LEARNING THE BASICS

Read this chapter
if you have never
used CM3-IDE
before.

1. Learning the Basics

This chapter introduces you to CM3-IDE’s web-based environment, and to five basic
concepts that are central to CM3-IDE: packages, nodules, interfaces, importing, and
exporting. By the end of this chapter, youll be familiar with these concepts and with
some of the screens that you’ll use often.

If you haven’t installed CM3-IDE yet, follow the instructions in the CM3-IDE
Installation Guide to get started. The rest of this chapter also assumes that you know
how to use your web browser and your text editor well.

The chapter is divided into three parts:

Starting CM3-IDE on page 6 outlines how you start the CM3-IDE development
environment.

A Quick Walkthrough on page 7 uses the old standby, the “hello world” program to
tour the browse and build features of CM3-IDE. In this first tutorial, you’ll learn how
to:

® create a new package from an existing example
® build a simple “hello world” program
® run the program from within CM3-IDE

® cxplore how CM3-IDE automatically updates its virtual namespace to keep up
with changes to your system

The second tutorial, Creating a Package from Scratch on page 15 covers some of
the same concepts as the first, but in greater depth. This time, you:

® create your own package
® open and run your text editor from within CM3-IDE
® cdit and compile sources and makefiles

® browse one of CM3-IDE’s library packages.

LEARNING THE BASICS

1.1 Starting CM3-IDE

You can start CM3-IDE by typing CM3-IDE at the command-prompt, assuming the
CM3-IDE program is in your executable path. If you haven’t installed CM3-IDE vyet,
or you are unable to locate the executable program for CM3-IDE, see the CM3-IDE

Installation Guide.

Once started, CM3-IDE automatically spawns your web browser and points it to
CM3-IDEs start screen, as in Figure 1.

odula

CM3-IDE: Critical Mass Modula-3 Integrated Development Environment g

SYSTEM ﬂ Packages Configuration
Libraries ﬂ Programs
LANGUAGE 0 Interfaces @ Modules
o Generic Interfaces @ Generic Modules
o Tvpes
HELP B Getting Started D User Guide
Tutorial b Reference
Examples D Technical Notes

Copyright {C) 19946 Criticsl hlzzz. Inc. All Rights Reserved. S22 licenzs for 2 fll description.

Figure 1. The Start Screen

At the top of the start page is the CM3-IDE logo, and below that a set of icons that
represent elements of the CM3-IDE environment. They are divided into three groups:
System, Language, and Help.

LEARNING THE BASICS

1.2 A Quick Walkthrough

Having started CM3-IDE, you will see CM3-IDE’s start page in your browser’s
window (Figure 1). Here we quickly walk through the building of a Hello World
example program.

The Start Screen. I'rom the start screen, follow the link to ¥ Examples. (It’s in the
Help category, toward the bottom of the screen.)

Click on the item named “Hello World” (Figure 2). CM3-IDE will create a new
example program named “he 1107, and will take you to the package summary for the
hello package.

CM3_IDE Examples
@ cMADE | B example | @ indexhtml
Getting Started

+ Hello World
Loops, Conditionals, Basic Datatvpes, Arravs

-
+ Ranges, Sets

» Emumerations. Records, Arrays. Text Strings
-

Interfaces. Modules. and Importing

Figure 2. Examples Area

Packages

Using CM3-IDE, you divide your programming projects into packages. A
package is a unit of ownership in the CM3-IDE system. A project
consists of one or more packages. For large projects, different people
may “own’” different packages.
A CM3-IDE package comprises:

® zero or more modules

® zero or more interfaces

® 2 makefile (called “m3makefile”)

The makefile tells the compiler how to put everything together. For
simple programs, you may get away without having a makefile.

Each package has its own directory on your system, where all its source
files are stored together.

LEARNING THE BASICS

Package Summary. A package summary page outlines different elements that
comprise a package (Figure 3). You can follow the links on this page to view any of its
components.

