
C M 3 - I D E I N T E R F A C E I N D E X

143143143143

7. CM3-IDE Interface

Index

CM3-IDE includes many interfaces. Finding the right one for a particular task is not
always easy. This index provides an overview of some of the most frequently used
interfaces available in CM3-IDE.

Data types, Data Structures, and Algorithms on page 144 outlines:

• Basic Data Types

• Collections, Lists, Tables, Sets

• Linked Lists, Sorted Linked Lists

• Property lists

• Sequences

• Priority queues

• Sets

• Tables, Sorted tables

• Sorting Lists, Tables, and Arrays.

Standard Libraries on page 148 describes:

• Math, Geometry, Statistics, Random numbers

• Floating point

• Environment, Command line parameters

• I/O streams, Reading and Writing, Files

• Formatting, I/O Conversion

• Threads.

Systems Development on page 150 outlines:

• Distributed and Client/Server Development

• Databases and Persistence

• Operating System, Files, Processes, Time

• Interoperability with C

• Low-level Run-time Interfaces.

Miscellaneous on page 153 describes:

• Main interface, Weak References, Performance Tuning, Configuration.

Chapter

7
Read this chapter

to learn about the

most-frequently-

used interfaces in

CM3-IDE.

����
CChhaapptteerr

OOrrggaanniizzaattiioonn

C M 3 - I D E I N T E R F A C E I N D E X

 144144144144

7.1 Data Types, Data Structures, and Algorithms

7.1.1 Basic Data Types

The following table maps basic data types to the corresponding interfaces:

Data Type Interface

INTEGER Integer, Int32

BOOLEAN Boolean

CHAR Char

REFANY Refany

REAL RealType, Real

LONGREAL LongrealType, LongReal

EXTENDED Extended

TEXT Text

Interfaces for built-in types are used mainly as arguments for instantiating generic
collections.

Text Strings. Strings are represented as values of type TEXT. Text strings are
immutable; they are automatically garbage collected.

The TEXT type is used extensively throughout Modula-3 libraries. The Text interface
defines the basic operations on this type. Operations to convert between other
encodings of text strings are available in the TextConv interface. The internal
representation of text strings is exposed by TextF. You should avoid using the
TextF interface whenever possible.

ASCII Characters. ASCII includes constant definitions for the character codes of
non-printable characters, such as ASCII.NL for new-line. It classifies characters into
groups, like digits or punctuation; each group is represented as a set of characters.
Finally, it provides mapping tables that translate lower-case letters into upper-case and
vice versa.

Machine Words and Bit Manipulation. Word allows bit manipulation on machine
words; Swap is useful for writing code that must deal explicitly with byte ordering
and/or word length issues.

Atoms. While not built-in types, atoms are handy for efficient comparison of text
strings. The Atom interface describes the set of operations available for atoms.

The on-line CM3-IDE

interface index

includes hypertext

references to CM3-IDE

interfaces. You can

find it at:

/help/interfaces.html

The list of all available

interfaces in your

CM3-IDE distribution

is available at:
/interface

To locate a particular

interface within CM3-

IDE, find
/interface/name

for example:
/interface/Text

C M 3 - I D E I N T E R F A C E I N D E X

 145145145145

Symbolic Expressions. The Sx interface provides symbolic expressions represented
as a recursive linked list structure, similar to Lisp systems. Sx includes routines for
reading and printing symbolic expressions, as well as some convenience procedures for
manipulating them.

See also Formatting, I/O Conversion on page 149 for interfaces that produce or parse
text representations of the built-in types.

7.1.2 Collections, Lists, Tables, Sets

CM3-IDE libraries contain interfaces supporting the following data structures: linked
lists, sorted linked lists, Lisp-like property lists, tables, sorted tables, sequences, priority
queues, and sets.

Many of these data structures are available as generic interfaces. They can be
instantiated with whatever types you need. For most of the generic data structures, the
libraries already include instances for text strings, integers, atoms, and arbitrary
references. Many of the generics are packaged with makefile commands that make it
simply a matter of writing a line in your makefile to instantiate them.

7.1.3 Linked Lists

A generic implementation of singly-linked lists is available in the List interface, and
implementation. There are predefined instances for atoms, integers, references, and
text strings, as well as makefile commands to create custom lists.

