
B E Y O N D T H E B A S I C S

73737373

5. Beyond The Basics

This chapter introduces more advanced language concepts as a starting point for your
exploration of system and application programming with CM3-IDE.

This chapter treats the language concepts pedagogically; each concept is presented
informally and is illustrated through a complete example program. The description of
concepts and features in this chapter is incomplete; for complete and precise
definitions of language features, see the Language Reference.

This chapter is divided into six parts. Each part describes a distinct feature of the
language, and demonstrates the feature in a complete program. You can find the

sources for the programs in this chapter in the Examples section of your CM3-IDE
environment.

Exceptions: Error Handling in CM3-IDE on page 74 illustrates the use of exceptions
for building robust programs.

Object Types: Object Oriented Programming on page 81 showcases basic object-
oriented programming in a simple program.

Threads: Managing Concurrent Activities on page 86 describes how to use threads
to manage concurrent activities.

Opaque Types: Information Hiding and Encapsulation on page 88 demonstrates the
use of opaque types to hide the implementation of a type from its clients. The section
continues with partially opaque types, which can be used to reveal partial information
about objects to select clients.

Generics: Reusable Data Structures and Algorithms on page 97 outlines the use of
parametrized interfaces for creating polymorphic data structures and algorithms.

Unsafe Constructs: System Programming in CM3-IDE on page 102 introduces you to
the unsafe subset of the language.

Chapter

5
Read this chapter

to learn about

advanced

language

concepts.

����
CChhaapptteerr

OOrrggaanniizzaattiioonn

B E Y O N D T H E B A S I C S

 74747474

5.1 Exceptions: Error Handling in CM3-IDE

Error handling in CM3-IDE is done with language-level exceptions. Exceptions help
separate error handling logic from the main code.

If you want your program to remain vigilant at all times for errors where exceptions are
not available, you need to explicitly check for failure at every function call in your
program. Due to the usual pressures of software development, returning or checking
error codes for failure is seldom done thoroughly. Careful programmers who check for
every error condition often design elaborate arrangements of if-then statements, or
non-standard “setjmp” calls. Most of these methods make programming much
more difficult for the careful programmer, hence encouraging sloppy treatment of
errors.

Error-checking with exceptions enables the programmer to easily, and reliably handle
all error conditions in their programs.

5.1.1 How Exceptions Work

In CM3-IDE, when a program encounters a situation deemed abnormal by the
programmer, the runtime generates an exception, and begins to look for a handler for
the exception to handle the abnormal condition.

If an exception is not handled in the current procedure, the calling procedure is
searched. If no handler for that particular exception is found there, the runtime will
continue following the chain of called procedures until it finds a procedure that handles
that particular exception. If no handler is found, the computation terminates, for
example, by entering the debugger.

Hence, it is possible to handle errors anywhere in a chain of procedure calls, without
having to continually check error codes.

For a precise definition of the semantics of exceptions, see the Language Reference. Here
we describe the syntax for raising and handling exceptions, and illustrate the use of
exceptions in a simple program.

5.1.2 Declaring Exceptions

All exceptions must be declared at the top-level of an interface or a module. An
exception may include a parameter.

EXCEPTION exception-name [“(” exception-parameter “)”];

In the following example, DriveNotReady is a parameter-less exception and
ReadError is an exception that takes a TEXT parameter:

B E Y O N D T H E B A S I C S

 75757575

INTERFACE CDROM;

EXCEPTION DriveNotReady;
EXCEPTION ReadError(TEXT);

PROCEDURE Read(sector: INTEGER):TEXT
 RAISES {DriveNotReady, ReadError};
END CDROM.

5.1.3 Triggering Exceptions: RAISE Statement

You can trigger the handling of an exception through the use of the RAISE statement.
The statement:

RAISE exception [“(” exception-parameter “)”];

raises an exception, passing control of the program to the innermost exception handler
for that exception. Use the RAISE statement to raise an exception. If the exception is
defined with a parameter, one must be supplied when the exception is raised.

5.1.4 Handling Exceptions: TRY-EXCEPT Statement
TRY
 guarded-statements
EXCEPT
 “|” exception-name { “,” exception-name … } “=>” action-statement
 “|” exception-name “(” parameter-name “)” “=>” action-statement
[ELSE statements]
END

The TRY-EXCEPT statement guards statements between TRY and EXCEPT with the
exception handlers between EXCEPT and END.

An exception raised by a guarded-statement is handled by the action-
statement which has a matching handler for the exception, or by the ELSE clause,
if present. If an exception is caught, execution continues with the statement following
the END, otherwise the exception is passed on to the enclosing scope.

Example:

EXCEPTION Failure(Severity);
TYPE Severity = {Low, Medium, High};
…
TRY

…Code that may raise Failure, IO.Error, or Lex.Error …
EXCEPT
| IO.Error => IO.Put(“An I/O error occurred.”)
| Lex.Error => IO.Put(“Unable to convert datatype.”)
| Failure(x) => IF x = Severity.Low
 THEN IO.Put(“Not bad”)
 ELSE IO.Put(“Bail out”)
 END
END;

B E Y O N D T H E B A S I C S

 76767676

Important Note. The language defines RETURN and EXIT in terms of exceptions,
hence the ELSE clause of a TRY-EXCEPT statement may catch a RETURN or an
EXIT. You should refrain from using the ELSE clause of a TRY-EXCEPT statement
whenever possible.

5.1.5 Cleaning up: TRY-FINALLY Statement

The TRY-FINALLY statement is typically used for clean-up activities.

TRY
 guarded-statements
FINALLY
 cleanup-statements
END

TRY-FINALLY guarantees that cleanup-statements are called no matter
what happens in the guarded-statements. If one of guarded-
statements raises an exception, the same exception is re-raised by TRY-
FINALLY after the cleanup-statements are executed.

TRY-FINALLY is useful for clean-up activities, like closing file handles, even when
the I/O operations may fail:

rd := IO.OpenRead(“myfile”);
TRY
 WHILE NOT EOF(rd) DO
 IO.PutLine (IO.GetLine(rd));
 END;
FINALLY
 Rd.Close(rd);
END;

Important Note. As RETURN and EXIT semantics are defined in terms of
exceptions, TRY-FINALLY will not only act upon an ordinary exception, but it also
acts upon a RETURN or an EXIT. This is often handy for adding wrappers to a block
of code to print debugging information no matter how the block of code behaves.