@ Package: hello

< CMAIDE | Mproj | Hhells < o Quick Access Icons

Directory: C:\MySandbox\hello
Programming Basics: Hello World

You can divide your code into different modules. Many packages contain a main module,
usually named Main.m3 The main module specifies the main body of vour program. Here is
an example of a main program:

MCDULE Hello EXPORTS Main;
IMPORT I0:
BEGIN

IC.Put ("Hello World\n"):
END Hello.

To use another module, you import an interface exported by that module. In this example,
we have imported only the I0 interface to do simple input/output. By looking at the TMPORT
clause, you can easily find out what interfaces a piece of code depends on.

The last part of each module is its body. In this case, we are calling the procedure I0.Put
which prints the text string "Hello World" to the standard output.

O Deete old buird fites

[Clean | [Editm3makefile | G Edit the makefile
Options:

Build the package
H Subdirectories: src Q p d
@ Modules: ze110 < G List all modules

[H] Quake sources: m3makefile

@ Misc sources: index.html
E Cat g ies: Misc sources Modules Quake sources Subdirectories
Find

Figure 3. A Package Summary

At the top of the page, you'll see a row of Quick Access Icons. Below that, a button
labeled Build, and below that, package components, such as Subdirectories and
Modules.

Q Use the Quick Access Icons to navigate to other locations in the CM3-IDE
Environment. For more information, see The CM3-IDE Environment on page 29.

LEARNING THE BASICS

(B The Clean button tells CM3-IDE to delete files from previous builds.
Clean does not remove sources of your program.

O [Edimenaksie | The Edit m3makefile button statts your text editor and opens
the makefile for this package.

(D] The Build button activates CM3-IDE’s builder and uses the instructions in
your makefile to build the package. If there is no makefile, CM3-IDE’s builder will
scan your package’s directory tree and attempts to build a program based on that
information.

(E The modules available in this package are listed under the @ Modules heading.
This page has only one entry—it’s called Hello.

Modules

A module is a named collection of declarations, including constants, types,
variables, procedures, and their associated bodies.

Module Summary. Next, follow the link Hello under the heading @ Modules to go
to the summary page for the Hello module. Your browser will display a page titled
“Module: Hello” (Figure 4).

LEARNING THE BASICS

@ Module: Hello

@ cMIIDE | Pproj | Bhello | BAsre | @ Hello

Path: c: " MvSandroxinellolsreiHello.m3 Last modified: Jan 26 04:06

’Shipl [Clean ” Edit m3makefile ” Edit source

Options: |

MODULE Hello EXPORTS Main:

Each module must have a name, which is declared in the MODULE
statement. By convention, the main module for an executable program
exports the interface Main, as does the Hello module here.

Each module can also import interfaces exported by other modules. This
is how vou reuse code from libraries or vour own modules. Here, we have
imported interface To which is a simple input/output interface.

From the browser, vou can learn what the imported interfaces do by

Jollowing the link associated with their name.

TMPORT I0:

The main body of a module or the initialization section includes statements that are executed
at the begining of the program. In this case, we are the main module, and all we do is print
Hello World! on standard output.

BEGIN
IC.Put ("Hello World!'hwm™):
END Hello.

Don't forget to include the module name in the last END in vour program.

Figure 4. A Module Summary

10

LEARNING THE BASICS

Viewing Code of a Module. On this page, you can view the code for He110.m3, the
file containing the Hello module.

MODULE Hello EXPORTS Main;

CM3-IDE is case- IM PORT Io ;
sensitive. BEGIN
I0.Put (“Hello world\n”);
END Hello.

Note that CM3-IDE is case-sensitive. Keywords are always in upper-case.
Module Statement. The first line reads:
MODULE Hello EXPORTS Main;

This is the module statement. Each module must have a name; in this case the name is
Hello. By including “EXPORTS Main” in the module statement, this module is
considered to be the main module, i.e., the module containing the main body of the

program.