7.1.4 Sorted Linked Lists

Lists may be sorted by using the generic ListSort interface and implementation.
Like the List interfaces, there are predefined instances for atoms, integers,
references, and text strings.

7.1.5 Property lists

Property lists, simple linked lists of (name, value) pairs are available from the
Property interface. The related interfaces, PropertyV, MProperty,
PropertyF, and MPropertyF provide more features.

C M 3 - I D E I N T E R F A C E I N D E X

 146146146146

Tables

A flexible and highly-reusable generic Table interface provides efficient mappings
from values of one type to values of another. Like the list interfaces, the table interfaces
are provided with predefined instances for the full cross product of the four basic
types:

From \ To atoms integers references texts

atoms AtomAtomTbl AtomIntTbl AtomRefTbl AtomTextTbl

integers IntAtomTbl IntIntTbl IntRefTbl IntTextTbl

references RefAtomTbl RefIntTbl RefRefTbl RefTextTbl

texts TextAtomTbl TextIntTbl TextRefTbl TextTextTbl

Predefined makefile commands are available to create custom tables.

7.1.6 Sorted tables

Sorted tables are like tables with the addition of operations to iterate through the
elements of the table in a sorted order. The generic SortedTable interface and
implementation are available. Like the other table interfaces, the sorted table interfaces
are provided with predefined instances for the full cross product of the four basic
types:

From \ To atoms integers references texts

atoms
Sorted-
AtomAtomTbl

Sorted-
AtomIntTbl

Sorted-
AtomRefTbl

Sorted-
AtomTextTbl

integers
Sorted-
IntAtomTbl

Sorted-
IntIntTbl

Sorted-
IntRefTbl

Sorted-
IntTextTbl

references
Sorted-
RefAtomTbl

Sorted-
RefIntTbl

Sorted-
RefRefTbl

Sorted-
RefTextTbl

texts
Sorted-
TextAtomTbl

Sorted-
TextIntTbl

Sorted-
TextRefTbl

Sorted-
TextTextTbl

Predefined makefile commands are available to create custom sorted tables.

7.1.7 Sequences

The Sequence interface and implementation provide generic extensible arrays.
Elements can be added or removed from either end or directly indexed.

C M 3 - I D E I N T E R F A C E I N D E X

 147147147147

The SequenceRep interface exposes the full details of the underlying representation
of sequences. For maximum portability and implementation independence, programs
should avoid using SequenceRep.

Predefined instances for atoms, integers, references, and text strings are available, so
are the makefile commands to create custom sequences.

7.1.8 Priority queues

Priority queues, or sequences that keep their elements sorted, are available in the
generic PQueue interface and implementation. The standard predefined instances for
atoms, integers, references, and text strings are available.

When it is necessary to access the underlying implementation, the PQueueRep
interface defines the full details. For maximum portability and implementation
independence, programs should avoid using this interface. Predefined instances for
atoms, integers, references, and text strings are available, as well as makefile commands
to create custom priority queues.

7.1.9 Sets

Sets are collections of values without duplicates. A generic Set interface and
implementation are available. Sets are implemented using two implementation
strategies: SetDef uses a hash-table, and SetList uses a list representation for the
set.

generic integer text reference atom

Set IntSet TextSet RefSet AtomSet

SetDef IntSetDef TextSetDef AtomSetDef

SetList IntSetList TextSetList RefSetList AtomSetList

Predefined makefile commands are available to create custom sets.

See also Atoms on page 144 for an overview of the Atom interface, which provides a
unique value for all equal text strings.

7.1.10 Sorting Lists, Tables, and Arrays

Sorted generic lists, tables, and arrays allow iteration in a sorted order.

SortedLists. The generic interface ListSort, implemented by generic module
ListSort extends the List interface. As usual, there are instantiations
AtomListSort, IntListSort, RefListSort, and TextListSort.

SortedTables. The interface SortedTable allows you to iterate through tables in a
sorted order.

C M 3 - I D E I N T E R F A C E I N D E X

 148148148148

SortedArrays. ArraySort works similarly, but for arrays; it is instantiated as
IntArraySort and TextArraySort.

7.2 Standard Libraries

7.2.1 Math, Geometry, Statistics, Random numbers

Modula-3 provides a rich set of interfaces for mathematical and statistical
programming. The Math interface provides access to the C math libraries. Many
geometric abstractions are also available: Axis, Interval, Point, Rect,
Transform, Path, Region, PolyRegion, Trapezoid.