B E Y O N D T H E B A S I C S

 77777777

5.1.6 Trapping All Exits from a Block of Code

For example, starting with a procedure with multiple return paths:

PROCEDURE SomeProc(): BOOLEAN RAISES {Invalid} =
BEGIN
 FOR i := 1 TO 10 DO
 CASE option[i] OF
 | ‘a’..’z’ => RETURN TRUE;
 | ‘1’..’9’ => EXIT;
 ELSE RAISE Invalid;
 END;
 RETURN FALSE;
END SomeProc;

Suppose you would like to print a message every time a procedure exits, no matter how
it exits: It is easy to add a TRY-FINALLY statement to catch every exit from the
procedure. Simply add a TRY-FINALLY around the procedure’s body; the
FINALLY clause will be called no matter how the program exits SomeProc’s scope.

5.1.7 An Example of Exception Handling

The next two programs illustrate how to use exceptions to make your programs more
robust against failures. The first one is a simple file copy program that does not deal
with exceptions. The second incarnation catches exceptions, and hence is more robust.

5.1.8 Programming without Exceptions

Here we review the implementation of the Copy program. This program may crash at
run-time due to uncaught exceptions.

Indeed, if you compile the sources for this version of the copy program, you will notice
a number of warnings regarding possible exception failures at run-time. It is easy to
cause a run-time crash: simply attempt to copy a non-existent file. The compiler
warnings notify you about possible run-time failures at compile-time. If you fix all the
exception-related warnings in all the sources of a program, your program will never
crash from an unhandled exception.

Let’s start with the main module, named Copy. The Copy program is simple:

• Make sure that the user has specified arguments correctly.

• If parameters are wrong, return an error code and exit.

• Otherwise, pass them along to FakeOS.Copy.

B E Y O N D T H E B A S I C S

 78787878

MODULE Copy EXPORTS Main;
 IMPORT FakeOS, Params, Process, IO;
BEGIN
 IF Params.Count # 3 THEN
 IO.Put (“Syntax: copy <source> <destination>\n”);
 Process.Exit (2);
 END;
 WITH source = Params.Get(1) DO
 WITH destination = Params.Get(2) DO
 FakeOS.Copy (source, destination);
 END;
 END;
END Copy.

As a user-defined interface, FakeOS provides access to the FakeOS module. Copy a
file named source to a file named destination.

INTERFACE FakeOS;
 PROCEDURE Copy(source, destination: TEXT);
END FakeOS.

The FakeOS module supplies the body of the Copy procedure. The Copy
procedure creates new reader and writer streams from the input and output files, reads
the contents from the input, and writes it to the output.

The procedures FileRd.Open and FileWr.Open are used for reading and
writing files, Rd.GetText and Wr.PutText for input and output, and
Wr.Close and Rd.Close to close the I/O streams.

FakeOS.Copy does the following:

• Open a reader and a writer to the source and destination

• Read the contents of the reader

• Write the contents into the writer

• Flush and close the reader and the writer

B E Y O N D T H E B A S I C S

 79797979

MODULE FakeOS;
 IMPORT Rd, Wr, FileRd, FileWr;
PROCEDURE Copy(src, dest: TEXT) =
 VAR rd: Rd.T; wr: Wr.T;
BEGIN
 rd := FileRd.Open (src);
 wr := FileWr.Open (dest);
 WITH contents = Rd.GetText (rd, LAST(INTEGER)) DO
 Wr.PutText (wr, contents);
 END;
 Rd.Close (rd);
 Wr.Close(wr);
END Copy;

BEGIN
END FakeOS.

Note that FakeOS.Copy does not handle any exceptions raised by
FileRd.Open, FileWr.Open, Rd.GetText or Wr.PutText. You may
review the definition of these procedures in the standard libraries to find out about the
exceptions they may raise. You can easily create a situation where an uncaught
exception, causes a run-time crash.

5.1.9 Making Programs Robust with Exceptions

The previous version of FakeOS.Copy has a serious problem: it crashes when any
I/O exception (e.g., disk full, no permission to write) is raised. The new version of the
FakeOS interface and implementation illustrates how to use exceptions to build
robust programs. The main module Copy still calls the FakeOS interface. The
required changes are:

1. Add an Error exception with a TEXT parameter to the FakeOS interface.

2. Change FakeOS.Copy to raise Error when there is a problem, and
include a text string describing the problem.

3. Modify the Copy module to handle this exception by printing an error
message for the user.

INTERFACE FakeOS;
EXCEPTION Error (TEXT);
PROCEDURE Copy(source, destination: TEXT) RAISES {Error};
END FakeOS.

B E Y O N D T H E B A S I C S

 80808080

Here is the implementation of the new FakeOS:

MODULE FakeOS;
IMPORT Rd, Wr, FileRd, FileWr;
IMPORT Thread, OSError;

FakeOS works similarly to the last version, but this time it catches exceptions using
the TRY-EXCEPT clause. For each exception that is raised by the called procedures,
we propagate an Error exception to the caller of FakeOS.Copy.

PROCEDURE Copy(src, dest: TEXT) RAISES {Error} =
VAR
 rd: Rd.T;
 wr: Wr.T;
<* FATAL Thread.Alerted *>
BEGIN
 TRY
 rd := FileRd.Open (src);
 wr := FileWr.Open (dest);
 WITH contents = Rd.GetText (rd, LAST(INTEGER)) DO
 Wr.PutText (wr, contents);
 END;
 Rd.Close (rd);
 Wr.Close(wr);
 EXCEPT
 | Rd.Failure =>
 RAISE Error (“reading from “ & src & “ failed”);
 | Wr.Failure =>
 RAISE Error (“writing to “ & dest & “ failed”);
 | OSError.E =>
 RAISE Error (“a system problem occured”);
 END
END Copy;

BEGIN
END FakeOS.

Note that the exception Thread.Alerted is marked as fatal, because we didn’t
want to handle it. The FATAL pragma lets the programmer tell the compiler that a
particular exception is intentionally not being handled. You should employ the FATAL
pragma carefully; excessive use of the FATAL pragma results in crash-prone code. If
FakeOS.Copy was to deal with multiple threads, it should deal with
Thread.Alerted properly.

What happens to the Close statements if there is an exception raised while the files
are open? Yes, that’s a problem—if an exception occurs while copying, the files may be
left open—and you can use a TRY-FINALLY statement to deal with it. Review the
language reference or tutorial to learn about TRY-FINALLY.

While these kinds of issues are usually not important in short-lived programs, they are
very important for long-lived, multi-threaded applications (for example, a network
object server) where resource management is critical.

B E Y O N D T H E B A S I C S

 81818181

This program is now robust against various system exceptions raised by calls in
FakeOS or Copy modules. If the program hadn’t been handling a particular
exception, you would have seen a warning at compile-time. This same program,
without source modifications, will work without silent or unexpected errors due to
system exceptions on all supported operating systems.

5.2 Object Types: Object-oriented Programming

This section assumes that you are familiar with the concepts of object-oriented
programming.

An object associates some state with some behavior. A Modula-3 object is a record—its
state—paired with a method suite—its behavior.