Main Module of a Program

Every program must have a single main module, specifying its main
body. The main module for your program exports the Main interface.
This can be done either by naming your main module Main, or by
including EXPORTS Main in the module statement for the main
module.

Import Statement. The next line reads:
IMPORT IO;

This is an zzport statement. To use items defined in another module, you zzport an
interface exported by that module. You do that by listing it here, in the import
statements for your module. In this example, we have imported only the IO interface
for doing simple output (Figure 5). By looking at the import statements for a module,
you can easily find out what interfaces it depends on.

11

LEARNING THE BASICS

Imports

I0 Interface

(10.13)

HeTllo module

(HeTlo.m3)

Figure 5. A Schematic of the IO Interface

exports

I0 module

(10.m3)

The module body simply calls the procedure in the IO interface, denoted by IO. Put.
IO.Put prints out the text string “He'11o Wor1d”, followed by a new line (\N) to

the standard output.

BEGIN

I0.Put (“Hello world\n”);

END Hello.

Interfaces

An interface defines what parts of a module are visible to its clients. An
interface can include declarations for types, procedures, constants, and

variables.

Usually, the name for an interface matches that of the module that
exports it; for example, the IO module exports the TO interface. (This

does not have to be the case at all times.)

A useful way to think about an interface is as a window into the module

that exports it.

Building a Package. This next step will produce an executable program by building

the sources for the hello package.

12

LEARNING THE BASICS

Click the Build button from the module summary. This will start the builder,
taking you to a Build Results page (Figure 6). From this page, you can view the output
from your build. Errors will appear here as hypertext links to the line of code that
generated them. With this example, you should not see any errors. If you do, retrace
your steps up to this point.

[Package: hello
& M3 IDE | Mproj | M hello

Directory: C:\MySandboxihello

Build time: Fek 1 13:15

Interrupt build

cd C:\MySandboxhello && cm3
——— building in HT38&6 ——-

Compiling Hello.m3 (new source)

linking hello_exe
link @C:%DOCUME~1%cm3%LOCALS~1%Temp'gk > hello.lst
mt /nologo /manifest hello.exe.manifest foutputresource:hello.exe;l

Done.

Figure 6. Building a package.

@ From Building to Running. Once built, follow the Il hello link in the Quick Access
Icons on top of the Build Results page. This returns you to the package summary for
the hello package. (You can also use the “Back” button on your browser.)

|Ship| [Clean || Editm3makefle |

Options:

H Subdirectories: NT386 =rc

a Programs: nellao

@ Modules: Hello

Figure 7. A Package Summary containing a Built Program

13

LEARNING THE BASICS

Program Summary. If you look at the bottom of the page, you’ll notice a change: You

should see a new category labeled K@ Programs. Next to the icon you'll see the word
“hel1T0.” This is the program you just built. Click on the word “he110” to navigate
to the Hello program summary.

[Program: hello
& CM3IDE | Mproj | Bhello | ENT386 | [hello

Path: c:\MvSandboxinello\NT386%hello.exe Last modified: Feb 1 13:15
Last built: Feb 1 13:15

[Ship| | Clean | | Editm3makefile |

Options:
Command: |C:\MySandboxihello\NT386\hello.exe
Directory: |C:\MySandboxihello\NT386

Figure 8. A Program Summary with a Run Button

Missing Program Icons in a Package Summary. If you don’t see a program icon in
your package summary, you may have to reload the page or click on the Rescan button
(when available) to update CM3-IDE’s browser view with the package contents on
your file system.

If you still can’t see a program icon, you probably did not build the package propetly.
(Perhaps you encountered a compilation or installation error.) Retrace your steps up to
this point, making sure you followed the instructions correctly, and compare their

results with the user guide.

Running a Program. Similar to other pages for a package, from the program summary
page, you can navigate to the package top, or to any package components, or rebuild
your program.

