
B U I L D I N G A N D S H A R I N G P A C K A G E S

47474747

3. Building and Sharing

Packages

This chapter covers the basics of building and sharing packages in CM3-IDE. It also
describes how CM3-IDE facilitates the building of large, multi-developer projects.

Each section of this chapter explores of a particular aspect of building and sharing
packages with CM3-IDE.

Building Packages on page 48 describes how to build a package by invoking CM3-
IDE’s builder.

Directory Structure of a Package on page 49 illustrates the directory structure of a
basic CM3-IDE package.

CM3-IDE Makefiles on page 50 defines the basic syntax for CM3-IDE makefiles.

Managing Multiple Packages on page 53 shows how to divide your projects into
multiple packages.

Shipping Packages on page 54 describes how to ship a package to make it available
for importing.

Sharing Packages on page 57 explains how to share packages in a multi-developer
team with CM3-IDE.

Builder Options on page 62 lists the command-line options available for CM3-IDE’s
builder, cm3.

Chapter

3
Read this chapter

if you know the

basics of CM3-IDE

and would like to

learn how you can

build packages

and share them

with others in your

team.

����
CChhaapptteerr

OOrrggaanniizzaattiioonn

B U I L D I N G A N D S H A R I N G P A C K A G E S

 48484848

3.1 Building Packages

Along with navigational links, many of CM3-IDE’s screens include associated actions.
For example, a package summary page may allow a “build” action to bring the package
up-to-date, or a module summary may allow an “edit” action to edit the source file for
that module.

Most CM3-IDE pages include buttons for valid actions. For example, the Build
button denotes the “build” action on package pages.

Starting from the CM3-IDE start screen, click on the Packages icon. Following any

of the links under “proj” packages—your private directory—will lead you to a
package summary page. If you have followed Learning the Basics on page 5 properly,
you will see at least two links: hello and MyPackage.

Summary pages of your packages or their components always include a Build button.

Figure 25. CM3-IDE’s Build Button

Clicking on the Build button will start CM3-IDE’s builder, and display the build results
on the screen. If there are any errors, CM3-IDE displays hypertext links to errors in
your source files.

CM3-IDE’s builder is called “cm3”, short for Critical Mass Modula-3. Indeed, cm3 is a
stand-alone compiler/builder for the Modula-3 language that is integrated within the
CM3-IDE environment.

At the start of a build, cm3 first looks for a makefile for the current package.
(Makefiles in CM3-IDE are named “m3makefile”.) If it can’t find a makefile, it
attempts to build a program from the files in your package directory. While you don’t
always need to create a makefile, it is a good idea to create one for clarity.

CM3-IDE’s makefiles are discussed in more detail later in this chapter. You can find
more information about customizing the behavior of the Build button in Customizing
CM3-IDE on page 65, or in the cm3 configuration file (cm3.cfg) in your CM3-IDE
installation.

Step

B U I L D I N G A N D S H A R I N G P A C K A G E S

 49494949

CM3-IDE’s Builder

CM3-IDE’s combined builder and compiler, cm3, has been designed
specifically for the creation of robust and distributed programs.

When you click CM3-IDE’s Build button, CM3-IDE invokes cm3 to
build your program. You may also invoke cm3 from the command-line
by issuing the command cm3 from your command-line shell. See
Builder Options on page 62 for more information on running cm3 from
the command-line.

3.2 Directory Structure of a Package

Each package in CM3-IDE resides in a directory, with sources in a source subdirectory,
and generated files in a derived subdirectory.

The source directory for a package is named “src”; its contents are the same on all
platforms. In contrast, the name and contents of the derived directory for a package
varies from one platform to another.

MyPackageMyPackage

srcsrc

<derived>

e.g. NT386,

HPPA, …

<derived>

e.g. NT386,

HPPA, …

package directory

The source subdirectory, “src”.

Source files and makefile reside here.

The derived subdirectory.

The builder generates system-dependent

object files in the “derived” directory.

Figure 26. CM3-IDE Package Directory Structure

Names of CM3-

IDE’s derived

directories:
ALPHA_OSF
HPPA
IRIX5
IBMR2
LINUXELF
NT386
SOLsun
SOLgnu
SPARC

B U I L D I N G A N D S H A R I N G P A C K A G E S

 50505050

The name of the derived directory denotes the platform where CM3-IDE built the
system, for example, NT386 is the platform name for Win32 running on Intel x86
processors, and HPPA is the name for HP/UX running on HP Precision Architecture
series.