TYPE
 AnObjectType “=“ [parent-object-type] OBJECT
 object-fields
 [METHODS methods]
 [OVERRIDES overrides]
 END

An object is a record paired with a method suite, a collection of procedures that operate
on the object. The fields of an object are specified just like those of records. Methods
look like fields that hold procedure values, with the following syntax:

methods = { method “;” … }
method = identifier signature [“:=“ procedure-name]

A method signature is similar to a procedure signature (See the section on procedure
declarations in the Language Reference). If a method declaration includes “:=”, the
associated procedure must accept objects of this type as its first parameter; the rest of
the parameters much match the signature. The first parameter is often referred to as
the self parameter.

Overrides specify new implementations for methods declared by an ancestor object-type:
(An ancestor is either the parent of this type, or its parent’s parent, or ...)

overrides = { override “;” … }
override = method-name “:=” procedure-name

Object types form a single-inheritance hierarchy. The type ROOT is the supertype of all
object types. Objects are traced references by default, hence they are garbage-collected
by default.

Example. Let’s create an object type Polygon which contains an open array of
coordinates. We also define an initialization method init, and a verification method
verify, for all objects of this type. Subtypes of Polygon may override the init
method, and must override the verify method.

B E Y O N D T H E B A S I C S

 82828282

TYPE
 Polygon = OBJECT
 coords: REF ARRAY OF Point.T;
 METHODS
 init(READONLY p: ARRAY OF Point.T): Polygon := Init;
 verify() := NIL; (* To be overridden by subclasses. *)
 END;

PROCEDURE Init (self: Polygon;
 READONLY p: ARRAY OF Point.T) =
BEGIN
 self.coords := NEW(NUMBER(p));
 self.coords^ := p;
 self.verify(); (* Verify that initialization was proper. *)
 RETURN self;
END;

The subtype Drawable adds the draw method and assigns the Draw procedure as
the default implementation for the draw method.

TYPE
 Drawable = Polygon OBJECT METHODS
 draw() := Draw;
 END;

PROCEDURE Draw (self: Drawable) =
BEGIN
 WITH p = self.coords^ DO
 FOR i = FIRST(p) TO LAST(p) DO
 DrawLine(p[i], p[(i+1) MOD NUMBER (p)])
 END;
 END;
END Draw.

Type Rectangle is a concrete implementation of an object. It will override the
verify method to make sure there are four sides to this polygon and that the sides
have the right properties.

TYPE
 Rectangle = Drawable OBJECT METHODS
 OVERRIDES
 verify := Verify;
 END;

PROCEDURE Verify (self: Rectangle) =
BEGIN
 WITH p = self.coords^, dist = Point.DistSquare DO
 <* ASSERT NUMBER(p) = 4 *>
 <* ASSERT dist (p[0],p[2]) = dist (p[1],p[3]) *>
 END
END Verify;

B E Y O N D T H E B A S I C S

 83838383

Assuming point is a ARRAY [1..4] OF Point.T, to draw a new Rectangle
object, you must do:

VAR
 rect: Rectangle;
BEGIN
 rect := NEW(Rectangle);
 rect.init(points);
 rect.draw();
END

Or the shorthand:

VAR
 rect := NEW(Rectangle).init(points);
BEGIN
 rect.draw();
END

5.2.1 Programming with Objects: A Complete Example

The complete program Objects is another example of the use of objects.

MODULE Objects EXPORTS Main;
IMPORT IO;

The type Person declares a new object type with fields firstname, lastname,
and gender. Person also defines a method fullname() which is implemented
by procedure FullName.

TYPE
 Person = OBJECT
 firstname, lastname: TEXT;
 gender: Gender;
 METHODS
 fullname(): TEXT := FullName;
 END;
 Gender = {Female, Male};

PROCEDURE FullName (self: Person): TEXT =
 CONST Title = ARRAY Gender OF TEXT {“Ms.”, “Mr.”};
BEGIN
 RETURN Title[self.gender] & “ ” & self.firstname &
 “ ” & self.lastname;
END FullName;

Any code that can see the declaration of the object type Person can create new
instances of that type. So, anywhere in this module, you can create a new instance of
the type Person. (You can use interfaces to control the visibility of object types. See
Opaque Types: Information Hiding and Encapsulation on page 88 for more
information.)

B E Y O N D T H E B A S I C S

 84848484

Here a new object is assigned to the variable john.

VAR
 john := NEW(Person,
 gender := Gender.Male,
 firstname := “John”,
 lastname := “Smith”);

Here is a procedure, Describe, which takes a Person object and a text description
and prints a line to the standard output using the fullname() method.

PROCEDURE Describe (person: Person; description: TEXT) =
BEGIN
 IO.Put (person.fullname() & “ is “ & description & “.\n”);
END Describe;

Describe calls the fullname method of its first parameter. Of course, different
Person objects can have different implementations of the fullname method, so,
ultimately you can pass different subtypes of Person into this procedure. Here we
create one such subtype, named Employee which has some additional fields. Note
that it shares the same implementation as Person for the fullname() method.

TYPE
 Employee = Person OBJECT
 company: TEXT;
 END;

Next, we create a new instance of this type, named jane. You can list the fields of an
object in any order when you initialize it.

VAR
 jane := NEW(Employee,
 firstname := “Jane”,
 lastname := “Doe”,
 company := “ACME Ltd”,
 gender := Gender.Female);

You can create new subtypes that override existing methods. In the next subtype, the
fullname() method of Doctor object, implemented via FullDoctorName,
skips the first name and uses a professional title for referring to a Doctor instance.
Note that PrintDoctorName’s self argument is of type Doctor.

TYPE
 Doctor = Person OBJECT
 title: TEXT := NIL;
 OVERRIDES
 fullname := FullDoctorName;
 END;

B E Y O N D T H E B A S I C S

 85858585

PROCEDURE FullDoctorName(self: Doctor): TEXT =
 VAR
 result: TEXT := “Dr. “ & self.lastname;
BEGIN
 IF self.title # NIL THEN
 result := result & “, ” & self.title & “, ”;
 END;
 RETURN result;
END PrintDoctorName;

Let’s create a couple of instances of Doctor.

VAR
 dr_who := NEW(Doctor,
 lastname := “Who”,
 title := “Time Lord”);

 dr_quinn := NEW(Doctor,
 lastname := “Quinn”,
 title := “Medicine Woman”);

There is also a shorthand for creating one-of-a-kind objects types as part of a NEW call.
That’s how joe gets created.

VAR
 joe := NEW(Person, firstname := “Joe”,
 lastname := “Schmo”,
 fullname := AnAverage);

PROCEDURE AnAverage(self: Person): TEXT =
BEGIN
 RETURN “An average “ & self.firstname & “ “ &
 self.lastname;
END AnAverage;

Finally, make a few calls to Describe just to show that it works.