More importantly, you can run your program from this screen. (See Figure 8.) The Run
button is directly underneath the Build button. Next to the Run button is a type-in field
where you can enter the text as you would on a command line. (CM3-IDE should have
already done this for you.) Beneath that is a text box containing the path to the
directory in which your package resides.

Click the Run button now. Your program will run, and your browser will display the
result of the execution of the program. In this case, you should see the text “He 110
wor1d” appear in the program results page. (See Figure 9.)

14

LEARNING THE BASICS

@ Program: hello
P cM3IDE | Mproj | Hhello | ANT386 | H hello

Path: c:\MvSandbox\hello \NT3864vhello.exe Last modified: Feb 1 13:15
Last built: Feb 1 13:15

cd C:\MySandboxhello\NT386 && C:\MySandbox'hello\NT386Yhello.exe
Hello World!

Done.

Figure 9. Running "Hello World".

You've just built and run your first CM3-IDE program.

You may use the & CM3-IDE icon at the top left of the page you are on to return to
the CM3-IDE start screen.

1.3 Creating a Package From Scratch

In the first tutorial you used a ready-made package that comes with CM3-IDE. All you
had to do was navigate to it, build and run it. This time, you’ll create a new package,
open your text editor from CM3-IDE, add some code, and take a look at a very basic
makefile.

1.3.1 List of All Packages
From the CM3-IDE Start Page, follow the link to Packages to see a list of all available
packages that are currently available within CM3-IDE. (See Figure 10.)

15

LEARNING THE BASICS

Packages
& cIDE | [package

Last scanned: Feb 1 13:47

’ Rescan ” Create package

a proj packages:

Q Rescan packages

e Create a new package

CV Banner DummyNavServer ccTool hello

CWV Mes=sageTool TestPixmap fingerprint likSciBRes3
@ public packages:

CH3 IDE m3front Sgml

anim3D m3linker sha...

binIC m3m. . . sho...

bitvector m3objfile slisp

calculator m3quake smalldb

cm3 m3s. .. sSortedtableextras

[11 = PR m3t. Sta...

crvbt m3zume stubgen

codeview mentor Syn...

cube metasyn table-list

db mg tapi

debug mgkit tcl

deepcopy mklib tc

digraph moex tempfiles

dirfp net udp

embutils obl ui

events odbe uni

fisheve opengl vbtkit

fix nl parseparams wvideovbt

for... patternmatching visualoblig

http pkl-fonts vocgi

Jun... rdwr voquery

Jwideo realgeomecry vorun

lib... rehearsecode web.

listfuncs replayheap windowsResources

m3b. .. serial Zeus

m3c. .. set

Find 4—@ Find a particular entry

G Private packages

Q Puplic packages

J

Figure 10. Packages Page: Listing of All Packages in CM3-IDE

Each (highlighted) package name represents a link to the summary page of a particular
package. Some of the functions available on this page are:

Q Rescan tells CM3-IDE to update its database from the files in your filesystem.

(B Create New Package takes you to the New Package dialog, where you can create a

new package.

G Your private packages are normally filed under “proj.”

LEARNING THE BASICS

(D] Public packages are normally filed under “pub1ic.”

(E The Find type-in field instructs CM3-IDE to only list entries that match a
particular regular expression, such as “M*”.

1.3.2 Creating New Packages

Navigating to the Create Package dialog. Near the top of the page, you should see
two buttons. (See Figure 11.) Click the right button, “Create package”. CM3-IDE will
take you to the Create Package dialog.

Packages

& cMaDE | M package

Last scanned: Feb 1 1347

[Rescan][Create package] G Create a new package

[P | proj packages:

CWV Banner DunmyNavServer cecTool hello
CWV MessageTool TestPixmap fingerprint likSciRes3

a public packages:

CHM3 IDE m3front Sgml
anim3D m3linker sha...
binIC m3m. . . sho...
bitwvector m3obhjfile slisp
calculator miquake =smalldb

Figure 11. Top of the Packages Page

17

LEARNING THE BASICS

The Create Package dialog. Before CM3-IDE can create a package, you need to
specify some information about the package to be created (Figure 12).

o Click here to return to start page
Create package

CcM3mE | Dform | [newpkg

(Specify the new package's root, name and kind)

Package root to use

® proj Instruct CM3-IDE which package root to use
Name of the package
< G Name the package
What kind of a package
® nPTU%TE*ﬂl Assign package type
© MLibrary

[Create New Package]

Figure 12. Package Creation Dialog
Q To return to CM3-IDE’s start page, follow the @ CM3-IDE link.

