)

(At (0.5 0.5))
(Title "<Untitled>")
chil d)
“(ZChild
(Qpen , Open)
(At , @\)
(Stable
(Bor der
(VBox
(HBox
(A oseButton "C")
Bar
(Shape (Wdth + Inf) (ZMove ,Title))
Bar
(ZGow "G"))
Bar

(Frame ,child))))))

143

ZChild Filter

A hook on which to hang various properties (such as At and Name) that control the behavior of an
overlapping subwindow.

At (At,0.5 0.5)
Position, as discussed in Section 3.7.

Open (Boolean, FALSE)
If true, thesubwindow isinitiallyvisible. Otherwise, itisinvisibleuntil opened
by user or program action (typically via PopButton or PopMButton). Open
subwindowsare useful for achieving layoutsthat cannot be achieved by a hi-
erarchy of HBoxes and VBoxes.

Notes In practice, most overlapping subwindowsbegin withaZChildwith properties. ZChild
itself has no interactive behavior or appearance, but because it is a HighlightVBT, it
ensures that Buttonsand other descendants that al so highlight by HighlightVBT don’t
visually interfere with other overlapping subwindows.

See Also ZSplit and ZChassis

144 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

Filter

Thisbutton hastheside effect of reshaping itsnearest subwindow-ancestor. A ZGrow buttonisthere-
foreuseful inaZChild.

See Also ZChassisand ZSplit

145

Filter

A button that has the side effect of repositioning its nearest ancestor that’s a non-background child
of aZSplit. A ZMove buttonistherefore useful in aZChild (see ZChassis).

See Also ZChassisand ZSplit

146 APPENDIX A. FULL DESCRIPTION OF COMPONENTS

ZSplit Split

Organizes its children as overlapping subwindows. The first child is special: it is the background,
and it underliesall overlapping windows and defines the shape of the ZSplit itself. The background
child should be enclosed in aZBackground form. It’srecommended that non-background children of
ZSplit be either ZChild or ZChassis, since thoseinteractors support position control, non-interfering
highlighting, and so on.

Shape The shape of its background child.

See Also CloseButton, ZChassi's, ZChild, ZMove, and ZGrow

B. Miscellaneous | nterfaces

This appendix describes interfaces that are of interest to FormsVBT programmers.

TheCol or Narre interface describesthe namesthat are permittedin FormsVBT col or-expressions,
eg., (BgCol or "VividTomat 0"). While these names are useful to al FormsVBT program-
mers, the proceduresin the interface will be useful primarily to VBTkit programmers.

TheXTr est | e interface providesutility proceduresfor handling thedisplay and geometry command-
line parameters that usethe X server.

You should use use XPar aminterface instead of XTr est | e if your application installs more
than one top-level window.

The FVTypes interface provides the type definitions of the VBT classes implementing each
FormsVBT component. Clientsthat overridether eal i ze method will need to access thisinter-
face.

TheRsr ¢ interface describes how constant data (texts, pixmaps, form-descriptions, etc.) can be
combined with a program.

147

148 APPENDIX B. MISCELLANEOUS INTERFACES

B.1 The ColorNamelnterface

TheCol or Narre interface providesastandard mapping between color namesand linear RGB triples.
Theimplementation recognizesthefollowingnames, based onthosefoundin/ usr /I i b/ X11/rgh. t xt:

AliceBl ue For est Green M nt Cr eam SandyBr own
AntiqueWhite i Gainsboro M st yRose i SeaG een i
Aquamari ne i Ghost Wi te Moccasi n Seashel | i
Azure 7 ol d 7 Navaj oWwiite | Sienna 7
Bei ge Gol denrod ¢ Navy SkyBl ue 7
Bi sque Col denr odYel ow NavyBl ue Sl at eBl ue ¢
Bl ack Gay i A dLace SlateGay t
Bl anchedAl nond Green ¢ AiveDrab § Sl ateG ey
Bl ue 7 GreenYel | ow AiveGeen j Snow

Bl ueVi ol et Gey i Orange ¢ Spri ngG eenj
Brown 7§ Honeydew { O angeRed ¢ St eel Bl ue ¢
Bur | ywood Hot Pi nk ¢ O chid ¢ Tan ¢

Cadet Bl ue ¢ I ndi anRed 7 PapayaWwi p Thistle
Chartreuse 7 lvory ¢ PeachPuf f i Tomat o 7
Chocol ate ¢ Khaki ¢ Per u Tur quoi se 7
Coral i Lavender Pi nk 7 Vi ol et

Cor nfl ower Bl ue LavenderBlush § Plum § Vi ol et Red 7
Cornsilk i LawnG een Powder bl ue VWheat 7
Cyan 7 LenonChi ffon i Purple i VWite
DeepPi nk 7 Li meGreen Red i Wi t eSnoke
DeepSkyBl ue 7 Li nen RosyBr ownj Yel | ow 7
Dodger Bl ue § Magenta § Royal bl uef Yel | owGr een
Firebrick i Mar oon Saddl eBr own

Fl oral Wiite M dni ght Bl ue Sal mon ¢

The dagger (1) indicatesthat the implementation recognizes aname along with the suffixes 1-4;
eg., Red, Red1, Red2, Red3, and Red4.

The double dagger (1) indicatesthat theimplementation al so recognizes the names with the suf-
fixesO through100. Thatis, G- ay0,Gr ayl,..., G ay100,aswell asGr ey0,G ey1,..., G ey100.

B.1. THE COLORNAME INTERFACE 149

In addition, the name of a color C' from thislist can be prefixed by one or more of the following
modifiers:

Term Meaning
Li ght .
Pal e 1/3 of theway from C' to white
Dar k
Oi m 1/3 of theway from C' to black
Dr ab

1/3 of theway from C' to the gray

\éu\éla:(with the same brightnessas C
Vivid 1/3 of theway from ' to the purest color
Strong]
. with the same hueas C
Bri ght
Reddi sh 1/3 of theway from C' to red
G eeni sh 1/3 of theway from C' to green
Bl ui sh 1/3 of theway from C' to blue

Yel | owi sh 1/3 of theway from C' to yellow

Each of these modifiers can be modified in turn by the following prefixes, which replace “ 1/3 of
theway” by the indicated fraction:

Term Degree % (approx.)
VeryVerySlightly | Y16 of theway | 6%
VerySlightly 1/8 of the way 13%
Slightly 1/4 of the way 25%
Sonmewhat 3/8 of theway 38%

Rat her 1/2 of the way 50%
Quite 5/8 of the way 63%

Very 3/4 of theway 75%
VeryVery 7/8 of theway 88%
VeryVeryVery 15/16 of theway | 94%

The modifier Medi umis also recognized as ashorthand for Sl i ght | yDar k. (But you cannot use
Ver yMedi um)

| NTERFACE Col or Nane;

| MPORT Col or, TextList;

EXCEPTI ON Not Found;

PROCEDURE ToRGB (name: TEXT): Col or. T RAI SES {Not Found};

Give theRGB. T value described by name, ignoring case and whitespace. A cache of unnormalized names is
maintained, so this procedure should be pretty fast for repeated |ookups of the same name.

150 APPENDIX B. MISCELLANEOUS INTERFACES

PROCEDURE NaneList (): TextList.T,

Return a list of all the “basic” (unmodified) color names known to this module, as lower-case TEXTS, in
alphabetical order.

END Col or Nanre.

B.2. THEXTRESTLE INTERFACE 151

B.2 The XTrestlelnterface

XTr est | e checks for X-style“- di spl ay” and “- geonet r y” command-line switches and in-
stalls atop-level window accordingly. If your application install more than one top-level window,
you may find the routinesin the XPar aminterface helpful.

| NTERFACE XTrestl e;

| MPORT Trestl eComm VBT;

EXCEPTI ON Error;

PROCEDURE Install (v : VBT. T;

appl Nanme . TEXT = NL;

i nst o TEXT 1= NL;

wi ndowTi tl e: TEXT 1= NL;
iconTitle : TEXT 1= NL;
bgCol or R : REAL 1= -1.0;
bgCol or G : REAL 1= -1.0;
bgCol or B : REAL 1= -1.0;

i conWndow : VBT. T ;= NL)

RAI SES {Trest|l eCorm Failure, Error};
<* LL.sup = VBT.nmu *>

ThisislikeTrest | e. | nst al | except that the locking level is different and the command line is parsed for
X-style- di spl ay and- geonet ry options.

END XTrestl e.

The syntax of these switchesis described in the X manpage and in The X Window System [9].

If thereisa- di spl ay argument, it will be made the default Trestle connection for those pro-
ceduresintheTr est | e interfacethat takea Tr est | e. T as a parameter.

TheTr est| eComm Fai | ur e exceptionisraised if acall toTr est | e raises that exception.
TheEr r or exceptionisraised if the parameter following- di spl ay or - geonet r y containsany
syntax errors (or ismissing).