The generic interface Sqrt defines a square root operation, instantiated as
RealSqrt and LongSqrt for REAL and LONGREALs. The interface Stat
defines a set of tools for collecting elementary statistics of a sequence of real quantities.
The interface Random and RandomPerm provide random permutations of
numbers. RandomReal includes machine specific algorithms for generating random
floating-point values.

7.2.2 Floating point

Real, LongReal, and Extended are interfaces corresponding to the built-in
floating-point types; their representations are in RealRep and LongRealRep.

The interface FloatMode allows you to test the behavior of rounding and of
numerical exceptions. On some platforms it also allows you to change the behavior, on
a per-thread basis.

The interface FloatExtras, RealFloatExtras, and LongFloatExtras
contain miscellaneous functions useful for floating point arithmetic. The generic
interface Float and its instantiations RealFloat, LongFloat, and
ExtendedFloat provide interfaces to floating-point arithmetic.

IEEESpecial defines variables for the IEEE floating-point values -infinity,
+infinity, and NaN (not a number) for each of the three floating-point types.

7.2.3 Environment, Command line parameters

The Env and Params interfaces provide access to the environment variables and
command-line parameters given to a process when it is started.

See also the Process interface in Processes, Pipes, O/S Errors on page 152.

7.2.4 I/O streams, Reading and Writing, Files

I/O Streams allow you to read and write to disk, network, another thread, another
process, etc.

Basic Input and Output. IO interface is a simple high-level I/O interface. Stdio
declares the standard input, output, and error streams.

C M 3 - I D E I N T E R F A C E I N D E X

 149149149149

Input and Output Streams. Rd is the interface for input streams, known as readers.
RdClass allows you to create new kinds of readers. UnsafeRd is an internal
interface, providing non-serialized access to readers.

Wr is the safe interface to output streams, or writers. WrClass can be used to
implement new streams. UnsafeWr allows unserialized access to a writer.

File Streams. FileRd and FileWr read from and write to files.

Text Streams. TextRd and TextWr read from and write to TEXT strings. They
are designed for applying string procedures to streams or stream operations on strings.

Empty Streams. NullRd and NullWr represent empty streams.

Message Streams. MsgRd and MsgWr present message stream abstractions. A
message is a sequence of bytes terminated by an end of message marker.

Stream and File Utilities. TempFiles creates temporary files which get deleted
automatically upon termination of the process. RdCopy copies from readers to writers
efficiently. AutoFlushWr flushes the output in the background. RdUtils adds a
few utilities for manipulating readers.

7.2.5 Formatting, I/O Conversion

Most formatting interfaces in CM3-IDE work with strings, readers, and writers. Fmt
formats basic data types to strings. Scan converts strings into basic data types.
FmtTime returns a string denoting the current date and time. FmtBuf is similar to
Fmt interface, with the exception that it uses character buffers instead of TEXT
strings. FmtBufF exposes its representation.

Lex provides lexical operations for reading tokens and basic datatypes, and matching
or skipping blanks from a reader. Formatter performs pretty-printing, the printing
of structured objects with appropriate line breaks and indentation.

Convert converts binary and ASCII representation of basic values. CConvert
provides lower-level access to the conversion functions in C.

7.2.6 Threads

CM3-IDE provides language-level support for multi-threaded applications. CM3-
IDE’s runtime and standard libraries on all platforms are multi-threaded. The Thread
interface describes the portable interface for creating new threads (also called light-
weight processes.) Interfaces Scheduler, ThreadF, and ThreadContext
provide access to the internal representation of threads and some control over the
thread scheduler.

C M 3 - I D E I N T E R F A C E I N D E X

 150150150150

7.3 Systems Development

7.3.1 Distributed and Client/Server Development

Network Objects. CM3-IDE’s Network Objects system allows an object to be
handed to another process in such away that the process receiving the object can
operate on it as if it were local. The holder of a remote object can freely invoke
operations on that object just as if it had created that object locally. Further, it can pass
the object to other processes.

NetObj is the basic interface for defining network objects. A few makefile
commands help you integrate network objects within your programs. The
NetObjNotifier interface notifies a server if its clients die. StubLib contains
procedures to be used by stub code for invoking remote object methods and servicing
remote invocations.