(B Package roots are used by CM3-IDE to organize your packages. Before CM3-IDE
can create any package, it needs to know what root that package will reside in. The
package root “proj —where your private packages reside—is a good place for

@ this example package. Choose proj. @ proj

m G Enter the name of your package here. Under “Name of the Package”, enter
“MyPackage”.

(D When you create a new package, you’re given the option of creating a library and
program. You are not locked into your decision here. Under “What Kind of

@ Package,” select I Program.

Click on the “Create new package” button at the bottom of the screen. CM3-IDE will
create your package and point your browser to the package summary for the new

package.

18

LEARNING THE BASICS

Package Summary. You have just created the package MyPackage, but it doesn’t
do anything yet. You will need to write some code.

Look for the @ Modules icon on the part of the page where the program elements are
summarized. You’ll see that there is only one module listed there, named
“MyPackage”. Click on it.

Module Summary. You may remember this page from our previous example. A
module summary contains the code and relevant information regarding a module in a
package. About half-way down the page you should see the module’s code:

MODULE MyPackage EXPORTS Main;
BEGIN
END MyPackage.

Every CM3-IDE program must have a single main module, so when you tell CM3-
IDE to create a program, CM3-IDE starts you off with an empty main module. Notice
that there is no IMPORT statement here, and there is nothing between the keywords
BEGIN and END. You will need to supply these.

Coding a Module. Near the top of this page, find the row of action buttons. Click on

[Editsource | CM3-IDE should start your text editor and open the file
MyPackage.m3.

@ Module: Hello

& c3E | Dproj | Mhello | Bsre | @ Hello

Path: c:\MySandboxi\helloisreiHello.m3 Last modified: Jan 26 04:06
Last built: Feb 1 13:51

[Ship] [Clean] [Editm3makefile] [Editsource]4— Click here to start your text editor

Options:

Figure 13. The top of the Module Summary Page

In your text editor, add the following line between the line containing the word
MODULE and the line containing the word BEGIN:

VAR name: TEXT; (* a string variable called “name” *)

This line uses the keyword VAR to declare a variable called “name”, to be a string. The
line ends with a semi-colon. Comments in CM3-IDE begin with (*” and end with

4:7',-) b3

19

LEARNING THE BASICS

@ Add the following lines between the line containing “BEGIN” and the line containing
“END”:

10.Put(“Enter the name of your nemesis: ”);
name := IO.GetLine(); _
I0.Put(name & “ is a stupidhead.\n”);

The first line calls the procedure I0. PUt passing the string “Enter the name
of your nemesis:”.

The second line calls the procedure I0.GetL1ne and puts the string returned from
that procedure into the TEXT variable you declared above, name.

The third line calls IO . PUT again, passing it the string in the parentheses that follow.

1.3.3 Procedure Calls in CM3-IDE: What is “l0.Put?”
The expression I0. PuUt refers to a procedure PUt in an interface called IO.
I0.Getl1ne refers to the Get11ne procedure in the interface IO. (See Figure 14.)

name of the interface containing the procedure

procedure name

parameters for this call (if any) go between the parentheses
/\

I0.Put(“This is the stuff I want to print to standard output\n.”)

Figure 14. A Procedure Call Crossing Module Boundaries

The identifier to the left of the “.” is the name of the interface in which the procedure
is declared. The one to the right of the “.”” is the name of the procedure. Parameters for
this call go inside the parentheses that follows the procedure’s name.