152 APPENDIX B. MISCELLANEOUS INTERFACES

B.3 The XParam Interface

TheXPar aminterface providesutilitiesfor handling X-style- di spl ay and- geomnet r y command-
linearguments. If your application installsasingletop-level window, the XTr est | e interface may
be more appropriate than thisinterface.

| NTERFACE XPar am
| MPORT Point, Rect, Trestle, TrestleComm

Here are routinesfor manipulating the - di spl ay argument:

TYPE
Di spl ay = RECORD
host nane: TEXT =
di splay : CARDI NAL : = O;
screen : CARDI NAL := O;
DECnet : BOCLEAN := FALSE
END;

PROCEDURE Par seDi spl ay (spec: TEXT): Display RAISES {Error};
<* LL = arbitrary *>

Return a parsed version of the- di spl ay argumentinspec.

For example, if spec containsthestringnyrt | e. pa. dec. com 0. 2, therecord returned would
be

Di spl ay{hostnanme := "nyrtl e. pa. dec. cont,
display := 0, screen := 2, DECnet := FALSE}

PROCEDURE Unpar seDi spl ay (READONLY d: Display): TEXT;
<* LL = arbitrary *>
Return the text-version of the- di spl ay argumentd.

Here are routinesfor manipulating the - geomnet r y argument:

CONST M ssing = Point. T{-1, -1};

TYPE
Ceonetry =
RECORD
vertex := Rect.Vertex.NW (* corner for displacenent *)
dp = Point.Origin; (* displacenent *)
si ze = M ssing; (* width, height *)

END;

B.3. THE XPARAM INTERFACE 153

PROCEDURE Par seCGeonetry (spec: TEXT): Geonetry RAISES {Error};
<* LL = arbitrary *>

Return a parsed version of the- geonet ry argumentinspec.
For example, if spec containsthe string 1024x800- 0- 10, the returned record would be

Ceonetry {Rect. Vertex. SE,
Point.T {0, 10},
Point. T {1024, 800}}

Thesi ze fiedddefaultstoM ssi ng. Thehorizontal and vertical displacementsdefaulttoPoi nt . Ori gi n
(no displacement). The displacements are always positive values; use thever t ex field to find out
from which corner they are to be offset.

PROCEDURE Unpar seCGeonetry (READONLY g: Geonetry): TEXT;
<* LL = arbitrary *>

Return the text-version of the- geonet ry argumentg.

PROCEDURE Position (trsl: Trestle. T,
id : Trestle.Screenl D
READONLY g : Ceonetry): Point.T

RAI SES {Trest| eConm Fai | ure};
<* LL.sup = VBT.mu *>

Return the position specified by g in the screen coordinates for the screenlD i d on the window system
connectedtotrsl (cf. Trest| e. Get Screens). Thevalueof g. si ze must not beM ssi ng, unless
g. vert ex isthe northwest corner.

Here isthe definition of the Er r or exception:

TYPE
Info = OBJECT
spec : TEXT,
i ndex: CARDI NAL
END;
Geonetrylnfo = I nfo BRANDED OBJECT END;
Di splaylnfo = Info BRANDED OBJECT END,

EXCEPTI ON Error (I nfo);
Parsing errors are reported with the text (spec) and position (i ndex) of thefirst illegal character in the text.

END XPar am

154 APPENDIX B. MISCELLANEOUS INTERFACES

An example

Hereisan example of how to usethisinterfacetoinstall aVBT v asatop level window, obeying the
display and geometry arguments given to the application. It relies on the Par ans interface, which
providesthe number of arguments passed to the program, Par ans. Count , and a procedureto re-
trieve the value of the nth argument, Par anms. Get (n) .

EXCEPTI ON Error (TEXT);
VAR
di spl ay, geonetry: TEXT := NL;
d: XParam Di spl ayRec;
g: XParam Geonetry;
i: CARDI NAL : = 1,
BEG N
LOCP
IF i >= Parans. Count - 1 THEN EXI T END,
W TH argunment = Paranms. Get (i) DO
| F Text. Equal (argunent, "-display") THEN
di splay := Parans. Get (i + 1);
TRY d : = XParam ParseDi spl ay (di spl ay)
EXCEPT XParam Error (info) =>
RAI SE Error ("lIllegal -display argument:
& i nfo. spec)

END;
INC (i, 2)
ELSI F Text.Equal (argument, "-geonetry") THEN
geonetry := Params. Get (i + 1);
TRY
g : = XParam ParseCeonetry (geonetry);
| F g.size = XParam M ssi ng THEN

W TH shapes = VBTC ass. Get Shapes (v, FALSE) DO
g.size.h := shapes [Axis.T.Hor].pref;
g.size.v := shapes [Axis.T.Ver]. pref

END

END
EXCEPT XParam Error (info) =>
RAI SE Error ("lllegal -geonmetry argunent: "
& i nfo.spec);
END;
INC (i, 2)
ELSE I NC (i)

END (* 1F *)

B.3. THE XPARAM INTERFACE 155

END (* WTH *)
END; (* LOOP *)

At thispoint, if di spl ay isnon-NI L, then d containsthe informationfrom the- di spl ay ar-
gument. Similarly, if geonet r y isnon-NI L, theng containstheinformationfromthe- geonet ry
argument. If the window-si ze specificiation was missing, the preferred shape of thewindow is used.

Finally, we now processthe di spl ay and geonet r y information:

VAR
trsl := Trestle. Connect (display);
screen: CARDI NAL;

BEG N

Trestlelnmpl. Set Default (trsl);

Trestle. Attach (v, trsl);

Trestle.Decorate (v, ...);

| F geonetry = NIL THEN
Trestl e. MoveNear (v, NL)

ELSE
St abl eVBT. Set Shape (v, g.size.h, g.size.v)
IF d = NL THEN

screen := Trestle.Screentf (v, Point.Origin).id
ELSE

screen : = d.screen
END;

Trestle. Overlap (
v, screen, XParam Position(trsl, screen, g))

END (* 1F *)
END (* BEG N *)
END; (* BEG N *)

The cal to Trest | el mpl . Set Def aul t establishes the value of the - di spl ay argument as
the default Trestle connection. The call to St abl eVBT. Set Shape isused to control the size of a
top-level window. The Tr est | el npl and St abl eVBT interfaces are part of Trestle.

156 APPENDIX B. MISCELLANEOUS INTERFACES
B.4 TheFVTypesinterface

This interface declares atype for each component in the language. A client wishing to subclass the
VBT used by a component should be sure that the VBT returned by the overrideVBT method is a
subtype of typelisted here.

| NTERFACE FVTypes;

| MPORT Audi oVBT, AnchorSplit, AnchorHel pSplit, Bool eanVBT, BorderedVBT, Choi ceVBT,
Fi | eBrowser VBT, Filter, FlexVBT, Font, FornsVBT,
Guar dedBt nVBT, HVSplit, H ghlightVBT, ListVBT,
MenuSwi t chVBT, NunericVBT, PackSplit, PaintOp, PixmapVBT,
ProperSplit, ReactivityVBT, ScaleFilter, ScrollerVBT, Shadow,
ShadowedVBT, ShadowedBar VBT, Sour ceVBT,
Splitter VBT, StableVBT, SwitchVBT, TSplit, TextEdit VBT,
Text Port, TextureVBT, TextVBT, Trill Sw tchVBT, Typei nVBT,
Typescri pt VBT, VBT, Vi deoVBT, ViewportVBT, ZChassi sVBT,
ZG owWBT, ZMoveVBT, ZChil dVBT, ZTil ps;

| MPORT St ubl mageVBT AS | nageVBT;

TYPE
FVAny = VBT. Leaf; (* just an alias *)
FVAnyFilter = Filter.T; (* just an alias *)

FVAnySplit = ProperSplit.T; (* just an alias *)

FVAudi o = Audi oVBT. T BRANDED OBJECT END;
FvBar = Fl exVBT. T BRANDED OBJECT END;
FVBool ean <: Bool eanVBT. T,
FVBor der = BorderedVBT. T BRANDED OBJECT END,
FVBr owser =
Li st VBT. T BRANDED OBJECT END; (* requires a Uni Sel ector *)
FVButton <: SwitchVBT.T;
FVChi sel = ShadowedBar VBT. T BRANDED OBJECT END,
FVChoi ce <: Choi ceVBT. T;
FVd oseButton <: Publicd oseButton;
FVDi rMenu = Fi |l eBrowser VBT. Di r Menu BRANDED OBJECT END;
FVFi | eBrowser <: Fil eBrowserVBT. T;
FVFill = FlexVBT. T BRANDED OBJECT END,
FVFilter = ReactivityVBT. T BRANDED OBJECT END;
FVFrame = ShadowedVBT. T BRANDED OBJECT END;
FVGeneric = Fl exVBT. T BRANDED OBJECT END;
FVA ue = Fl exVBT. T BRANDED OBJECT END;,
FvQuard <: GuardedBtnVBT.T;
FVHBox <: HVSplit.T;
FVHPackSpl it = PackSplit.T;