The current implementation of Network Objects is built on top of TCP.
TCPNetObj implements network objects on top of TCP/IP. Network Objects are
designed to make adaptation to specialized network protocols easy.

Network Streams. Network Streams provide a set of high-level abstractions for
sending and receiving messages across the network. ConnRW creates reader and writer
streams from a connection; ConnMsgRW creates message streams from a connection.

TCP / IP Socket Interfaces. Using the TCP/IP interfaces, you can write safe, multi-
threaded clients and servers for client/server computing. The same programs work
whether you use Unix sockets or Windows winsock. The interface IP defines the
addresses used for communicating with the internet protocol family. TCP provides
bidirectional byte streams between two programs, implemented using internet
protocols. TCPSpecial is a utility interface.

7.3.2 Databases and Persistence

Databases, Persistent Storage. CM3-IDE includes a number of facilities for saving
data in persistent forms: Relational Databases, Pickles, Simple Snapshot Persistence,
Stable Objects, and Bundles.

Relational Database Interface. The DB interface provides serialized access to
relational databases. DB allows multiple connections within one application and each
may be used concurrently by multiple threads. An implementation based on
Microsoft’s ODBC is available for both Windows and Unix; a sample implementation
for Postgres’95 on Unix is also included. You can modify the backend of the interface
to suit any relational database.

Pickles: ObjectTranscription (or “Serialization”). The Pickle interface provides
operations for reading and writing arbitrary values as streams of bytes. Writing a value
as a pickle and then reading it back produces a value equivalent to the original value. In

C M 3 - I D E I N T E R F A C E I N D E X

 151151151151

other words, pickles preserve value, shape and sharing. You can write pickles for values
that have cyclic references (such as doubly-linked lists), or that are arbitrary graph
structures.

Two implementations of the Pickle interface are available. Pickle2 is an
implementation geared toward heterogeneous platforms; it works across platforms,
reconciling machine word encoding, little-endian, big-endian, size differences.
Pickle is a more efficient implementation for homogeneous setups. Pickles are used
by Network Objects for transferring objects across processes.

SmallDB: Simple Snapshot Persistence. SmallDB stores objects in a file in a
recoverable fashion. If a crash occurs while the objects are being written to disk, their
state can be restored from the latest consistent snapshot the next time they are used.
For binary snapshots, use the combination of SmallDB and Pickle.

Stable Objects. Stable Objects extends the lightweight object storage provided by
Pickles and SmallDB to allow for recoverable storage of objects through logging
and check-pointing. Updates to objects are logged to stable storage automatically.
When the state of an object is restored from disk, the restoration process checks to see
if a crash occurred before the entire state of the object was written to disk. If so, the
state of the object is recovered from the log of modifications to the object.

The generic interface Stable defines a subtype of a given object type that is just like
that object type, but stable. Makefile operations are provided to create stable versions
arbitrary object types. LogManager manages readers and writers for the log and
checkpoint files used by stable objects. StableRep defines the representation of
stable objects. Log provides debugging operations for the log. StableLog contains
procedures for reading and writing logs for stable objects.

Logs are written on readers and writers. StableError defines the various error
scenarios and corresponding exceptions.

Bundles. Bundles package up arbitrary files at compile-time so that their contents can
be retrieved by a program at run-time without accessing the file system. The interface
Bundle allows runtime access to the stored data.

You can bundle files with your program by using operations defined in the bundle
makefile templates. BundleRep exposes the representation of bundles.

7.3.3 Operating System, Files, Processes, Time

CM3-IDE provides a set of high-level, portable interfaces to the underlying OS
facilities such as files, processes, directories, terminals, and keyboards. The interfaces to
these operating system functions are identical whether you are running on Windows or
Unix.

C M 3 - I D E I N T E R F A C E I N D E X

 152152152152

See also Microsoft Windows on page 152 and Unix on page 153 for lower-level, non-
portable interfaces to operating system services.

File-system Interfaces. File defines a source and/or sink of bytes. File handles
provide an operating-system independent way to perform raw I/O. For buffered I/O,
use the FileRd and FileWr interfaces instead.

Pathname defines procedures for manipulating pathnames in a portable fashion. The
FS interface provides access to persistent storage (files) and naming (directories).

RegularFile defines regular file handles which provide access to persistent
extensible sequences of bytes—usually disks. A Terminal handle is a file handle that
provides access to a duplex communication channel usually connected to a user
terminal.