Interfaces in CM3-IDE are used to bundle relevant procedures, types, and constants in
one syntactic unit. For example, the IO interface includes all the procedures you may
need for simple input/output.

1.3.4 The IO Interface

Some of the procedures in the TO interface will be used in the package you are
building. Before using a procedure, you may want to make sure you are calling the
correct procedure by reviewing the interface where it is defined. The next few steps
show how you can explore the TO interface from your current package.

@ Navigating to the 10 Interface. Lcave your text editor open and return to your web
browser. Your browser should still show the module summary for MyPackage.

20

LEARNING THE BASICS

@ Click on the @ CM3-IDE icon at the top of the page to return to the start screen.

@ On the start screen, find the € Interfaces icon and click on it. to navigate to a list of
all available interfaces. Find and click on the word “T0.” (Depending on your CM3-
IDE display settings, you may have to click on an “I. . .” entry first.) This should
bring you to the “I0” interface (Figure 15).

© Interface: 1O

@ cM3DE | Bpublic | Hlibm3 | Bere | Hew | @10

Path: c:\cm3\pke' libm3\ srehrw’I0.i3 Last modified: Jan 24 14:44
Exported by: I0.m3 Imported by: 65 units

The 10 interface provides textual input and output for simple programs. For more detailed control, use
the interfaces Rd, Wr, Stdio, FileRd, FileWr. Fnt, and Lex.

The input procedures take arguments of type Rd. T that specify which input stream to use. If this
argument is defaulted, standard input (Stdic.scdin) is used. Similarly, if an argument of type W=z . T to
an output procedure is defaulted, stdic.stdout is used.

INTERFACE I0;
IMPORT Rd, Wr;

PROCEDURE Put (txt: TEXT; wr: Wr.T := NIL);

Ouiput txt to vr and flush vr.

Figure 15. The top of the IO Interface

Look at the top of interface I0. Beneath the Quick Access Icons, you'll see
information about the path, last modified date, and import and export lists. You can
use the links under “Imported by’ to find out what units use this interface, or the links
under “Exported by’ to see where the procedures declared here are defined.

Further down the page is a list of elements declared in the TO interface (Figure 16).
The procedure PUt is at the top of the list, and GetL1ne is fifth from the top; these
are the procedures used in MyPackage. Notice that the procedure names here are
highlighted.

21

LEARNING THE BASICS

INTERFACE I0;

IMPORT Rd, Wr;

PROCEDURE Purt (txt: TEXT:; wr: Wr.T := NIL):
Output txt to vr and flush vz.
PROCEDURE PutChar(ch: CHAR; wr: Wr.T := NIL):
Quiput ch to vr and flush wr.
PROCEDURE PutWideChar (ch: WIDECHAR; wr: Wr.T := NIL);
Output ch fo wr and flush vr.
PROCEDURE Putlnt (n: INTEGER:; wr: Wr.T := NIL):
Qutput Fmt . Int (n) to vr and flush vz
PROCEDURE PutReal (r: EEAL; wr: Wr.T := NIL):

Quiput Fmt .Real (r) to vr and flush vr.

PROCEDURE ECF (rd: Rd.T := NIL): BOCLEAN;

Retwrn TRUE iff zd is at end-af-file.

EXCEFTION Error;

The exception Exrror is raised whenever a Get procedure encounters syntactically invalid input,
inchuding unexpected end-of-file.

PROCEDUEE GetLine (rd: Rd.T := NIL): TEXT RAISES {Error}:

Read a line of text from rd and retwn it.

A line of text is either zero or more characters terminated by a line brealk, or one or more characters
terminated by an end-of-file. In the former case, GetLine consumes the line break but does not
inchude it in the returned value. A line break is either {'tt "n"} or {'tt "r'n"}.

Figure 16. Some Procedures Defined in the IO Interface

@ Click on the name of the procedure GetLine. Your browser will display the module
summary page of the IO module, which contains the code for this procedure.