B.4. THE FVTYPESINTERFACE

FVHTi l e <:

FVHel p <
FVHel per

FVI mage <:
FVI nt Apply <: IntAppl yPublic;

FVLi nkButton <: Swi tchVBT. T;

FVLi nkMButton <: MenuSwi t chVBT. T;
FVMButton <: MenuSwi t chVBT. T;

FVMenu <

SplitterVBT. T,

Anchor Hel pSplit.T;
Fi | eBrowser VBT. Hel per BRANDED OBJECT END;
| mageVBT. T;

Anchor Split.T;

FVvMul ti Browser =

Li st VBT. T BRANDED OBJECT END; (* requires a Milti Sel ector

FVNuneric <: NunericVBT.T;
FVPageButton <: PublicPageButton;
FVPageMButt on <: PublicPageMButt on;

FVPi xmap

Pi xmapVBT. T BRANDED OBJECT END;

FVPopButton <: Sw tchVBT. T;
FVPopMButton <: MenuSwi t chVBT. T;

FVRadi o
FVRi dge

Publ i cRadi o;
ShadowedBar VBT. T BRANDED OBJECT END;

FVRi m = Bor deredVBT. T BRANDED OBJECT END;

FVvScal e

FVvScrol | er

FVShape

FVSour ce
FVSt abl e
FVTSplit
FVTar get
FVText =

Text Edi t VBT. T BRANDED OBJECT END; (* requires a Port

<

Scal eFilter. T BRANDED OBJECT END;
<: ScrollerVBT. T,

Fl exVBT. T BRANDED OBJECT END;
SourceVBT. T;

St abl eVBT. T BRANDED OBJECT END;

PublicTSplit;

Filter. T BRANDED OBJECT END;

Text VBT. T BRANDED OBJECT END;
FVText Edi t

FVTexture = TextureVBT. T BRANDED OBJECT END;
FVTrillButton <: Trill SwitchVBT. T;

FVTypel n <: Typei nVBT. T;

FVTypescri pt = Typescript VBT. T BRANDED OBJECT END;

FVVBox <

FWTile <:
FWi deo = Vi deoVBT. T BRANDED OBJECT END;
FWi ewpor t
FVZBackground = Hi ghlight VBT. T BRANDED OBJECT END;
FVZChassis <: ZChassi sVBT. T;

FVZChild = ZChi | dVBT. T BRANDED OBJECT END;

FVZG ow =

FVZMove

HVSplit. T,
SplitterVBT. T,

= Vi ewport VBT. T BRANDED OBJECT END;

ZG owBT. T BRANDED OBJECT END;
ZNMoveVBT. T BRANDED OBJECT END;

*)

*)

157

158

FVZSpl it

TYPE Uni Sel ector <:

Li st VBT. Uni Sel ect or;

APPENDIX B. MISCELLANEOUS INTERFACES

= ZTil ps. T BRANDED OBJECT END,

If you create a subtype of FVBr owser, its. sel ect or field must be Nl L or a subtype of FV-

Types. Uni Sel ect or.

TYPE Multi Sel ector <:

If you create a subtype of FVBr owser, its. sel ect or

Types. Mul ti Sel ect or.

TYPE
Port <: PublicPort;
Publ i cPort =
TextPort. T OBJECT
METHODS
init (textedit FVText Edi t;
report Keys BOOLEAN,
f ont Font. T;
col or Schene
wrap, readOnly: BOOLEAN;
turnMargin REAL
END;

Li st VBT. Mul ti Sel ect or;

field must be NI L or a subtype of FV-

Pai nt Op. Col or Schene;

): Port;

If you create a subtype of FVText Edi t , its. t p field must beNl L or asubtype of FVTypes. Port .

TYPE
Publ i cd oseButton =
Swi t chVBT. T OBJECT

METHODS
init (ch: VBT.T; shadow. Shadow. T):
END;
Publ i cPageButton = SwitchVBT. T OBJECT
METHODS
init (ch
shadow
backwar ds:
tsplit
END;

Publ i cPageMButton =
MenuSwi t chVBT. T OBJECT
METHODS

init (ch
shadow

VBT. T;
Shadow. T;

FVd oseButt on

VBT. T;
Shadow. T;
BOOLEAN;

FVTSplit): FVPageButton

B.4. THE FVTYPESINTERFACE

backwar ds: BOOLEAN;
tsplit : FVTSplit): FVPageMButton
END;

PublicRadio = Filter. T OBJECT radi o: Choi ceVBT. G oup END;
PublicTSplit = TSplit.T OBJECT circular := FALSE END;

I nt Appl yPublic =
Filter. T OBJECT

METHODS
init (fv : VBT. T;
ch VBT. T;
name . TEXT,;
property: TEXT ;= NIL): FVIintApply

RAI SES {FornsVBT. Error};
(* raises an error if NOT | STYPE(fv, FornsVBT.T) OR

NOT(| STYPE(ch, FVNuneric) OR I STYPE(ch, FVScroller))

END;

END FVTypes.

*)

159

160 APPENDIX B. MISCELLANEOUS INTERFACES

B.5 TheRsrcinterface

Resources are arbitrary files that are associated with applications. Resources can be bundled into an
application using the mBbundl e facility. They may aso be found in thefile system.

This interface supportsretrieval of resources using a search path. A search pathisalist of ee-
ments, and each element iseither apath or abundle. A pathisadirectory, implemented asaPat hnare. T.
It should aready befully expanded by having called Pat hname. Expand. AbundleisaBundl e. T
object, typicaly created by nBbundl e.

| NTERFACE Rsrc;
| MPORT List, Rd, Thread;

TYPE
Path = List.T; (* of Pathnane.T or Bundle. T *)

EXCEPTI ON Not Found;

PROCEDURE QOpen (name: TEXT; path: Path): Rd. T RAI SES {Not Found};

Search each element of pat h, from front to back, for the first occurrence of the resource called name and
return a reader on the resource. If the path element isastring s, then a reader is returned if

Fi | eStream OpenRead(s & "/" & nane)
issuccessful. If the path element isa bundleb, areader is returned if
Text Rd. New(Bundl e. Get (b, nane))

issuccessful. TheNot Found exception s raised if no element of pat h yields a successful reader on namne.
It isa checked runtime error if pat h containsan element that is neither a string nor a bundle.

PROCEDURE Get (nane: TEXT; path: Path): TEXT
RAI SES { Not Found, Rd.Failure, Thread. Al erted};

A convenienceprocedureto retrieve the contents of the resourcenane asaTEXT. Get islogically equivalent
to

VAR rd : = Qpen(nane);
BEGA N
TRY
RETURN Rd. Get Text (rd, LAST(CARDI NAL))
FI NALLY
Rd. A ose(rd)
END
END;

B.5. THE RSRC INTERFACE 161

The implementation is slightly more efficient, because it takes advantage of Bundl e. Get procedurewhich
returnsthe contents of the bundle element asaTEXT. TheRd. Fai | ur e exceptionisraisedif Rd. Get Text
orRd. d ose report aproblem. TheThr ead. Al ert ed canbe raised by the call toRd. Get Text .

PROCEDURE Bui |l dPath (al, a2, a3, a4: REFANY := NIL): Path;
BuildaPat h from the non-Nl L elements. Each element must be either aBundl e. T or aTEXT. If aTEXT,
the string is passed to Pat hname. Expand andthe result isused, if it'snon-NI L.

Note: Currently, Pat hnane. Expand is not implemented; TEXTs are expanded as follows: Thetextis
assumed to be the name of a directory, unlessit startswith adollar sign. In the latter case, it is assumed to be
environment variable and it’s expanded using Env. Get .

END Rsrc.

162 APPENDIX B. MISCELLANEOUS INTERFACES

C. An Annotated Example

In this appendix, we present a complete example of a non-trivia form, the one used for FormsEdit
itself. Thisform uses nearly al of the FormsVBT components, as well as macros.

It will be easier to understand thisform if you can run the FormsEdit program at the same time,
to see what each part of the description looks likein the actua application.

The design of a user interface is not easy. We make no claims about this particular one; it has
been used by afair number people for over a year, athough details have changed. You may have
quite different preferences in fonts, colors, and layout. At the very least, FormsEdit will make it
easy for you to “fix” thisform!

In thisappendix, we present theform hierarchically. We show “line numbers’ along theleft edge,
and each linecontaining an ellipsisisexplained in more detail in a subsequent section, wheretheline
numbers use decimal points.

The following diagram shows the overall structure of the form, which is fairly typical: atop-
level filter of some sort withthe global properties, some macros; and a ZSplit with abackground and
adozen or so subwindows. Whilethe entirefileisfairly long, the structureis smple.

163

(Shape %op ...