The default names for derived directories are:

ALPHA_OSF

HPPA

IRIX5

IBMR2

LINUXELF

NT386

SOLsun

SOLgnu

SPARC

Digital Unix (OSF/1) on DEC Alpha

HP/UX on HP Precision Architecture

SGI Irix on SGI/MIPS

AIX on IBM RS/6000

Linux/ELF on Intel x86

Win32 (Win95 or NT) on Intel x86

Solaris 2 on SPARC (Sun C compiler)

Solaris 2 on SPARC (GNU C compiler)

SunOS 4 on SPARC

The separation of source and derived files is useful when building larger programs,
because it:

• isolates source files for backup, revision control, and searching

• enables sharing the same source tree across operating systems and
architectures, without confusing object files from different platforms.

This arrangement, combined with CM3-IDE’s multi-platform libraries, simplifies the
management of large, multi-platform programs.

3.3 CM3-IDE makefiles

If you have worked through the tutorials in Learning the Basics on page 5, you’ve
already seen and used a basic makefile. This section describes makefiles in more detail.

A CM3-IDE makefile (named m3makefile) is a small script which tells how to
build a package. Most instructions in a makefile are calls to pre-defined functions of
CM3-IDE’s builder, such as “import”, or “program”. Together with the builder,
these predefined functions replace the need for a “make” utility. Function calls replace
declarations in the makefile, and the builder takes care of the dependencies between
modules.

B U I L D I N G A N D S H A R I N G P A C K A G E S

 51515151

Working with Makefiles

To view a makefile, navigate to the Package Summary page, and click
the makefile name under “Quake sources”.

To edit a makefile from any package, click the button labeled “Edit
m3makefile”. CM3-IDE will start your text editor and open the makefile
for the current package.

Here is an example of a simple CM3-IDE makefile:

% m3makefile for SimplePkg
import(“libm3”)
import(“ui”)
module(“EditWindow”)
implementation(“Editor”)
program(“editor”)

A CM3-IDE makefile is a script in a simple programming language called Quake, used
by both CM3-IDE and cm3. You can find more information about Quake in the
CM3-IDE on-line help under /help/cm3/quake.html. Nonetheless, coding
simple makefiles will not require much knowledge beyond what is described here.

3.3.1 Basic Makefile Commands

The following are the commands used most often in CM3-IDE makefiles.

Most makefiles start with one or more import commands:

import(“package-name”)

The import command specifies a package to be imported in the build process. Any
package that builds a library may be imported.

Most programs import the standard Modula-3 library, called libm3, via the
command:

import(“libm3”)

Declaring Sources. The following commands declare the source files in your package
that are to be included in the build:

B U I L D I N G A N D S H A R I N G P A C K A G E S

 52525252

interface(“X”)

Declares that the file X.i3 contains an interface. All interface files that you want to
include in your build must appear in interface commands. Don’t forget to leave off the
“.i3” extensions.

implementation(“X”)

Declares that the file X.m3 contains a module. All module files that you want to
include in your build must appear in an implementation command.

module(“X”)

Declares X.i3 and X.m3 with one command. The module command is really a
short-hand for doing both an interface and an implementation. This
command is used most often, as many CM3-IDE modules consist of a single interface
and implementation.

generic_interface(“X”)
generic_implementation(“X”)
generic_module(“X”)

Similar to their non-generic counterparts, the generic_interface, and
generic_implementation commands declare the generic interface and
implementation files to be included in the build. The command generic_module
is a shorthand for calling generic_interface and
generic_implementation. Generic interface and module files use the “.ig”
and “.mg” extensions. See Generics: Reusable Data Structures and Algorithms on
page 97 to learn more about generics.

Making sources visible to others. The above calls declare their arguments to be built,
that is, but visible only within the current package. To declare an interface so that other
team members can access it, you use the capitalized version of the same command, for
example:

Interface(“X”)

and

Module (“X”).

Programs and Libraries. To tell the builder to build an executable, include the
program command at the end of your makefile:

program(“executable-name”)

B U I L D I N G A N D S H A R I N G P A C K A G E S

 53535353

A makefile may have only one program command. It specifies what to name the
program executable. Use the capitalized version of this command, Program, to make
the program available to other developers.

If the makefile is describing a collection of interfaces and modules that are designed to
be a library to be used by other packages, use library instead of program:

library (“library-name”)

3.3.2 Additional Makefile Commands

Many standard packages in your CM3-IDE distribution define new makefile
commands. Importing these packages makes the new commands available. For
example, the standard library libm3 includes a makefile command bundle which
will bundle a file in your source directory so that it’s available at run-time.

For reference information about makefile commands and their syntax, see CM3-IDE’s
on-line help under /help/cm3/cm3.help.