Now, you know what I0.GetLine and I0.Put do.

22

LEARNING THE BASICS

Wrapping up the code. Return to your text editor. Insert the cursor immediately
below the line:

MODULE MyPackage EXPORTS Main;

ED

IMPORT IO;
The file in your text editor should now read as follows:

MODULE MyPackage EXPORTS Main;
IMPORT IO;
VAR name: TEXT; (* string variable called “name” *)
BEGIN
I0.Put(“Enter the name of your nemesis: ”);
name := IO.GetLine();
I0.Put(name & “ is a stupidhead.\n”);
END MyPackage.

What did you just do? You have imported the TO interface in your module, so that you
can access the two procedures declared inside it: IO . Put and I0.GetLine.

Modules and Interfaces: Importing and Exporting

You can control how modules and interfaces interact through IMPORT
and EXPORT statements.

A modnle defines a collection of program elements. These elements could
be constants, types, variables, or procedures. The module exporss an
interface to make some of its component elements available to dzents.

An interface is a list of the elements to be made available. Any file that
IMPORTs an interface is said to be a dient of the interface. The
MyPackage module used in this example is a client of the interface IO.

You can only access the procedures contained in a module by importing an interface
that was exported by that module. To use I0.Put and I0.GetL1ne, you needed
to import the TO interface. You did that by inserting “IMPORT IO right after the
module declaration.

Back to the Package. Now that you have reviewed the IO interface, it is time to
build your program.

@ Save your file, MyPackage .m3, and quit your text editor.

23

A CM3-IDE
makefile is named
m3makefile.

LEARNING THE BASICS

In your web browser, find “Build Package: MyPackage” in your browser’s history
(usually listed under the “Go” menu.) Or just hit the “Back” button of your browser
enough times to get back to the MyPackage summary.

In the next few steps, we will quickly review the makefile for this project. Then we will
build and run the program.

1.3.5 CM3-IDE Makefiles (m3makefile)

A CM3-IDE makefile is named m3makefile. A makefile is a text file containing
instructions that tell CM3-1DE’s builder how to build a program or a library. An
instruction is followed by one or more arguments in parentheses, similar to a
procedure call in a programming language. Indeed, to build your package, CM3-IDE
interprets your m3makefile as a little program.

Each instruction may specify a library, interface, or module to be included as part of
the build. Comments in makefiles start with % and continue to the end of line.

For simple programs you can omit the makefile, and the builder will automatically find
your modules and interfaces and their dependencies. However, creating makefiles for
CM3-IDE packages is a good idea in general, especially since they are easy to create.

The button on the far right of the row of buttons near the top of the “a package
summary”’ page is labeled “Edit m3makefile”:

Click on [_Edtm3makefle | N3 IDE will start your text editor, and open the file
“m3makefiTle”. Here is what you should see in your text editor:

% Makefile for MyPackage
import(“1ibm3”)
implementation(“MyPackage”)
program(“MyPackage”)

When you create a new package, CM3-IDE automatically creates a basic makefile for
you. As your package grows and becomes more complex, it is up to you to make sure
your makefile is up-to-date, though doing so is straightforward.

Let’s take a look at the makefile for this package, line by line.
The first line:
% Makefile for My Package
is a comment. The rest of the line after % is ignored by CM3-IDE.
The second line:

import(“1ibm3”)

LEARNING THE BASICS

is a makefile import command. The TIMPOrt command tells the compiler that the program
uses routines in the standard library, 11bm3. That’s the library that contains the IO
interface and module.

Libraries

In CM3-IDE, a /ibrary is a package whose code may be reused as part of
another library or an executable program. To use functionality of a
library, you must import it in your makefile.

To learn more about libraries see Chapter 3, Building And Sharing
Packages on page 47. To see a list of available libraries in CM3-IDE,

click the ™ [ibraries icon on the start screen.

Most makefiles include one or two import commands. If you use routines from other
libraries, you must include other import commands that tell the compiler which
libraries to include.