BEGIN
 Describe (john, “a nice person”);
 Describe (jane, “an employee of “ & jane.company);
 Describe (dr_who, “a bit weird”);
 Describe (dr_quinn, “not for real”);
 Describe (joe, “probably good enough for working” &
 “on this project”);
END Objects.

Feel free to create your own subtypes of Person!

For more information on controlling visibility of object declarations, see Opaque

Types: Information Hiding and Encapsulation on page 88.

B E Y O N D T H E B A S I C S

 86868686

5.3 Threads: Managing Concurrent Activities

A Thread is the fundamental concurrency abstraction in Modula-3.

Using threads, you can create concurrent activities within a single activation of a
program.

Threads can be very useful for structuring real-world programs, because they often
need to deal with multiple activities. For example, a program that needs to interact with
the user and manage a long-running query to a database can use a thread for each task,
so that one task can progress without waiting for the other tasks.

Threads enforce a separation of concerns of concurrent activities in your program,
which helps you manage each task better.

Using the required Thread interface, you can create and manage threads in an
operating-system-independent manner. The Thread interface provides operations for
communication and synchronization between threads. Standard libraries distributed
with your system are thread-friendly. Indeed, some libraries, such as the user interface
toolkit Trestle, use threads in order to perform their background activities.

For a good introduction to threads, read Andrew Birrell’s article, Introduction to
Programming with Threads, included on-line as part of your CM3-IDE distribution. The
sample program ThreadExample briefly outlines how you can program with
multiple threads.

ThreadExample is a simple multi-threaded program:

MODULE ThreadExample EXPORTS Main;
IMPORT Thread, Fmt, IO;

Driven by commands from the standard input. For each user request, the program
spawns a new thread which waits for a specified elapsed time.

ThreadClosure. The following fragment creates a new closure object, which embodies
the state of a thread. In this case, the Thread.Closure subtype TimeClosure
contains the state required for a timer thread: a length of time that a thread must pause.

By convention, thread closures override the apply method to designate the work to
be done. TimerClosure’s implementation is in procedure TimerApply.

TYPE
 TimerClosure = Thread.Closure OBJECT
 time: LONGREAL;
 OVERRIDES
 apply := TimerApply;
 END;

B E Y O N D T H E B A S I C S

 87878787

TimerApply performs the work of the timer threads:

• print out a message that it has started

• wait for time seconds

• print out a message that it has finished.

The local variable count allows the user to match the start and finish messages.

PROCEDURE TimerApply (cl: TimerClosure): REFANY =
VAR
 count := Counter();
BEGIN
 Print(“\nStarting timer ” & Fmt.Int(count) &
 “ for ” & Fmt.LongReal (cl.time) & “ seconds.”);
 Thread.Pause (cl.time);
 Print (“\nFinished timer ” & Fmt.Int(count) &
 “ after ” & Fmt.LongReal (cl.time) & “ seconds.\n”);
 RETURN NIL;
END TimerApply;

Thread Synchronization. The variable timer_count keeps track of the count for
the threads created; timer_count_mu, a mutex (or a lock) protects the critical
sections, where multiple threads may be contending for timer-count.

VAR
 timer_count: CARDINAL := 0;
 timer_count_mu := NEW(MUTEX);

Counter returns a new counter. Counter’s critical section (the place where
multiple threads may be racing each other) is protected by a LOCK statement. Note
that mutex is automatically unlocked upon exit from the scope of the LOCK
statement, so RETURN timer_count effectively unlocks timer_count on its
way out of the procedure.

PROCEDURE Counter(): CARDINAL =
BEGIN
 LOCK timer_count_mu DO
 INC (timer_count);
 RETURN timer_count;
 END;
END Counter;

Forking Threads. The main program waits for user input and forks threads for new
timers when the user asks for one.

The main loop reads input from the user to determine how long the next forked thread
should pause. A closure is created dynamically to be passed into Thread.Fork,
which will fork a new thread and run closure.apply().

B E Y O N D T H E B A S I C S

 88888888

VAR
 input: CARDINAL;
 closure: TimerClosure;
BEGIN
 LOOP
 IO.Put(Prompt);
 input := IO.GetInt();
 closure :=
 NEW(TimerClosure, time := FLOAT(input, LONGREAL));
 EVAL Thread.Fork (closure);
 END;
END ThreadExample.

There was no need to wait for the forked thread in this example. To wait for a forked
thread to complete, you call Thread.Join(th) which returns the value returned
by the thread’s apply method.

th := Thread.Fork (cl);
 … do other activities …
result := Thread.Join (th)

Other calls in the Thread interface, such as Signal, Wait, and Broadcast
provide for more intricate synchronization patterns. For a thorough introduction, see
Andrew Birrell’s article, Introduction to Programming with Threads, available on-line in the
Technical Notes section of your CM3-IDE distribution.

5.4 Opaque Types: Information Hiding And

Encapsulation

Encapsulating implementation details is a key technique in managing the growth of
large programs. Often, you may want to reveal references to data structures in a
module, while hiding the structure and implementation of a datatype. Opaque types are
a mechanism for enforcing such a separation. An opaque type is a name that denotes an
unknown subtype of a known reference type. For example, all you know about an
opaque subtype of REFANY is that it is a traced reference. (REFANY is the root of the
traced heap.) The actual type denoted by an opaque type name is called its concrete type.

Different scopes can reveal different information about an opaque type. For example,
what is known in one scope only to be a subtype of REFANY could be known in
another scope to be a subtype of ROOT.

An opaque type declaration has the form:

TYPE T <: U

where T is an identifier and U an expression denoting a reference type. It introduces
the name T as an opaque type and reveals that U is a supertype of T. The concrete type
of T must be revealed elsewhere in the program.

B E Y O N D T H E B A S I C S

 89898989

5.4.1 Fully Opaque Types

The simplest way to hide information is to divide your program into two groups:
portions of your code where everything about the structure of a type is revealed, and
portions where nothing is revealed. This dichotomy is the essence of fully opaque types.
A fully opaque type is a subtype of REFANY, or ADDRESS, corresponding to a traced
or untraced reference to an unknown type.

By combining fully opaque types with interfaces, you can create abstract datatypes with
full encapsulation: the interface pairs the name of the type, with a set of procedures
that operate on that type.

In the next example, the Person interface exports an opaque type Person.T, and
the operations New and Describe.

INTERFACE Person; IMPORT Wr;

Declare Person.T as an opaque type.

TYPE
 T <: REFANY;

The Person interface defines an opaque type T (often called an abstract data type) with
two operations:

• New for creating new instances

• Describe for printing textual descriptions.

Since none of the clients can “see through” this opaque interface, it should describe
precisely what the implementation does without revealing how the implementation
works.