3.4 Managing Multiple Packages

Building a large and complex project as one package is certainly possible but probably
not wise. Even if you are programming on a project by yourself, you may want to
divide your project into more manageable pieces.

Suppose you are building an editor library and a number of editor programs which,
using the editor library, support editing of various file format.s

A natural division of your code would be to put the core editor functionality in one
library package (called libedit in this example), and put each editor incarnation
(called html-editor in this example) in its own program package. To create an
editor program, you import the libedit library and add some additional formatting
code and a main module. Building such a package results in an editor program.

The makefile for the libedit package would look like:

% makefile for edit library
Module(“Edit”)
…other makefile statements…
Interface(“Format”)
Library(“libedit”)

The commands Module, Interface, and Library are capitalized to denote that
the corresponding interfaces, and the library should be made available to other
packages.

B U I L D I N G A N D S H A R I N G P A C K A G E S

 54545454

The makefile for the html-editor package would look like:

% makefile for html-editor
import(“libm3”)
import(“libedit”)
module(“HTMLFormat”)
implementation(“HTMLEditor”)
program(“html-edit”)

How do you make the libedit library available to html-editor’s build? The
simplest way to make the functionality of a package available to other packages is the
ship command. To make the library package libedit available for reuse in the
program package html-editor, you need to ship the libedit library, first.

After you’ve successfully built the libedit package, you may ship it by clicking on

the Ship button on its package summary page.

After shipping the libedit library, you can build the html-editor package,
which depends on the libedit package.

3.5 Shipping Packages

Shipping a package makes the contents of the package available to other packages in

your system. The Ship button, located above the Build button on any package
page ships the current package.

Shipping does not modify the private copy of your package. It simply copies the
essential parts into a public version of the package.

You may continue working on your private copy, and ship another version at your
convenience.

Once shipped, CM3-IDE will keep track of two copies of your package:

• a private copy, which you just built. You can continue to change and build this
copy without affecting other packages. In the default settings, this copy would
resides under /proj in CM3-IDE’s namespace.

• a public copy of your package which is available to other packages. In the
default settings, this copy would reside under /public in CM3-IDE’s
namespace.

B U I L D I N G A N D S H A R I N G P A C K A G E S

 55555555

Shipping Packages

Shipping a package makes its contents available to other packages in your
system. Once shipped, a package can be imported into other packages,
and it’s listed with the public packages.

To ship a package from CM3-IDE, you can click the Ship button. CM3-
IDE copies the contents of the package to the public package root. From
the command-line shell, you use the command “cm3 -ship” to ship
packages.

3.6 Package Roots

So far, we have discussed two kinds of packages:

• your private packages, listed under “proj” packages in the CM3-IDE
Packages page. The two you created in Learning the Basics on page 5,
hello and MyPackage, are examples of private packages. Their respective
URLs are /proj/hello and /proj/MyPackage.

• public packages, listed under “public” packages in the CM3-IDE
Packages page. The standard library package, libm3 which you have
imported into your own packages is an example of a public package. Its URL is
/public/libm3.

In CM3-IDE, packages are kept in directories called package roots. The package roots
proj and public are examples. CM3-IDE is pre-configured to use proj for your
private packages, and public for the public packages. Indeed, you can create new
package roots to organize your projects, or coordinate sharing with others. For
example, you may use a package root graphics to contain all the graphics-related
packages in your development group.

Within CM3-IDE, the name of a package root resides at the top level of CM3-IDE’s
namespace. For example, the package root graphics would map to /graphics,
and the html-editor package contained in the graphics root would map to
/graphics/html-editor.

On your filesystem, a package root is represented as a directory that contains zero or
more packages. CM3-IDE supports building or browsing packages in multiple package
roots. You can add new package roots by using CM3-IDE’s configuration screen. (See
Customizing CM3-IDE on page 65.)

B U I L D I N G A N D S H A R I N G P A C K A G E S

 56565656

3.6.1 Example: Creating a New Package Root

In this example, we create a new package root and configure CM3-IDE to add the new
package root to its database.

Create a directory for a package root. To create and configure CM3-IDE to use a
package root, you must first create a directory for the package root. To do so, create a
directory on your filesystem, such as:

D:\users\harry\graphics (Win32)
/usr/harry/graphics (Unix)

Navigate to the package roots settings. From the start page, click on the
Configuration icon to visit CM3-IDE’s configuration screen. The second section of
CM3-IDE Configuration is labeled “Package Roots.” The Package Roots section of
the configuration page is where you list the package roots in your system.