Processes, Pipes, O/S Errors. The Process interface manages operating-system
processes (e.g., creating processes, awaiting their exit). A Pipe is a file handle that can
be used to communicate between a parent and a child process or two sibling processes.

OSError defines an exception raised by a number of operating system interfaces.

Time, Date, Ticks. Time defines a moment in time, reckoned as a number of
seconds since some epoch or starting point. Date defines a moment in time,
expressed according to the standard (Gregorian) calendar, as observed in some time
zone. Tick defines a value of a clock with sub-second resolution, typically one sixtieth
of a second or smaller.

Timestamps, Capabilities, Fingerprints. Timestamps provided by the TimeStamp
interface are totally ordered in a relation that approximates the real time when the value
was generated. If two timestamps are generated in the same process then the ordering
of the timestamps is consistent with the order that TimeStamp.New was called. The
interface Capability defines unique global identifiers that are extremely difficult
for an adversary to guess. The Fingerprint interface allows efficient comparison
of large strings, and more general data structures such as graphs. MachineID returns
a unique number for the machine running the Modula-3 program.

Platform-Specific Interfaces. Not all programs are portable. CM3-IDE allows access
to lower-level interfaces available from the host operating system. Most of these
interfaces are unsafe.

Microsoft Windows. The Windows distribution of CM3-IDE includes interfaces for
accessing many of the calls from the Win32 API: WinBaseTypes, WinDef,
WinError, WinNT, WinBase, WinCon, WinGDI, WinNetwk, WinReg,
WinUser, WinVer, NB30, CDErr, CommDlg, WinSock.

C M 3 - I D E I N T E R F A C E I N D E X

 153153153153

Intermediate interfaces provide access to middle layers of Modula-3 libraries on Win32
are also available: FileWin32, TimeWin32, OSWin32, TCPWin32,
OSErrorWin32.

Unix. The Unix distribution of CM3-IDE includes interfaces for accessing many of
the calls from common Unix APIs: Udir, Uipc, Uprocess, Usignal, Uugid,
Uerror, Umman, Upwd, Usocket, Uuio, Uexec, Umsg, Uresource,
Ustat, Uutmp, Ugrp, Unetdb, Usem, Utime, Uin, Unix, Ushm, Utypes.

Intermediate interfaces provide access to middle layers of Modula-3 libraries on Unix
are also available: FilePosix, TimePosix, OSPosix, TCPPPosix,
OSErrorPosix.

7.3.4 Interoperability with C

Several standard C libraries are available from CM3-IDE. Cerrno, Cstddef,
Cstdlib, Ctypes, Cstdarg, Csetjmp, Cstdio, and Cstring are Modula-
3 interfaces for C standard libraries. M3toC converts between C strings and Modula-3
TEXT types.

7.3.5 Low-level Run-time Interfaces

Several interfaces provide low-level access to the run-time.

Allocator RTAllocator, RTAllocStats

Heap
Management

RTHeap, RTHepDep, RTHeapInfo, RTHeapMap,
RTHeapRep, RTHeapDebug, RTHeapStats,
RTHeapEvent

Garbage
Collector

RTCollector, RTCollectorSRC

Type
Management

RTTipe, RTType, RTMapOp, RTTypeFP,
RTTypeMap, RTUtils, RTTypeSRC

Code and
Execution

RTLinker, RTProcedureSRC, RTModule,
RTProcedure, RTException

System
Interface

RTParams, RTArgs, RTProcess, RTStack,
RTMachine

Low-level RTHooks, RTO, RTSignal

Miscellaneous RTIO, RTPacking, RTMisc

7.4 Miscellaneous

Main interface. The Main interface is the entry point for executable programs. All
programs must include a module that exports this interface.

C M 3 - I D E I N T E R F A C E I N D E X

 154154154154

Weak References. Using the WeakRef interface, you can register cleanup
procedures to be run when the garbage collector is about to collect an object.

Performance Tuning. ETimer keeps track of elapsed time. It can be used for
performance measurements. PerfTool and LowPerfTool control access to
performance monitoring tools.

Configuration. The M3Config interface exports the configuration constants defined
when the system was built.

Where to Go Next?

There are many more Modula-3 interfaces than described in this index. You may
continue learning about Modula-3 interfaces by browsing the list of interfaces available
in your CM3-IDE system.