The statement U <: V means that U is a subtype of V. When you see such a
declaration, you can assume that an instance of U supports at least as many operations
as an instance of V. In this case, since V is REFANY, all you can assume about
Person.T is that it is a traced reference. It’s traced, so you don’t have to worry about
managing its memory. It’s a reference so you can store it, or compare it with another
reference of the same type for equality.

Gender = {Female, Male};

Person.Gender is an enumeration type with elements Female and Male.

PROCEDURE New (firstname, lastname: TEXT;
 gender: Gender): T;

Create a new Person.T given a first name, a last name, and a gender.

B E Y O N D T H E B A S I C S

 90909090

PROCEDURE Describe(person: T; desc: TEXT; wr: Wr.T := NIL);

Write a textual description, desc, of a Person.T to the writer stream wr. If wr is
not specified, write the description to the standard output.

END Person.

Note that nothing about the implementation of Person.T is visible to clients of
Person. Indeed, the compiler will not know any more information while compiling
clients of this interface; hence, if you change the implementation for this module, you
don’t have to recompile its clients.

MODULE Person;
IMPORT IO, Wr;

The Person module implements the opaque type Person.T. To do so, it reveals
the representation of Person.T completely. Within the module, we can use the
items declared in the interface without qualification. Hence, T in this module refers to
Person.T and Gender refers to Person.Gender.

Since the only information specified in the Person interface is that Person.T is a
reference—or more precisely, Person.T <: REFANY—the implementation can
specify the full structure of the object. Indeed, the full revelation of Person.T is
similar to an ordinary object type declaration.

REVEAL
 T = BRANDED OBJECT
 firstname, lastname: TEXT;
 gender: Gender;
 METHODS
 fullname(): TEXT := FullName;
 END;

The BRANDED keyword is required in all full revelations and ensures that instances of
Person.T are distinct from all other types with the same structure. Essentially, the
BRANDED keyword overrides Modula-3’s structural equivalence for this type. See the
language reference for more information about branding.

Next, we declare an array of title names. The outside world, of course, does not know
about the existence of this array as it is not visible from the interface Person.

CONST
 Title = ARRAY Gender OF TEXT {“Ms.”, “Mr.”};

Procedure FullName is the implementation of method fullname() of
Person.T. Since FullName is not exported by the Person interface it will not
be visible to any outside modules.

B E Y O N D T H E B A S I C S

 91919191

PROCEDURE FullName (p: T): TEXT =
BEGIN
 RETURN Title[p.gender] & “ “ & p.firstname &
 “ ” & p.lastname;
END FullName;

The next procedure, Describe, is exported and hence visible to all clients of the
Person interface. Since Describe is defined within this module, the
representation of p.fullname() is visible within its body.

PROCEDURE Describe(p: T; desc: TEXT; wr: Wr.T := NIL) =
BEGIN
 IO.Put (p.fullname() & “ is “ & desc & “.\n”, wr);
END Describe;

BEGIN
END Person.

5.4.2 Clients of an Opaque Type

OpaqueExample is a client of the Person interface:

MODULE OpaqueExample EXPORTS Main;
IMPORT Person;

There, we assign new Person.T instances to three variables jane, june, and
john (using various combinations of positional and keyword parameter binding.)

VAR
 jane: Person.T :=
 Person.New(firstname := “June”,
 lastname := “Doe”,
 gender := Person.Gender.Female);
 june := Person.New(“June”,”Doe”,
 gender := Person.Gender.Female);
 john := Person.New(“John”,”Doe”, Person.Gender.Male);

Next, we call Person.Describe a few times. Note that jane.firstname,
jane.lastname, or even june.fullname() are not available in this module,
even though they are available within the implementation of Person, since
Person.T is an opaque type.

CONST
 address = “123 Main Street”;
BEGIN
 Person.Describe (jane, “lives at “ & address);
 Person.Describe (june, “lives at “ & address);
 Person.Describe (john, “lives at “ & address);

Indeed, if you were to invent your own Person type—even if its structure was the
same as that of Person.T—the compiler would prevent you from passing the
imposter into Person.Describe. The only way to get a new Person.T object
is by calling Person.New.

B E Y O N D T H E B A S I C S

 92929292

END OpaqueExample.

By using opaque types, the Person interface achieves full encapsulation.

Sometimes full encapsulation is too strong. In the rest of this section, you learn how to
encapsulate only parts of your objects.

5.4.3 Partially Opaque Types: Revealing Types in Moderation

Opaque types hide and reveal type information in an extreme manner. If the concrete
implementation of an opaque type is revealed in your current scope, you know
everything about the structure and the implementation of the type. If the concrete
revelation is not available in your scope, then you may know nothing about the
structure and implementation for the type.

In practice, you may need more control over the visibility of types in different parts of
your programs. Partial revelation of opaque types enables fine-grained control over the
visibility of fields and methods of your objects.

A natural extension of the opaque type concept, partially opaque types may be used to
generalize the language-enforced visibility rules. Using partial revelation, you may
define visibility rules that fit your particular application, instead of confining your object
types to the hard-coded public, private, protected, and friend visibility rules common in
other languages.

A new version of the Person interface illustrates partial revelation. A partially opaque
type Person.T is defined, with two operations init and fullname.

INTERFACE Person;

Using the idiom TYPE T <: Public; Public = OBJECT ... END, the
next fragment states that the Person.T supports at least operations init and
fullname, without revealing the exact structure of Person.T, or revealing what
other methods Person.T may support.

To declare Person.T, first, we declare a type T as a subtype of Public.

TYPE
 T <: Public;

Then, we define Public, the publicly available revelation of this Person.T to be
an object type, with the methods init and fullname.

Public = OBJECT
 METHODS
 init(firstname, lastname: TEXT; gender: Gender): T;
 fullname(): TEXT;
END;

B E Y O N D T H E B A S I C S

 93939393

The name Public is used here by convention, not by a hard-coded rule. The method
init initializes the object using firstname, lastname, and gender and
returns the initialized object. The init method is used by convention to initialize
values as they are.

The method fullname returns the full name of the Person.T object in question.

 Gender = {Female, Male};
END Person.

In contrast with fully opaque definition of the person interface, there is no need to
provide a New procedure in the interface. Clients of this interface can freely instantiate
Person.T using the built-in NEW operation. Another difference is that clients of a
partially-opaque type can invoke methods on it. In this case, the methods init and
fullname are available to all clients of Person. After calling a built-in NEW
operation, you can call init to initialize the newly instantiated object. The method
fullname returns a text string containing the name of a person; hence, there is no
need for the Describe procedure to exist inside this module.

Declaring a partially opaque type also allows clients of this interface to create new
subtypes of Person.T. By calling Person.T.init, such subtypes can assure that
the Person.T portion of the object is initialized properly.