The third line:
implementation(“MyPackage”)

marks the program MyPackage .m3 as a module implementation for your package.
In your makefile, there must be one imp1ementation command for each “.m3”
file in your program. In this case, there was only one such file: MyPackage .m3.

Finally, the last line:
program(“stupidhead”)

tells the compiler to name the resulting executable file “stupidhead”. On
Windows, executables have an “@Xe@” extension.

Quit your text editor, and, if you’ve modified your makefile, make sure you don’t save
the changes. The makefile is fine as it is.

Click the button in the package summary for MyPackage. CM3-IDE will
build your program, and point you to the Build Results page for MyPackage which
will show any compiler error messages (in this case, you should not have gotten any)
and warnings (which you may ignore for the moment.)

Your program is now ready to run. This program, however, is a bit more interactive
than the one in this chapter’s first tutorial. You will need to run this one from a

25

LEARNING THE BASICS

command-line prompt. Once CM3-IDE has created an executable, you can run it
directly from the operating system. This is what we’ll do with this program.

Click the B MyPackage icon in the Quick Access Icons area, or on the Back button of
your browser to return to the package summary for MyPackage. You should see a

link to the stupidhead program next to the B Programs category. If you don’t,
click the Reload button of your web browser.

Click on the name of your new program to go to its program summary. At the top of
that page, immediately beneath the Quick Access icons, you can read the location of
the new program in your file system, right after “Path:”.

@ Program: MyPackage

& cM3IDE | [sandbox | B MyPackage | EINT386 | Bl MyPackage

Path: c:\MySandbox\MyPackage \NT386 \MyPackage.exe Last modified: Mar 5 14:07

[Ship| [Clean | [Editm3makefle |

Options:
Command: C\MySandboxiMyPackage\NT386\MyPackage.exe
Directory: C\MySandboxi\MyPackage\NT386

@' Moduoles: MyFPackage

Categories: Modules

Find

Figure 17. The top of a Program Summary page

At the command-line, change your working directory to the one containing the
executable. Type “MyPackage” at the shell prompt to run the program. Here is what
you should see in your system window:

Enter the name of your nemesis:

Do what it says; type the name of your nemesis here. If you enter “My b0SS” the
program will write:

My boss 1is a stupidhead.

at the shell window and exit. What an intelligent and well-conceived program!

26

CM3-IDE is case-
sensitive.

All keywords in
CM3-IDE are
capitalized.

LEARNING THE BASICS

14 Summary

In CM3-IDE, projects ate divided into packages. A project can consist of one more
packages. A CM3-IDE package comprises one or more modules and interfaces, along
with a makefile that tells the compiler how to put everything together. Unlike their
ancestors, CM3-IDE makefiles don’t need dependency definitions.

Modules and interfaces are the building blocks of a CM3-IDE package. A module is a
named collection of declarations, including constants, types, variables, and procedures.
An interface can be thought of as a window into a module’s functionality. To use
another module, you #zport an interface that was exported by that module.

Both interfaces and modules may use #port statements. By looking at the import
statements for a module, you can easily discover its dependencies on other interfaces.

The basic form of a module and an interface is:

MODULE module-name; INTERFACE interface-name;

IMPORT intf-1, intf-2,..; IMPORT intf-1, intf-2,..;

Declarations;

BEGIN Declarations;

Statements;

END module-name. END interface-name.
Statements terminate with a semicolon (““;). Comments begin with “(*” and end
with “¥*)”.

CM3-IDE makefiles, usually named m3makef1i Te, define the steps for building a
package. Here is a simple makefile:

% Makefile for a simple package
import(“1ibm3”)

implementation(“module_name”)
program(“program_name”) o library(“lib_name”)

Comments in makefiles start with % and continue to the end of the line. The call
“program’ at the end of a makefile marks that this package should be built as an
executable program; the call “11brary” means this package should be built as a
reusable library.

27

LEARNING THE BASICS

This page left blank
intentionally.

28