(Macro TLA ...
(Macro TRA ...
(Macro SEP ...
(Macro BOX ...
(Macro COMWVAND .. .)
(Macro FINDER ...)
(Macro YESNO .. .)
(Macro CONFIRM . . .)
(Macro FILED ALCG .. .)
(ZSplit
(ZBackgr ound
(VBox (due 3)
(HBox %renubar
(due 3)
Ri dge
(TextEdit %buff
(FINDER ...)))
(ZChassi s %anpage ..
(ZChil d %ot Found ...)
(ZChil d Yabout FE .. .)

~— N N

(ZChassi s %error Popup ..

(ZChassi

(ZChassi

-)

er)

-)

-)

s %°Pwi dt hNuneric ...
(ZChassi s %snapshotDi al og . ..
s Y%unpTabl ePopup ...

(FI LEDI ALOG %penDi al og . ..

(FI LEDI ALOG %5aveAsDi al og . ..
(CONFI RM %qui t Confi rmation ..

APPENDIX C. AN ANNOTATED EXAMPLE

-)

(CONFI RM %swi t chConfirmation ..

(CONFI RM %1 oseConfirmation ..

-)

-)

(YESNO %overwiteConfirmation ..

(YESNO %Revert Di al og

-2)))

-)

C.1. THETOP-LEVEL FILTER 165

C.1 Thetop-level filter

The outermost form is usually afilter where you can place global properties. In thiscase, we use a
Shape filter so that the editing windows can start out with asimilar size.

0 (Shape % op

1 (Wdth 425 - 200 + Inf)

2 (Hei ght 300 - 200 + Inf)

3 (Label Font (Family "new century school book"))
4 (Font "fixed")

5 (BgCol or "Pal eYel | ow")

6 (Li ght Shadow " Ver yVeryLi ght Bl ue")

7 (Dar kShadow "Bl ue")

-)

Onlines1.1 and 1.2, we establish an initial size for the editor window, 425 pointswide and 300
pointstall. It can shrink to 200x200, and it can grow arbitrarily large. Onlines1.3and 1.4, we specify
theinitial fontsfor labels (Text forms) and for al the editable-text areas (TextEdit and Typeln forms).
Since the user will want to align columns of text (i.e., pretty-print the form), it is appropriate to use
afixed-width font. We also include the default colors here.

PRRPRRPRRRRPR

166 APPENDIX C. AN ANNOTATED EXAMPLE

C.2 Simple macros
Thefirst macros are just shorthand: TLA for “Text LeftAlign” and so on.

2 (Macro TLA BQA (x) ‘(Text LeftAlign ,x))
3 (Macro TRA BQA (x) ‘(Text RightAlign ,x))
4 (Macro SEP () '(VBox (G ue 3) Ridge (due 3)))

TLA and TRA are simple, 1-argument macros that are used several times throughout this form.
BOA standsfor “By Order of Argument,” which means that the arguments are passed by position, not
by keyword. Thisalowsustowrite(TLA " Open") ,forexample, insteadof (TLA (x " Open")).

SER, on line 4, isthe simplest form of macro, effectively a constant, since it takes no arguments.
We use it to separate groups of items withina Menu.

C.3. A RECURSIVE MACRO 167

C.3 Arecursvemacro

The BOX macro produces a series of nested, double-bordered boxes.

5.0 (Macro BOX (pens child)

5.1 (IF (= pens "())

5.2 child

5.3 ‘ (Border

5.4 (Pen , (List.Nth pens 0))

5.5 (Rm(Pen , (List.Nth pens 1))

5.6 (BOX (pens ,(List.NthTail pens 2))
5.7 (child ,child))))))

BOX isarecursive macro. It generates expressions of the form

(Border (Pen ...)

(Rm(Pen ...)
(Border (Pen ...)
(Rm(Pen ...)

—))))}

The pens-argument isalist of pen-widths; it must have an even number of el ements. The even-
numbered widths are used for the Borders; the odd-numbered widths are used for the Rims. For
example,

(BOX (pens (2 4)) (child "Hello!"))
expandsinto

(Border (Pen 2) (Rm(Pen 4) "Hello!"))
The expression

(BOX (pens (2 4 5 10)) (child "Hello!"))
expandsinto

(Border (Pen 2)

(Rim (Pen 4)
(Border (Pen 5)
(Rim (Pen 10)
"Hello!"))))

Line 5.1 testswhether there are any pen-widthsleft inthelist. If not, the expansion issimply the
“child,” online5.2. If there are pen-widthsin thelist, then thefirst two areused inlines 5.4 and 5.5,
and therest are passed recursively on line5.6.

168 APPENDIX C. AN ANNOTATED EXAMPLE

C.4 A macrofor menu-items

The COMMAND macro generates menu-items that have some text on theleft (the name of the com-
mand, such as*“Open”), some filler-space in the middle, and a TSplit containing all the possible key-
bindings on the right. A keybinding is the name of a keyboard-equivaent for the command, such
asM-o. FormsEdit allowsyou to change text-editing models, by means of amenu described in Sec-
tion C.11 on page 178. When you do so, it changes all thekeybindingsinall themenus. Inthe Emacs
model, for example, the keybinding for “Open” iswritten M -o, but in the lvy modd, it's 00O.

6.0 (Macro COWAND BCQA (nane | abel k1 k2 k3 k4 (type (MButton)))
6.1 "(,@ype

6.2 , hame

6.3 (HBox

6.4 (TLA , I abel)

6.5 Fill

6.6 (TSplit

6.7 % (SxSynbol . Fr omNane

6.8 (Text. Cat "Model _"

6.9 (SxSynbol . Name (List.Nth nane 1))))
6. 10 (TRA , k1)

6.11 (TRA , k2)

6.12 (TRA , k3)

6.13 (TRA ,k4)))))

The macro generates M Buttons by default, as we see at the end of line 6.0. The button contains
an HBox (line 6.3) that has the left-aligned command-label on the | eft (line 6.4) and the keybinding
on theright (lines 6.6-6.13).

The arguments k1-k 4 are the keybindingsfor the four models. We use the TSplit on line 6.6 to
switch among them. The name of the TSplit is constructed by concatenating the string™ Model * to
the name of the menu-item, eg., " Model _Open" . When the user changes the text-editing model,
the application calls For ms VBT. Put | nt eger (fv, "Mbdel Open", n) tosetthe TSplitto
nth child, where n isthe index that corresponds to the model.

Arguments are passed to this macro by position (BOA), and calls are written as

(COMMAND % 00 . ..)

That's equivalent to writing (COVWWAND (Name foo) ...), sothefirst parameter, nane, is
boundtothelist (Nanme f 00) . To extract the symbol f oo fromthat, wecall (Li st. Nt h nane
1) online 6.9. Passing that symbol to SxSymnbol . Nane produces the string " f 00" , which we
then concatenate to the string " Model _Open” online6.8.

C5 A

C5

MACRO FOR A FINDER-DIALOG 169

A macrofor a Finder-dialog

To provide auser interface for text-searching, we use a“Finder,” aform that containsatype-infield
for the search-string, buttons for finding the first, next, or previous occurrence of that string, and a
buttonto hide theform. See Figure C.1. The application searches through the text (the buttonstell it
whereto start and inwhich directiontolook). If the search succeeds, the matching text ishighlighted.

We

usethisform bothin the main editing window and in the hel p-window, whichiswhy we make

it amacro.

0
1
2
3
4
5
6
7
8

.9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
.24

NNNNNNNNNNNNNNNNSNSNSNSNSNSNSNSNSN

(Macro FINDER (first next prev typein show cl ose)
“(TSplit
Fl ex
G rcul ar
(Li ght Shadow " Wi te")
(BgCol or "VeryPal eBl ue")
(Shape (Height 0) "")
(VBox 9% show
Ri dge
(due 2)
(HBox
(Shape (Wdth + 0) "Find:")
(Shape (Wdth 0 + 3000)
(Frame Lowered
(Typeln %typein (BgCol or "VeryVeryPal eBlue"))))
(4 ue 5)
(Shape (Wdth 0 + 1000)
(Rm(Pen 1) (Button %first "First")))
(Shape (Wdth O + 1000) (ShadowSi ze 2.5)
(Button % next "Next"))

(Shape (Wdth 0 + 1000)
(Rm(Pen 1) (Button %prev "Prev.")))
(4 ue 20)
(Rm (Pen 1) (PageButton %close "C'")))
(Gue 2))))

The FINDER macro expands into a TSplit with two children. The first child, on line 7.6, has

no size

at al; since the TSplit has the Flex property (line 7.2), each child gets the size it wants, so

“displaying” thefirst child is displaying nothing.