MODULE Person;

The implementation of the Person interface implements the partially opaque type
Person.T. To do so, it reveals the representation of Person.T fully.

The Person interface already defines the signatures for procedures init and
fullname. It is the role of this module to implement these methods, and add the
underlying implementation structure. The BRANDED keyword will ensure that
instances of other types with identical structure cannot masquerade as Person.T
objects.

REVEAL
 T = Public BRANDED OBJECT
 firstname, lastname: TEXT;
 gender: Gender;
 OVERRIDES
 init := Init;
 fullname:= FullName;
 END;

Procedure Init initializes a Person.T object, and returns the self parameter just
initialized.

B E Y O N D T H E B A S I C S

 94949494

PROCEDURE Init (self: T; firstname, lastname: TEXT;
 gender: Gender): T =
BEGIN
 self.firstname := firstname;
 self.lastname := lastname;
 self.gender := gender;
 RETURN self;
END Init;

Define the procedure FullName, the implementation of method fullname() of
Person.T. Procedure FullName itself is not exported to the clients of Person
interface, but the method fullname() of Person.T is visible to clients.

PROCEDURE FullName (p: T): TEXT =
BEGIN
 RETURN Title[p.gender] & “ ” & p.firstname & “ ” &
 p.lastname;
END FullName;

CONST
 Title = ARRAY Gender OF TEXT {“Ms.”, “Mr.”};
BEGIN
END Person.

5.4.4 Subtyping Partially Opaque Type

In the next module, Employee.T is defined as a subtype of a partially opaque type
Person.T.

INTERFACE Employee;
IMPORT Person;

TYPE
 T <: Public;
 Public = Person.T OBJECT
 METHODS
 init(first, last: TEXT;
 gender: Person.Gender;
 company: TEXT): T;
 END;
END Employee.

The declaration of Employee.T is similar to that of Person.T. In this case, only a
new method is declared. (As you will see, Employee.T also overrides the
implementation of Person.T.fullname() method, however, Employee’s
clients need not know this. So, if the implementation of fullname() changes,
Employee’s clients don’t need to be re-compiled.)

Employee.Public defines the publicly available definition of Employee.T, to
be used in full revelation of Employee.T inside Employee’s implementation.

B E Y O N D T H E B A S I C S

 95959595

MODULE Employee;
IMPORT Person;
IMPORT TextIntTbl, Fmt;

REVEAL
 T = Public BRANDED OBJECT
 company: TEXT;
 id: INTEGER;
 OVERRIDES
 init := Init;
 fullname := FullName;
 END;

The above statement gives the full implementation of Employee.T, along with its
fields company, and id, and its method implementations. Note that
Employee.Public is just a shorthand for Person.T OBJECT METHODS
init(...) END; it is named Public only for convenience.

VAR
 employee_count := NEW(TextIntTbl.Default).init();

Init defines the implementation of the Employee.T.init method. It takes an
extra company parameter.

PROCEDURE Init (self: T;
 first, last: TEXT;
 gender: Person.Gender;
 company: TEXT): T =
VAR
 emp_id := 0;
BEGIN
 EVAL Person.T.init(self, first, last, gender);
 self.company := company;
 EVAL employee_count.get(company, emp_id);
 INC(emp_id);
 self.id := emp_id;
 EVAL employee_count.put(company, emp_id);
 RETURN self;
END Init;

Fullname defines the implementation of the Employee.T.fullname method.
Note how it uses its supertype’s fullname method by calling
Person.T.fullname(self, ...).

PROCEDURE FullName(self: T): TEXT =
BEGIN
 RETURN Person.T.fullname(self) & “, ” &
 “employee #” & Fmt.Int(self.id) &
 “ at ” & self.company & “,”;
END FullName;

B E Y O N D T H E B A S I C S

 96969696

BEGIN
END Employee.

5.4.5 Clients of a Partially Opaque Type

The main module, PartiallyOpaque, imports both Person and Employee.

MODULE PartiallyOpaque EXPORTS Main;
IMPORT Person, Employee;
IMPORT IO;

The next procedure, Describe, uses the fullname method of Person.T to
print a textual description of a person. Note that Person.T does not reveal its
internal structure, but it does reveal the fullname method, which is enough to allow
the Describe procedure to be included this module instead of the Person
module.

Instead of having to change Person every time a client requires a new Describe
procedure, the new structure allows each client to implement its own Describe
procedures without affecting Person.

PROCEDURE Describe(p: Person.T; desc: TEXT) =
BEGIN
 IO.Put (p.fullname() & “ is ” & desc & “.\n”);
END Describe;

The next statements assign new Person.T instances to four variables john, jane,
june, and jack. Note the use of the v := NEW(T).init(...) idiom in
declaring, instantiating, and initializing these instances.

VAR
 john := NEW(Person.T).init(“John”, “Doe”,
 Person.Gender.Male);
 jane := NEW(Employee.T).init(“Jane”, “Doe”,
 Person.Gender.Female,
 “ACME Ltd”);
 june := NEW(Employee.T).init(“June”, “Doe”,
 Person.Gender.Female,
 “Mass. State”);
 jack := NEW(Employee.T).init(“Jack”, “Smith”,
 Person.Gender.Male,
 “ACME Ltd”);

B E Y O N D T H E B A S I C S

 97979797

Now, assign a new Person.T with a special fullname method to the variable
madonna.

VAR
 madonna := NEW(Person.T, fullname := Madonna);

PROCEDURE Madonna(<*UNUSED*>self: Person.T): TEXT =
BEGIN
 RETURN “Madonna”
END Madonna;

The main body will make a few calls to Describe. Note the use of
john.fullname() to call a method defined on a Person.T, and
Person.T.fullname(june) to call a Person.T method on an
Employee.T. Of course, the latter case is type-checked at compile-time.

CONST
 address = “123 Main Street”;

BEGIN
 Describe (madonna, “a pop icon”);
 Describe (john, “a resident at ” & address);
 Describe (jane, “a resident at ” & address);
 Describe (june, “a resident at ” & address);
 Describe (jack, john.fullname() & “’s brother.”);
 Describe (june, “called “ &
 Person.T.fullname(june) & “ outside work”);
END PartiallyOpaque.

Partially opaque types are powerful structuring constructs for building large programs.
For more information on partially opaque types, see the language specification, and I/O

Streams: Abstract Types, Real Programs in Systems Programming with Modula-3.

5.5 Generics: Resuable Data Structures and

Algorithms

A generic is a template for instantiating similar modules. Generics—called parameterized
types, or templates in other languages— allow you to build generic data structure and
algorithm code and readily use them in different contexts. For example, a generic hash
table module could be instantiated to produce tables of integers, tables of text strings,
or tables of a user-defined type. Different generic instances are compiled
independently: the source program for the generic and its parameters is reused, but the
compiled code for one instance has no relationship with other compiled instances.