The package roots specified in this section are scanned periodically by CM3-IDE. Each
root is either available for building or browsing. When you are sharing packages with
others, you should use the “browse” option, so that you don’t accidentally alter their
code. You configure your own package roots to allow building.

By default, your CM3-IDE installation comes with two pre-defined roots:

• Your private packages, listed under “proj” packages in CM3-IDE, reside in
the directory ($HOME/proj on Unix, or %HOME%\proj on Win32).

• The public packages, listed under “public” packages in CM3-IDE, reside in
the pkg subdirectory of your CM3-IDE installation.

When you ship a package, the contents of your package are copied to the public
packages, making them available to other programmers in a controlled fashion.

Figure 27. Package Roots Section of the Configuration Screen

Back to the example. Next, choose one of the blank rows to specify your new
package root. You need to specify three pieces of information about a root: its name in

Step

Step

Step

B U I L D I N G A N D S H A R I N G P A C K A G E S

 57575757

CM3-IDE’s namespace, its filesystem path, and whether it is to be used for building or
browsing:

• Choose the name.

Specify a short name for the new package root in the left-most field. You will
use this short name to refer to this package root in CM3-IDE. Choose a short
and descriptive name like “graphics” which will be known as
/graphics within CM3-IDE. If the new root name collides with existing
root names, CM3-IDE will substitute something less useful, like “Root001”.

• Specify the path to the package root.

Specify the absolute path to the directory where this package root resides.
CM3-IDE will periodically scan for packages from the path you specify.
Examples are:

D:\USERS\HARRY\GRAPHICS (Win32)
/usr/harry/graphics (Unix)

• Enable either building or browsing for this package root.

Check the option “build” to make packages in this root available for editing
and building.

If you are configuring a new root to browse packages belonging to other
developers, make sure to check the “browse” option so that you don’t corrupt
their packages inadvertently. (The public package root is an example of a
browse-only package root, while your private package root, proj, allows
building and editing of packages.)

When you finish entering the information about the new root, click on

 Save and Apply Changes.

3.7 Sharing Packages

This section describes how to share a package with other developers and how to access
its functionality.

Imagine that you are working on a large project as part of a team of programmers.
You’ve been assigned to write a library that will be used by other programmers. To test
and run their code, they need a stable copy of your library available to them at all times.
What if you’re still working on your code? How do you make sure they are using the
most current version? How do you test and change your revised version of a library

Step

Step

Step

Step

B U I L D I N G A N D S H A R I N G P A C K A G E S

 58585858

while simultaneously allowing others to continue their work based on a stable release of
your package?

The answer in CM3-IDE, as you might have guessed, is shipping. In CM3-IDE, you
ship your packages to copy them to the public package root, where they are available to
others in your team. Each CM3-IDE installation has one public package root. The
code you ship becomes available for browsing and importing by others, but they may
not edit or compile it.

In contrast, you, who shipped the package in the first place, are considered to be the
owner of this package; you are responsible for its upkeep. The buildable sources for
your packages remain in your private directory; they are in your complete control. In
fact, shipping a package does not affect its contents in any way.

You may continue to work on your package after shipping it. Whenever you are
comfortable with your changes, you may ship the package again, making the new
changes available to others. CM3-IDE will overwrite the old shipped files in the public
package root with the new ones.

3.7.1 Example: Adam’s and Eve’s Joint Project

In the following example, we examine a project that involves multiple programmers
and multiple packages. We’ll review some of the concepts discussed earlier in the
context of a multi-developer project.

Imagine two developers Adam and Eve working on a shared project Garden. As smart
developers, they have decided to use CM3-IDE for their Garden development. As
organized developers, they first set up their environment to make sharing easy.

Creating directories for package roots. The first step is to create a directory that
contains both of their package roots (presumably with group write permissions):

E:\GARDEN\ (Win32)
/proj/garden/ (Unix)

Next, they create package roots for themselves:

E:\GARDEN\EVE (Win32)
E:\GARDEN\ADAM (Win32)

/proj/garden/eve (Unix)
/proj/garden/adam (Unix)

Packages in Eve’s directory are her responsibility. Adam may be able to browse the
code in Eve’s packages, but he should not be able to modify the package contents. If
Adam needs a change in one of Eve’s packages, he should ask Eve to make the
change.

Configuring package roots. Next, Adam and Eve use the configuration page of
CM3-IDE to set up their package roots.

B U I L D I N G A N D S H A R I N G P A C K A G E S

 59595959

Eve types the package root name “eve”, with the path set to the full path to the
directory she just created for her packages:

E:\GARDEN\EVE (Win32)
/proj/garden/eve (Unix)

Eve checks the “build” option for her own package root, so that she can build new
packages in her newly created package root.