170 APPENDIX C. AN ANNOTATED EXAMPLE

IFind:|| First | Next I Prev. | gl

Figure C.1: The Finder dialog

The second childisaVBox, beginningon line 7.7 (see Figure C.1). Since the Finder-dial og ap-
pears at the bottom of the editing and Hel p windows, we separate it from therest withaRidge (a3-D
bar) and 2 points worth of Glue (lines7.8-7.9). Underneath them isan HBox that containsatype-in
field and three buttons: First, Next, and Previous. The Next button isthe default, so it has the same
effect astyping Returninthetype-infield. Toindicatethat it isthe default, it has no Rim, asthe First
and Prev buttonsdo (lines7.17, 7.21). Instead, it uses the same amount of space for its shadow-size
(line7.18): 1 point to match the Rims' Pen-size, plus 1.5 points, which is the default shadow-size,

The (Width 0 + 3000) property on the framed type-in component (line 7.12), and the (Width 0
+ 1000) properties on the three buttons, have the effect of diving the horizontal space into six equa
regions(3+ 1+ 1+ 1), thefirst three of which are givento the type-in. These proportionswill persist
even if the subwindow grows or shrinks.

The“close button,” marked “C,” isaPageButton (line7.23). Sincethe TSplit inwhich it appears
has the Flex property, clicking this button sel ects thefirst child, the one that has no size, so the effect
isto make the entire TSplit disappear.

C.6. AMACROFOR YES/NO DIALOGS 171

Revert to the last version saved?

Figure C.2: Ayes/no dialog.

C.6 A macrofor yes/no dialogs

A yes/no dialog is a simple form containing two buttons; see Figure C.6 for an example. There are
two placesin theformwhere ayes/no dialog isneeded (lines31 and 32); we use thismacro to ensure
that the dialogs look the same.

8.0 (Macro YESNO (Nanme nsg yesNanme noNane)

8.1 “(ZChild % Name

8.2 (BgCol or "VeryPal eGray")

8.3 (Li ght Shadow "White")

8.4 (Dar kShadow " Ver yDar kG ay")

8.5 (Shape (Wdth 300)

8.6 (BOX (pens (2 2 1 26))

8.7 (child

8.8 (VBox

8.9 , MBQ

8.10 (4 ue 20)

8.11 (HBox

8.12 Fill

8.13 (Button % yesNanme (BgCol or "Red")
8.14 (Shape (Wdth 80) "Yes"))

8.15 Fill

8.16 (O oseButton % noNanme (BgCol or "G een")
8. 17 (Shape (Wdth 80) "No"))

8

.18 Fill)))))))

The call to BOX on line 8.6 produces a 2-point Border around a 2-point Rim, which in turn en-
closes a 1-point Border around a 26-point Rim, which surrounds the VBox beginning on line 8.8.

The VBox contains a question (line 8.9), some filler, and two equally spaced buttons (8.13 and
8.16). We use the convention that the “safe” option is always green, and the “dangerous’ optionis
red. Inour case, the safe optionisal so the do-nothing option, so we use aCloseButtonfor “No” (line
8.16).

172 APPENDIX C. AN ANNOTATED EXAMPLE

C.7 A macrofor confirmation dialogs

A confirmation dialog is similar to ayes/no dialog, but it offers the user two choices on how to per-
form some action, plus a third choice of not performing the action at all. For example, the form on
line 30 asks the user whether changes should be saved before closing thefile. The choices are: yes,
close thefile, but save the changes first; no, close thefile, but discard the changes; and don’t close
thefile a all. The third choice is often simply labeled “Cancel,” but a more descriptive label (eg.,
“Don’'t close”) may be more helpful.

.0 (Macro CONFI RM (Name question yesName noNane

©

9.1 cancel Nanme cancel Label)

9.2 “(ZChild % Nane

9.3 (BgCol or "VeryPal eBl ue")

9.4 (Li ght Shadow "Whi te")

9.5 (Dar kShadow " Ver yDar kBl ue")

9.6 (Shape (W dth 300)

9.7 (BOX (pens (2 2 1 26))

9.8 (child

9.9 (VBox

9.10 , question

9.11 (4 ue 20)

9.12 (HBox

9.13 Fill

9.14 (VBox

9.15 (Button % yesNanme (BgCol or "G een")
9.16 (Shape (Wdth 80) "Yes"))

9.17 (4 ue 10)

9.18 (Button % noNanme (BgCol or "Red")
9.19 (Shape (Wdth 80) "No")))
9.20 (4 ue 20)

9.21 (VBox

9.22 Fill

9.23 (Filter 9% cancel Nane

9.24 (G oseButton (Shape (Wdth 80) ,cancel Label))))
9.25 Fill)))))))

The arguments are the name for the subwindow, the question being asked (e.g., “ Save changes
before quitting?’), the names of the “yes,” “no,” and “cancel” button, and the text for the cancel
button (e.g., “Don’t quit”).

Note that asin the YESNO macro on lines 8.0-8.18, green isused for the “safe” button, red for
the “dangerous’ button, but now the text of those buttonsis reversed: the “safe” button says “No”,
and the “dangerous’ button says“Yes’, because the question being asked in aconfirmation dialog is
always “dangerous.”

C.8. A MACROFORA FILE-CHOOSER 173

Save changes before closing?

EENGIN Don't close |

Figure C.3: A confirmation dialog

C.8 A macrofor afile-chooser

As we mentioned in the description of the FileBrowser component on page 94, it is agood idea to
combine aFileBrowser, aDirMenu, and aHel per, with activation and cancellation buttons, in a stan-
dard arrangement. We do that with the following macro.

174 APPENDIX C. AN ANNOTATED EXAMPLE

10.0 (Macro FILED ALCG

10.1 (Name BgCol or Dar kShadow Titl e fbNane OKNanme OKLabel
10. 2 cancel Narme (cancel Label "Cancel ") hel per Nane

10. 3 (ReadOnly FALSE) (other ()))

10. 4 ‘(ZChassi s % Nane

10.5 (BgCol or , BgCol or)

10.6 (Li ght Shadow "Whi te")

10. 7 (Dar kShadow , Dar kShadow)

10.8 (Title ,Title)

10.9 (Shape (Wdth 300 - 200 + Inf) (ShadowSi ze 2)

10. 10 (Rm

10.11 (Pen 10)

10. 12 (VBox

10. 13 (HBox

10. 14 (Shape (Wdth 150 + Inf) (Height 150 + Inf)
10. 15 (VBox (Label Font "fixed")

10. 16 (DirMenu (For ,fbNane))

10. 17 (4 ue 6)

10. 18 (Franme Lowered (BgCol or "VeryPal eG ay")
10. 19 (Fil eBrowser % fbNane))))

10. 20 Fill

10. 21 (Shape (Wdth 100)

10. 22 (VBox

10. 23 Fill

10. 24 (Button % OKNane , OKLabel)

10. 25 (d ue 10)

10. 26 (Filter

10. 27 (C oseButton % cancel Nanme , cancel Label)))))
10. 28 (G ue 6)

10. 29 (HBox

10. 30 (Shape (Wdth 30) "File:")

10. 31 (Frame Lowered

10. 32 (Hel per % hel per Nane FirstFocus (For ,fbNane)
10. 33 (BgCol or "VeryPal eGray"))))

10. 34 , @ther)))))

While the overall appearance is standard, the names of the components, the colors, the labels,
and other aspects may vary, so those are all passed in as parameters to the macro. Figure C.4 shows
what thislookslikefor the* Save As...” diadogin Section C.24 on page 193.

The fixed-width label-font is used on line 10.15 to make it easier to read filenames. Filename-
punctuation such as periods and sl ashes are often hard to read in small, variable-width fonts.

C.8. A MACROFORA FILE-CHOOSER 175

C| Save As.. |G

FESOUrCES l

Figure C.4: The'Save As...” file-dialog

Asintheexampleonline9.22, theFilter online 10.26 makes it possibleto de-activate the Cancel
button viaFor ns VBT. MakeDor mant .

176 APPENDIX C. AN ANNOTATED EXAMPLE

C.9 Thebackground child

11 (ZSplit
12 (ZBackgr ound
13 (VBox (due 3)
14 (HBox %renubar ...)
15 (due 3)
16 Ri dge
17 (TextEdit %buffer)
18 (FINDER ...)))
-)

The background child of this ZSplit is aVBox with a menubar, the main text-editing area,' and
the Finder-dialog.

1 The most complex component has the shortest description in the form!

C.10. THE MENUBAR 177

C.10 Themenubar

14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.

0
1
2
3
4
5
6
7
8

9

10
11
12
13
14
15
16
17
18

(HBox %renubar

(4 ue 5)

(Menu ...)

(4 ue 5)

(Menu ...)

(4 ue 5)

(Menu ...)

(4 ue 5)

(Menu ...)

(4 ue 5)

Fill

(TSplit % odified
(Text "")
(Pi xmap (Color "Red") "bnote. pbni))

(Text %shortname "")

Fill

(Button %parse (BgCol or "VeryPal eBl ue")
(Text (Margin 10) "Do I1t"))

(A ue 5))

The menubar isan HBox with four Menus, a TSplit for the note-icon (14.11-14.13), thefilename

(14.14), and the“Do it” Button.