To keep Modula-3 generics simple, they are confined to the module level: generic
procedures and types do not exist in isolation, and generic parameters must be entire
interfaces. In the same spirit of simplicity, there is no separate type checking associated

B E Y O N D T H E B A S I C S

 98989898

with generics. Implementations are expected to expand the generic and type-check the
result.

Usually generic interfaces and modules contain code that operates independently of the
type of data it operates on. The type that the generic will be operating upon is defined
at compile-time.

5.5.1 Using Generics

In this example, we use the standard List generic interface to implement a set
abstraction, and the standard Table generic interface to implement a mapping from
names to action procedures.

Before exploring the program, let’s review the List, Atom, and Atom-List
interfaces. An abbreviated version of each interface is included here; see the on-line
version of the interface for full comments.

5.5.2 A Generic Example: List

The generic interface List provides operations on linked lists of arbitrary element
types.

GENERIC INTERFACE List(Elem);

Where Elem.T is not an open array type and the Elem interface contains:

CONST Brand = <text-constant>;
PROCEDURE Equal(k1, k2: Elem.T): BOOLEAN;

Brand must be a text constant. It will be used to construct a brand for any generic
types instantiated with the List interface.

CONST Brand = “(List ” & Elem.Brand & “)”;

A List.T represents a linked list of items of type Elem.T.

 TYPE T = OBJECT head: Elem.T; tail: T END;
 PROCEDURE Cons(READONLY head: Elem.T; tail: T): T;
 PROCEDURE List1(READONLY e1: Elem.T): T;
 PROCEDURE List2(READONLY e1, e2: Elem.T): T;
 PROCEDURE List3(READONLY e1, e2, e3: Elem.T): T;
 PROCEDURE FromArray(READONLY e: ARRAY OF Elem.T): T;
 PROCEDURE Length(l: T): CARDINAL;
 PROCEDURE Nth(l: T; n: CARDINAL): Elem.T;
 PROCEDURE Member(l: T; READONLY e: Elem.T): BOOLEAN;
 PROCEDURE Append(l1: T; l2: T): T;
 PROCEDURE AppendD(l1: T; l2: T): T;
 PROCEDURE Reverse(l: T): T;
 PROCEDURE ReverseD(l: T): T;
END List.

B E Y O N D T H E B A S I C S

 99999999

5.5.3 Parameter to a Generic: Atom

Interface Atom will be used as a parameter to the List generic interface, hence
Atom must include a Brand constant and an Equal comparison procedure.

INTERFACE Atom;

An Atom.T is a unique representative for a set of equal texts (like a Lisp atomic
symbol.)

 TYPE T <: REFANY;
 CONST Brand = “Atom-1.0”;
 PROCEDURE FromText(t: TEXT): T;
 PROCEDURE ToText(a: T): TEXT;
 PROCEDURE Equal(a1, a2: T): BOOLEAN;
 PROCEDURE Hash(a: T): INTEGER;
 PROCEDURE Compare(a1, a2: T): [-1..1];
END Atom.

5.5.4 Instantiating a Generic: AtomList

Finally, we instantiate a List with an Atom parameter:

INTERFACE AtomList = List (Atom) END AtomList.

AtomList can be imported by other modules that use lists of atoms. The main
program for this example imports AtomList.

Most generic interfaces have been pre-instantiated for common datatypes such as
Texts and Atoms. Indeed, AtomList is one such interface. See the Interface Index
for an overview of the available generic interfaces. The language tutorial and reference
manual also describe the behavior of generics in more detail.

The rest of this section describes how you can use instantiated generics, and how you
can instantiate generics with user-defined parameters.

5.5.5 Using Instances of Generics

The main module, Generics, uses an AtomList to keep track of names, as well as
an instance of the Table interface that maps Atoms to Actions. The instantiation
of the table with a user-defined type Action is described later. Import the Action
interface, defined in this package, and the AtomActionTbl, a table mapping atoms
to actions.

MODULE Generics EXPORTS Main;
IMPORT Atom, AtomList;
IMPORT Action, AtomActionTbl;
IMPORT Process, IO; <* FATAL IO.Error *>

B E Y O N D T H E B A S I C S

 100100100100

Atom List operations. Insert an element into the list.

PROCEDURE Insert (VAR list: AtomList.T;
 atom: Atom.T) =
BEGIN
 IF NOT AtomList.Member (list, atom) THEN
 list := AtomList.Cons (atom, list);
 END
END Insert;

Print all elements of the list by iterating over its members.

PROCEDURE Print(x: AtomList.T) =
BEGIN
 WHILE x # NIL DO
 IO.Put (Atom.ToText (x.head) & “ ”);
 x := x.tail;
 END;
END Print;

Command operations. Actions define initial values for the action table.

CONST
 Actions = ARRAY OF Action.T {
 Action.T { “show”, Show},
 Action.T { “quit”, Quit},
 Action.T { “reset”, Reset},
 Action.T { “help”, Help}};

Each procedure defines what each action should do. Note that the proc field of
Action.T is defined to be a PROCEDURE(), so we can assign any of Quit,
Rest, Help, or Show to fields of Actions.

PROCEDURE Quit() = BEGIN Process.Exit(0); END Quit;
PROCEDURE Reset() = BEGIN input_set := NIL; END Reset;

PROCEDURE Show() =
BEGIN
 Print(input_set); IO.Put (“\n”);
END Show;

PROCEDURE Help() =
BEGIN
 IO.Put(“Commands: show, reset, help, or quit.\n” &
 “Other items will be inserted into the list.\n”);
END Help;

B E Y O N D T H E B A S I C S

 101101101101

The variable command_table is an atom�action table; input_set is an atom
list, containing all the elements that will be entered.

VAR
 command_table := NEW(AtomActionTbl.Default).init();
 input_set : AtomList.T := NIL;
BEGIN
 FOR x := FIRST(Actions) TO LAST(Actions) DO
 EVAL command_table.put(Atom.FromText (x.name), x);
 END;

 IO.Put (“Welcome to the atomic database.\n”);
 IO.Put (“Try any of commands: show quit reset help.\n”);
 IO.Put (“Any other string will be entered into the” &
 “database.\n\n”);

Loop, get the command line. If it’s a command, do it. Otherwise insert the command
line into the input_set. If atom is in the command_table then run the
corresponding Action.T; otherwise, Insert the atom into the input_set.

 LOOP
 IO.Put (“atom-db > ”);
 IF IO.EOF () THEN EXIT END;
 VAR
 cmd := IO.GetLine();
 atom := Atom.FromText(cmd);
 action: Action.T;
 BEGIN
 IF command_table.get(atom, action)
 THEN action();
 ELSE Insert(input_set, atom);
 END;
 END;
 END;
END Generics.

See the Interface Index for more information on various kinds of generics.

5.5.6 Instantiating Generics for User-Defined Types

Since Action is a user-defined type, there are no pre-instantiated interfaces available
for it. CM3-IDE provides handy makefile procedures for instantiating various generics
automatically.

The Table interface requires a key and a value parameter:

GENERIC INTERFACE Table (Key, Value) = … END Table.

The Key in this case is Atom, the Value is an Action. Here, Action is a user-
defined interface. Action.T, denoting actions for commands, is a procedure with no
parameters and no results. Action.Brand is used by the table generic to create a
composite brand for our table.

B E Y O N D T H E B A S I C S

 102102102102

INTERFACE Action;
TYPE
 T = RECORD
 name : TEXT
 handler : PROCEDURE();
 END
CONST
 Brand = “Action”;
END Action.

5.5.7 Instantiating Generics in a Makefile

Finally, the makefile for this package will instantiate an atom�action table with the
name AtomActionTbl:

import (“libm3”)
table(“AtomAction”, “Atom”, “Action”)
module(“Action”)
implementation (“Generics”)
program (“atom-db”)

(If you haven’t built your package yet, you won’t be able to see the contents of
AtomActionTbl because it is generated as part of the build process.)

5.6 Unsafe Constructs: System Programming in

CM3-IDE

This program illustrates the use of unsafe constructs, such as LOOPHOLE—an unsafe
cast.

The default mode for programs in CM3-IDE is safe, i.e., the language and its runtime
are responsible for checking run-time errors. For programming intricate systems,
integrating legacy systems, or making programs more efficient, you may decide that you
would like the freedom to perform tasks that circumvent language-enforced safety.

You have the freedom to perform unsafe operations in unsafe modules by using
additional operations, such as LOOPHOLE (an unsafe cast to an arbitrary type) or ADR
(address of a variable). These operations are restricted to unsafe modules because they
violate invariants enforced and assumed by the language in the safe modules.

With the freedom in unsafe modules comes the responsibility for the programmer to
check for run-time errors in place of the language runtime. You are now responsible for
making sure that a LOOPHOLE is not causing run-time errors.

Separation of safe and unsafe codes is a key technique in writing portable programs
that utilize unsafe or non-portable features of particular systems. Indeed it is common
practice for systems programmers to divide their code into safe and unsafe portions,

B E Y O N D T H E B A S I C S

 103103103103

even if the programs are written in C. This way, the bulk of porting to a new platform,
lies in the unsafe portion. CM3-IDE extends this model by providing language support
for separation of safe and unsafe modules. Both interfaces and modules can be marked
as UNSAFE.

If you care about robustness of your code, you are best to code most (if not all) of your
programs in the (default) safe mode, since it is much easier to understand and explain
the behavior of safe programs, hence it is also easier to make them robust.

A safe module can only import safe interfaces, so in safe programming you can’t
mistakenly count on unsafe functionality in another unsafe module.

An unsafe module can make its functionality available to other safe modules by
exporting a safe interface. This is how you can bridge the safety gap—otherwise if your
program includes one unsafe module, then your whole program must be marked
unsafe. When you export a safe interface from an unsafe module, you the programmer
are guaranteeing the intrinsic safety of the calls in the safe interface.

One nice aspect of the inclusion of the unsafe features in the language is that you don’t
have to rely on calls to external, lower-level languages to make your programs more
efficient. Indeed, the unsafe portions of your code will have as much control over the
representation and layout of your data structures as you have when programming in an
unsafe language like C. The support for unsafe modules has been used to implement
operating systems, windowing systems, networking software, and the language run-
time itself in Modula-3, a task that is not easily accomplished with other high-level
languages.

5.6.1 Unsafe Coding Example

In this small example, an interface to the standard C library call abs is marked inside
an unsafe interface Clib, which is imported by an unsafe main program,
UnsafeExample. Note that UnsafeExample cannot be marked safe because it
imports an unsafe interface.

UNSAFE INTERFACE Clib;
<*EXTERNAL*> PROCEDURE abs(x: INTEGER): INTEGER;
END Clib.

The pragma <*EXTERNAL*> declares a procedure to be provided at link-time by
external code. (In this case, by the C runtime.)

B E Y O N D T H E B A S I C S

 104104104104

Following, the main module imports Clib and uses Clib.abs.

UNSAFE MODULE UnsafeExample EXPORTS Main;
FROM Clib IMPORT abs;
IMPORT IO, Fmt;

CONST
 an_integer = 10;
BEGIN

 IO.Put (“Absolute value of ”);
 IO.PutInt (an_integer);
 IO.Put (“ is ”);
 IO.PutInt (abs(an_integer));
 IO.Put (“.\n”);

 IO.Put (“Absolute value of ” & Fmt.Int(-an_integer) &
 “ is “ & Fmt.Int(abs(-an_integer)) & “.\n”);
END UnsafeExample.

As an application programmer using CM3-IDE, you need not worry about unsafe
modules unless you are writing code where efficiency is the first concern, or you are
using non-portable features of an operating system or external component. The full
details of the available unsafe features are described in the Language Reference.

B E Y O N D T H E B A S I C S

 105105105105

5.7 Summary

Exceptions. A robust program must handle error conditions well. Exceptions are a
convenient language construct for handling errors and abnormal conditions in a way
that preserves your program structure.

Objects. A flexible structuring construct for building programs, objects in CM3-IDE
are garbage-collected. They conform to a single-inheritance hierarchy.

Threads. Often you may need to manage multiple concurrent activities as part of your
program. Threads provide the required features.

See Andrew Birrell’s Introduction to Programming with Threads, in the Technical Notes
section of your distribution, for a thorough introduction to multi-threaded
programming.

Opaque types. For full encapsulation of the internal structure of types in one module
from other modules, you can use opaque types. Opaque type visibilities are enforced
by the language.

Partially Opaque Types. To allow multiple levels of visibility of objects in your
programs, you can use partially opaque types. They are a generalization of hard-coded
visibility rules such as public, private, protected, and friend modes in other languages.

Generics. Reuse is an important aspect of large program development. Known also as
templates or parametrized types, generic interfaces and modules allow you to reuse
data structures and algorithms. See CM3-IDE Interface Index on page 143 for a list of
available generics.

Unsafe Programming. While safe programming is the default for CM3-IDE, at times
you may not be able to avoid the need for unsafe code, for example, to write efficiency-
critical portions of your program, or to interface with other languages. Unsafe modules
allow you to perform tasks that are ordinarily disallowed by the language safety
semantics. CM3-IDE provides mechanisms for managing unsafe portions of your code
and for combining unsafe code with safe code.

B E Y O N D T H E B A S I C S

 106106106106

This page left blank
intentionally.