ThisTSplit displayseither an empty string (14.12) or asmall red warning note (14.13), depending

onwhether thereare unsaved changesto thetext inthe buffer. The application switchesbetween these
choicesby caling For ns VBT. Put | nt eger (fv, "nodified", n),wherenistheindex of
the desired TSplit-child.

178 APPENDIX C. AN ANNOTATED EXAMPLE

The name of thefileisinserted into the menubar by assigningit to Text component online 14.14,
viaFor ms VBT. Put Text (fv, "shortnanme", ...). TheFillI’son lines 14.10 and 14.15
cause the TSplit and the filename to be centered between the menus and the button.

C.11 Thequill-pen menu

14.2.0 (Menu

14.2.1 (Shape (Wdth 40) (Height 13.5) (Pixmap "pen.pbn'))

14.2.2 (Bor der

14.2.3 (VBox

14.2. 4 (PopMButton (For aboutFE) (TLA "About FornsEdit..."))
14.2.5 (SEP)

14.2.6 (COWAND %4l p "Hel p..."

14.2.7 "oH'" "Mth" "c-h" "M h" (PopMButton (For nanpage)))
14.2.8 Ri dge

14.2.9 (Radi o %\bdel

14.2.10 (HBox

14.2.11 (d ue 10)

14.2.12 (VBox

14.2.13 "Edi ti ng Mbdel "

14.2.14 (Choi ce % vyModel MenuStyle (TLA "lvy"))
14.2.15 (Choi ce YemacsModel MenuStyle (TLA "Emacs"))
14.2. 16 (Choi ce %racMbdel MenuStyle (TLA "Mac"))

14. 2. 17 (Choi ce %ternivodel MenuStyle (TLA "Xterm')))))
14.2.18 Ri dge

14.2.19 (COWAND %guit2 "Quit" "oQ" "Mqg" "c-q" "MQqg")))))

Thequill-peniconwascreated usingbi t map(1) , convertedto”pnm” format by anyt opnn{ 1),
and saved in the resource-file named pen. pbm All the menu-buttons have a width of 40 points.

Line 14.2.4 shows a simple pop-menu-button containing a left-aligned string. When the button
isreleased, FormsVBT automatically opens the subwindow whose namein thisform isabout FE.
The subwindow itself is defined on line 21.

Thecal to (SEP) online14.2.5 producesthe VBox that separates groupswithinamenu. It was
defined on line 4; see Section C.2 on page 166.

Thefirst“command” buttonistheHelp buttononlines14.2.6-14.2.7. Asit happens, itisaPopM-
Button, not an M Button; by passing a seventh argument, (PopMBut t on (For nmanpage)), we
avoid getting the default value for thet ype parameter; seeline 6.0 in Section C.4 on page 168. The
name of thebuttonisHel p. Thefour keynamesare the keyboard shortcutsfor thelvy, Emacs, Mac,?
and Xterm models, in that order.

2We use*“c-h” for theMac, sincethereisno | SO Latin-1 character that correspondsto the Mac “ command” or “ cloverleaf”
icon.

C.11. THE QUILL-PEN MENU

This macro-call expands into the following expression:

(PopMButton (Name Hel p)
(HBox (Text LeftAlign "Help...")

Fill

(TSplit (Name Model _Hel p)

(Text
(Text
(Text
(Text

Ri ght Al'i gn
Ri ght Al'i gn
Ri ght Al'i gn
Ri ght Al'i gn

oH")

"M h")
"c-h")
"Mh"))))

179

The 4 radio-buttons on lines 14.2.14-14.2.17 alow the user to choose the editing model. The
group isindented dightly (line 14.2.11).

180 APPENDIX C. AN ANNOTATED EXAMPLE

C.12 TheFilemenu

The Filemenu has the standard assortment of items: Open, Save, Save As..., etc. Theform describes
all the visua aspects of the menu; the application interprets each of the commands by attaching an
event-handler to each name.

14.4.0 (Menu

14. 4.1 (Shape (Wdth 40) "File")

14.4.2 (Bor der

14. 4.3 (Shape (Wdth 110)

14. 4.4 (VBox

14.4.5 (COMVAND %new "New' "oN' "Mn" "c-n" "Mn")

14.4.6 (COMVAND %openMButton "Cpen..."

14. 4.7 "o0O'" "Mo0" "c-0" "Mo"

14.4.8 (PopMButton (For OpenbDi al 0g)))

14. 4.9 (SEP)

14.4.10 (MButton %l ose (TLA "Cl ose"))

14.4.11 (Filter (COWAND %save "Save" "0S' "Ms" "c-s" "Ms"))
14.4.12 (PopMButt on %saveasMButton (For SaveAsDi al og)
14.4.13 (TLA "Save As..."))

14.4.14 (PopMButton % evertbutton (For RevertDi al og)

14. 4. 15 (TLA "Revert To Saved"))

14.4.16 (SEP)

14. 4. 17 (PopMButt on %ppw dt hPopMButt on (For PPwi dt hNumeri c)
14.4.18 (TLA "PP setup..."))

14.4.19 (COMVAND %°Print "PPrint" "oP" "Mp" "c-p" "Mp")
14. 4. 20 (SEP)

14.4.21 (COWAND %guit "Quit" "oQ "MQg" "c-gq" "MQg"))))))

TheFilter online14.4.11 enables the application to gray-out the Save button, which it doeswhen
no changes have been made to the buffer, sincethere’s no point in saving an unmodified file.

The Quit button on line 14.4.21 is a duplicate of the item on line 14.2.19 at the bottom of the
quill-pen menu. A Quit button normally appears at the bottom of the File menu, as it is here, but
some users expect to see it at the bottom of the top-left menu, whatever that may be called. The
application attaches the same event-handler to both quit-buttons.

C.13. THEEDIT MENU 181

C.13 TheEdit Menu

The Edit menu has a standard set of items, plusthree additiona itemsfor searching.

14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.
14.

©CoOoO~NOOOUOTA,WN P

PPPODNPPODDPODDDO DD

(Menu
(Shape (Wdth 40) "Edit")
(Bor der
(Shape (Wdth 100)
(VBox
(COWAND %undo "Undo" "cZz" "C-_" "c-z" "Mz")
(COWAND % edo "Redo" "csZ" "M _" "c-Z2" "MZ")
(SEP)
(COWAND %ut "Cut" "oX' "CGw' "c-x" "Mx")
10 COWAND %copy "Copy" "oC'" "Mw' "c-c" "Mc"
py py
11 COWAND Ypaste "Paste" "oV' "Cy" "c-v" "Mv"
(2 y
12 (COWAND %l ear "Clear™ "" "" "™ "")
13 (COMWAND %sel ect All "SelectAll™
14 "oA" "Ma" "c-a" "Ma")
15 (SEP)
16 (COWAND % i ndMButton "Find..."
17 "oF" "" "c-f" "Mf"
18 (Li nkMButton (For FindlnBuffer2)))
19 (COWAND % i ndNext "Find Next" "c," "CGs" "" "")
. 20 (COWAND % i ndPrev "Find Prev" "cM "Cr" "" ""))))))

The “Find” button on 14.6.18 is a not a PopMButton controlling a subwindow, although that

would be more typical. Instead, it is a LinkMButton that selects the second child (see lines 7.7—
7.23) of the Finder-dialog at the bottom of thewindow. The Finder isa TSplit; when its second child
appears, the main window shrinks somewhat, but nothing is hidden. The typica pop-up window
would overlap the main window and could easily obscure the text that the user has highlighted after
a successful search.

182 APPENDIX C. AN ANNOTATED EXAMPLE

C.14 TheMisc Menu

14.8.0 (Menu

14.8.1 (Shape (Wdth 40) "M sc")

14.8. 2 (Bor der

14.8.3 (VBox

14.8. 4 (PopMButton %unpTabl e (For dunpTabl ePopup)
14.8.5 "Show t he naned VBTs...")

14.8.6 (PopMButton %snapshot (For snapshot Di al og)
14.8. 7 "Show current snapshot...")

14.8. 8 (PopMButton (For errorPopup)

14.8.9 "Show | ast error message")

14.8.10 (SEP)

14.8. 11 (Filter % escreenFilter (VBox % escreenMenu)))))

The"dumpTable” and“ snapshot” buttonsbring up windowsthat giveinformationabout theform,;
they are defined on lines 24-25.

Error messages are reported in a green subwindow in the bottom-right corner (see line 22), but
the application automatically closesthiswindow after 5 seconds. The button on line 14.8.8 givesthe
user away to bring it back without a 5-second timeout, to read the message more carefully.

Notethat theVBox online14.8.11 isempty. The application dynamically insertsMButtonshere,
one pair for each display-screen, for moving the editor window or the result window. On a 1-screen
workstation, no buttonsare inserted, and the VBox is grayed-out viathe Filter. (Some window man-
agers alow windowsto be dragged between screens, which ismore convenient than using these but-
tons.)

C.15. THE FINDER-DIALOG

C.15 TheFinder-dialog

The Finder at the bottom of the main window is generated by the following call:

18.
18.
18.
18.
18.
18.
18.

0 (FI NDER

1 (show Fi ndl nBuf f er 2)

2 (first bhel pfindfirst)
3 (next bhel pfi ndnext)

4 (prev bhel pfindprev)

5 (typei n bhel pfi ndtext)
6 (cl ose bhel pfi ndcl ose))

183

The layout isfixed (see Figure C.1); al the parameters are names assigned to the various com-
ponents. The application attaches event-handlers to these names to perform the search.

184

APPENDIX C. AN ANNOTATED EXAMPLE

C.16 TheHelp subwindow

19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.
19.

©CoOoO~NOOULAd,WNEO

20
21
22
23
24
25
26
27
28
29

(ZChassi s %ranpage
(BgCol or "VeryPal eBl ue")
(Title "formsedit hel p")
(VBox
(HBox
(Menu
(Shape (Wdth 40) "Edit")
(VBox
(COWAND %mpcopy "Copy" "oC' "MwW' "c-c" "Mc")
(COMVAND %rpsel ect All "Sel ect Al "
"oA" "Ma" "c-a" "Ma")
(SEP)
(COMVAND %rpfi ndMButton "Find..."
"oF" "" "c-f" "Mf"
(Li nkMButton (For FindDi al og)))
(COWAND %pfi ndNext "Find Next"
"c," "Cs" """ "")
(COMVAND %rpfi ndPrev "Find Prev"
"cM "Cr" """ "")))
Fill)
Ri dge
(Shape (Wdth 360 + Inf) (Height 150 + Inf)
(TextEdit ReadOnly %ranpaget ext))
(FI NDER
(show Fi ndDi al og)
(first hel pfindfirst)
(next hel pfindnext)
(prev hel pfindprev)
(typei n hel pfindtext)
(cl ose hel pfindclose))))

This is the subwindow that pops up when the user clicks the Help button on line 14.2.6. (See

Figure C.5.) Itsstructureis similar to that of the main window. It contains a menubar (HBox) with
one menu, Edit, which has items appropriate for a read-only buffer (e.g., Copy but not Cut). The
Edit menu also includes a LinkMButton for another Finder-dial og, just as the main editing window
does. Below the menubar isaread-only text-editor, which the application fillswith the manpage for
FormsEdit. At thebottom of the subwindow isthe Finder-dial og, whichisshowninthe open position
in FigureC.5.

C.17. A DISAPPEARING SUBWINDOW 185

£ | File | Edit | Misc | formseditvbt.fv Do 1t |

Shape Ztop ¢Height 300 - 200 + Inf} (Midth 425 - 200 + Inf}
{LabelFont {Family "new century schoolbook"))
(Font "fixed")

fc | formsedit help | €]

FormsEdit -- wersion 2,7

ormsEdit uzes TextPort to support four editing "models": Emacs, Iwy.
ac, and Xterm, When you change models, the keybinding-labels in the
enus change accordingly, The Iwy model uses the notation "oA" to
ean "option—a": the other models describe the zame key as "M-a".
eaning "meta-a", This key iz whatever the X-server maps to "modl":
n some keyboards it is labeled "Alt", "Compose”, or "Compose
haracter",

ormsEdit menu-1ayout:

{luill pen icon?

About ... shows info about this version
Find: First | Next I Prev. | g
(TRA k1)
(TRA k2
(TRA k3

Figure C.5: The “ manpage’ window

C.17 A disappearing subwindow

20.0 (ZChild 9%otfound (BgColor "Red") (Color "White")
20.1 (Rim (Border "Not found")))

Thisisasmall subwindow that the application displays—thereisno PopButton for thiscomponent—
whenever a search has failed, either in the editor window or in the “manpage’ window. The appli-
cation removes it after 2 seconds.

186 APPENDIX C. AN ANNOTATED EXAMPLE

Eﬂ@ﬂnanTM

Systems Research Center

FormsEdit version 2.7
Written by Jim, MMare, and Steve.
Copyright @ 1993 Digital Equipment Corp.
Send comments to meehan®@sre.dec.com

Close |

Figure C.6: The“ About FormsEdit...” window

C.18 TheAbout... window

21.0 (ZChild %about FE (BgCol or 0.8 0.8 1)

21.1 (BOX (pens (1.5 2 1 12))

21.2 (child

21.3 (VBox

21.4 (Pi xmap (Color "Blue") "digital Logo. pbnt')
21.5 (4 ue 6)

21.6 "FornmsEdit version 2.7"

21.7 "Witten by Jim Marc, and Steve."

21.8 "Copyright \251 1993 Digital Equi pnent Corp."
21.9 "Send comments to neehan@rc. dec. cont
21.10 (4 ue 6)

21.11 Ri dge

21.12 Ri dge

21.13 (4 ue 6)

21.14 (HBox

21.15 Fill

21.16 (C oseButton (BgCol or "VeryPal eBl ue")
21.17 (Li ght Shadow "Whi te")
21.18 (Text (Margin 5) "Cl ose"))

21.19 Fill)))))

Thisis a completely static window. Note that the CloseButton (21.16) does not need a For -
property, sinceit closes the subwindow that containsit. The use of the BOX macro (21.1) produces
the double-bordered effect. (The 4-character sequence\ 251 in the middle of the text on line 21.8
is converted into a single character by the S-expression reader; that character’s codeis 251 in octal,
which isthe ISO Latin-1 standard code for the copyright symboal, (©.)

C.19. THE ERROR-MESSAGE SUBWINDOW 187

C.19 Theerror-message subwindow

22. (ZChassi s %err or Popup
22. (At 1. 1. SE)
22. (BgCol or "VeryPal eG een")

0
1
2
22.3 (Title "Error")

22.4 (Li ght Shadow "Whi te")

22.5 (Dar kShadow " Dar kGreen")

22.6 (Shape (Wdth 300 + Inf - 200) (Height 50 + Inf - 50)
22.7 (TextEdit %stderr ReadOnly)))

The error-message window isdisplayed by the application whenever thereisaparsing error. The
application also removes it after 5 seconds. (The Misc menu has an item to make this window re-

appear.)

188 APPENDIX C. AN ANNOTATED EXAMPLE

PrettyPrint width |G

Line width: =|_ 78l|%]

Revertl Apply | Cancel | Ok I

Figure C.7: The“ PrettyPrint width” window

C.20 Thepretty-print-width subwindow

23.0 (ZChassis %°Pw dt hNuneri c

23.1 NoCl ose

23.2 (BgCol or "Pal eGol d")

23.3 (Title (Text "PrettyPrint width"))

23.4 (At 0.1 0.1 NW

23.5 (Shape (Wdth 250 + Inf)

23.6 (Rm

23.7 (Pen 10)

23.8 (VBox

23.9 (HBox

23.10 Fill

23.11 (Shape (Wdth 80) "Line width:")

23.12 (d ue 10)

23.13 (Shape (Wdth 70)

23.14 (Nurreri c %pw dt h FirstFocus

23.15 (BgCol or "VeryPal eGol d")

23.16 =78 (M n 30) (Max 200)))

23.17 Fill)

23.18 (d ue 10)

23.19 (HBox

23.20 (Shape (Wdth 0 + 1000)

23.21 (RRm (Pen 1) (Button %ppwRevert "Revert")))
23.22 (Shape (Wdth 0 + 1000)

23.23 (RRm (Pen 1) (Button %ppwApply "Apply")))
23.24 (Shape (Wdth 0 + 1000)

23.25 (RRm (Pen 1) (C oseButton "Cancel ")))
23.26 (Shape (Wdth 0 + 1000) (ShadowSi ze 2.5)
23.27 (Button %pwOK "CK")))))))

Some people would argue that having a pretty-printer built in to the editor is an essential tool
in one's programming environment, regardl ess of the source language. 1t is especialy hel pful when
the entire program is a single expression. (A parenthesis-balancer would help, too!) This pop-up
window allows the user to specify the maximum line-widththat the pretty-printer will use, measured
in characters. (The pretty-printer isavailable asthe“PPrint” itemin thefile menu; seeline 14.1.19.)
Itissometimeshel pful, especially on a 2-screen workstation, to make thewindow aswide as possible
and then to increase the pretty-print width; 150 is a reasonable maximum.

C.20. THE PRETTY-PRINT-WIDTH SUBWINDOW 189

This subwindow usesthe NoCloseproperty (see line23.1), which removesthe buttonlabeled “C”
from the top-left corner. We do this so that we can be more precise about the side-effects of closing
thewindow. There aretwowaysto closeit. Clickingthe Cancel button closesit without permanently
changing the desired width, that is, the width that will be used on all subsequent calls to the pretty-
printer. Clicking OK, or typing Return in the Numeric type-in, will invokethe pretty-printer with the
new width, setting that to be the desired width, and finally closing the subwindow.

On line 23.14, the FirstFocus property has the effect that the type-in field within the Numeric
will grab the keyboard focus whenever this subwindow pops up, and it selects the text (the width)
in replace-mode, to make it easy for the user to type a new width, hit Return, and have the form
prettyprinted.

Note that the first three buttons have a 1-point Rim around them, but that the last button, OK,
does not. Instead, it has a shadow that is 1 point larger than the default (which is 1.5 points). The
effect isto make the OK button stand out a littlemore: it isthe “default” button, so it has the same
effect as typing Returnin the Numeric. In 2-D style, as on a monochrome screen, “default” buttons
are usually given a black border. Thisis the same convention we used in the Finder window; see
Section C.5 on page 169.

190 APPENDIX C. AN ANNOTATED EXAMPLE

C.21 Thesnapshot subwindow

24.0 (ZChassis %snapshot Di al og

24.1 (At 0.1 0.9 0.2 0.8 Scal ed)

24.2 (BgCol or "VeryPal eTur quoi se")

24.3 (Title (Text (BgCol or "Wiite") (Color "DarkTurquoise")
24. 4 "Current Snhapshot"))

24.5 (Shape (Height 250 - 100 + Inf)

24.6 (TextEdit %Gnapshot Text ReadOnly)))

Thisisasubwindow used primarily for debugging “snapshot” and “restore” operations. See Sec-
tion 4.5 on page 67.

C.22. THE NAMED-COMPONENTS SUBWINDOW 191

C.22 Thenamed-components subwindow

25.0 (ZChassis YunpTabl ePopup

25.1 (BgCol or "Pal eGol d")

26.2 (At 0.1 0.9 0.2 0.8 Scal ed)

26.3 (Title (Text (BgCol or "Wiite") (Color "Blue") "Naned VBTs"))
26.4 (Shape (Height 300 - 100 + Inf)

26.5 (TextEdit %/BTt abl e ReadOnly)))

Thisis aso primarily a debugging window, but it’suseful for debugging layout problems. Each
named component in the form is described on a separate line that includes its type, its size-range,
and its actual size, in both the horizontal and vertical dimensions. For example, the following line
appears for the ZChassis on line 23:

PPwi dt hNurreri ¢ : FVTypes. FVZChassi s
H: [330, 330, 100001] = 330. V: [113, 113, 114] = 113.

The name of thecomponentisPPwi dt hNuner i c. ItsruntimetypeisFVTypes. FVZChassi s.
Its horizontal size-range has a“lo” and a“pref” of 330 pixes, with a very large “hi” value (essen-
tialy unlimited stretchability). Its actual width is 330. Itsvertical size-range has no stretchability;
“lo” and “pref” are 113 pixels, and “hi” is 114. Itsactual sizeis 113. (The actua size will be O for
components that are not visible.)

192 APPENDIX C. AN ANNOTATED EXAMPLE

C.23 Theopen-filedialog

26.0 (FILED ALOG %penDi al og
26.1 (BgCol or "VeryPal eG een")
26.2 (Dar kShadow " Rat her Dar kG- een")
26.3 (Title "Open an existing file")
26.4 (f bNane openfile)
26.5 (ReadOnly TRUE)
26.6 (OKNane open)
26.7 (OKLabel "Open")
8

26. (cancel Narmre cancel Open)
26.9 (hel per Narre f bh)
26.10 (ot her

26.11 ((4d ue 6)

26.12 (HBox

26.13 (Radi 0 =newwi ndow

26. 14 (VBox

26. 15 (Choi ce % euse (TLA "Use this w ndow'))
26.16 (Choi ce %mewwi ndow (TLA "Open a new wi ndow'))))
26. 17 Fill

26.18 (Radi o =fvonly

26.19 (VBox

26. 20 (Choice %vonly (TLA "*.fv only"))

26.21 (Choi ce %motfvonly (TLA "Any file"))))))))

This is a standard file-dialog, produced by the macro on line 10, described in section C.8 on
page 173.

As an addition to the standard file-dialog controls, this one alows the user to specify whether a
new pair of windows (editor and result) should be used when displayinganew file. When thismacro-
cal is expanded, the expressions on lines 26.11-26.21 are simply appended (see line 10.34) to the
formsinside the VBox that startson line 10.12.

The radio buttonson lines 26.15 and 26.16 are used by the application to determine whether to
open the new filein a separate window.

The radio buttons on lines 26.20 and 26.21 are used to control the vaue that is passed to the
procedure (Fi | eBr owser VBT. Set Suf f i xes) that reads directories.

C.24. THE SAVE-ASDIALOG 193

C.24 Thesave-asdialog

Thiswindow, shownin Figure C.4 on page 175, issimpler than the preceding open-filedia og: it has
no “other” parameter, so it contains exactly what the macro specifies. It uses adifferent background
color to distinguish it from the open-file dial og.

27.
27.

(cancel Narme cancel saveas)
(hel per Narme sf bh))

194
27.0 (FILEDI ALOG %BaveAsDi al og
27.1 (BgCol or "VeryPal eBl ue")
27.2 (Dar kShadow "Bl ue")
27.3 (Title "Save As...")
27. 4 (f bNane saveasfil e)
27.5 (OKNane saveas)
27.6 (OKLabel "Save")
7
8

APPENDIX C. AN ANNOTATED EXAMPLE

C.25. THE CONFIRMATION DIALOGS 195

C.25 Theconfirmation dialogs

The three“confirmation” subwindows all perform asimilar function, so the use of a macro makes it
easy to givethem a similar appearance. All that variesis the text they display. The macro itself is
described in Section C.7 on page 172.

28.
28.
28.
28.
28.
28.
29.
29.
29.
29.
29.
29.
30.
30.
30.
30.
30.
30.

0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5

(CONFI RM %qui t Confi rmati on
(question "Save changes before quitting?")
(yesName saveandquit)
(noNane quit Anyway)
(cancel Nanme dontquit)
(cancel Label "Don't quit"))
(CONFI RM %swi t chConfi rmati on
(question "Save changes before swtching?")
(yesNanme saveandswi t ch)
(noNane swi t chAnyway)
(cancel Narme cancel Swi t ch)
(cancel Label "Don't switch"))
(CONFI RM %1 oseConfirmati on
(question "Save changes before cl osing?")
(yesNanme saveandcl ose)
(noNane cl oseAnyway)
(cancel Narme cancel d ose)
(cancel Label "Don't cl ose"))

196 APPENDIX C. AN ANNOTATED EXAMPLE

C.26 Theyesno dialogs

The “yes/no” subwindows are similar to the “confirmation” windows. The macro is described in
Section C.6 on page 171.

31.0 (YESNO %overwriteConfirmation

31.1 (msg "That file already exists. Overwite it?")
31.2 (yesName overwite)

31.3 (noNane dontOverwrite))

32.0 (YESNO %-=evertDi al og

32.1 (yesName revert)

32.2 (noNane dont Revert)

32.3 (msg "Revert to the | ast version saved?"))

Acknowledgments

Gidi Avrahami implemented an embryonic FormsV BT prototypein during the summer of 1988. Ken
Brooks helped to implement the original FormsVBT system in Modula-2+ during 1989.

197

198 APPENDIX C. AN ANNOTATED EXAMPLE

Bibliography

[1] Gideon Avrahami, Kenneth P. Brooks, and Marc H. Brown. A Two-View Approach To Con-
structing User Interfaces. Computer Graphics, 23(3):137-146, July 1989. A videotape of the
system was part of the Video Program at the CHI’ 90 conference. The CHI ' 90 Video Programis
availablein the SSIGGRAPH Video Review series.

[2] Edited by Marc H. Brown and James R. Meehan. VBTkit reference manual. Technical report,
DEC Systems Research Center, in preparation.

[3] Samuel P. Harbison. Modula-3. Prentice Hall, 1992.
[4] ShizKobara Visual Design with OSF/Motif. Addison Wesley, 1991.

[5] Mark S. Manasse and Greg Nelson. Trestle Reference Manual. Technical Report 68, DEC Sys-
tems Research Center, December, 1991.

[6] Mark S. Manasse and Greg Nelson. Trestletutorial . Technica Report 69, DEC Systems Research
Center, May 1, 1992.

[7] Greg Nelson, editor. Systems Programming with Modula-3. Prentice Hall, 1991.

[8] Randy Pausch, Nathaniel R. Young I, and Robert DeLine. SUIT: The Pascal of User Interface
Toolkits. In Proc. of the ACM Symposium on User Interface Software and Technology, pages
117-125, November 1991.

[9] Robert W. Scheifler, James Gettys, and Ron Newman. X Window System, 2nd edition. Digital
Press, 1990.

199

200 BIBLIOGRAPHY