Eve wants to be able to look at Adam’s packages but she wants to make sure she
doesn’t accidentally do anything to them. So Eve includes Adam’s package root, but
she is careful not to check the “build” option. The only other choice is the “browse”
option.

Eve is ready to leave the Configuration page. The package root section of her
configuration looks like:

Figure 28. The “Package Roots” section of Eve’s Configuration Page

Saving changes to the configuration. Before leaving the Configuration page, Eve
clicks the Save and Apply button.

Adam sets up his package roots in a similar fashion, but in Adam’s configuration,
Adam’s package root is available for building and Eve’s is only available for browsing.

Note that Adam and Eve could have chosen different names for their roots, but then
communicating would have been harder.

Assigning project responsibilities. Now that they have organized their development
environment, Adam and Eve meet to decide how to break up the work:

• Adam agrees to work on the end application, pie. The package pie will
reside in Adam’s package root, and will be available in Adam’s and Eve’s CM3-
IDE as /adam/pie.

B U I L D I N G A N D S H A R I N G P A C K A G E S

 60606060

• Eve agrees to work on the core library, named apple. The package apple
will reside in Eve’s directory, and is available as /eve/apple.

• Adam’s package, pie, will need Eve’s package, apple.

Adam and Eve are the owners of their respective packages. No one else is allowed to
modify sources in someone else’s package root. Working in a team however, each
allows the other to browse the current state of their Garden-related packages. (CM3-
IDE does not enforce this policy; you must use your filesystem to do that.)

Getting ready to code. Adam and Eve spend some time discussing the design of the
application until they agree on an initial set of interfaces that Eve’s apple needs to
support. The separation of interface from implementation in CM3-IDE is key to
allowing Adam and Eve to work independently:

• Eve starts the first implementation of the apple interfaces.

• Adam starts the design and implementation of pie, assuming the agreed upon
apple interfaces.

Shipping the first release. When Eve is satisfied with apple, she ships it. Now,
there are two copies of the apple package, Eve’s private copy (/eve/apple) and
the public copy (/public/apple). Once Eve ships her package:

• Adam can import apple in the makefile for pie and build it.

• Eve may continue working on apple, shipping it whenever she finds a
proper checkpoint where the code is stable.

Testing before a release. If apple becomes too complex, Eve may need to “unit
test” its functionality before shipping so that Adam’s pie is not affected by new bugs.

No problem: Eve can create her own package juice just for the purpose of testing
the quality of apple. As a savvy developer, Eve also advertises juice as a sample
program that uses apple. This is convenient for Adam since he can see the juice
package as /eve/juice in his CM3-IDE’s namespace even if Eve doesn’t ship it.
Moreover, because he configured juice for browsing only in his CM3-IDE
configuration, Adam can’t corrupt juice by accident.

Eve is left with one problem: juice is supposed to test apple before apple is
shipped, but since juice needs to import apple, apple needs to be shipped
before juice can test it.

How does Eve overcome this problem? Simple: she needs to force juice to use her
private version of apple (/eve/apple) instead of the publicly available version
(/public/apple).

B U I L D I N G A N D S H A R I N G P A C K A G E S

 61616161

Overriding a build. When building juice, Eve will need to tell CM3-IDE not to
look in the public package root for the shipped apple. Instead, she must specify
where to get apple; this is called overriding.

To override a build, Eve must perform two steps:

First, she must create an overrides file (named “m3overrides”) in juice’s source
directory that includes the names of the overridden packages and where to find them.
In this example, Eve puts:

override(“apple”, “C:\\GARDEN\\EVE”) (Win32)
override(“apple”, “/proj/garden/eve”) (Unix)

in the m3overrides file.

Then, when building juice, Eve types “-override” as the build option to tell the
builder that it should use the overrides file.

Finally, Eve compiles her juice package, tests apple, and when she is happy with
the quality of apple, she ships it. Next time Adam builds pie, the builder will notice
the fresh apple and will use it.

How Overrides Work. An overrides file contains a set of override commands to
specify new paths for the builder to find packages. Each line of the override list
contains the name of the package to replace and the path to the package root
containing the new package, i.e.:

override(package,replacement-package-root)

where package and replacement-package-root are strings.

Note that you must escape the backslash character on Win32 by typing “\\” as your
path delimiter.

When the -override option is specified, cm3 looks for a file named
m3overrides in the package’s source directory. If the file m3overrides exists,
it is evaluated prior to evaluating m3makefile. (Both m3overrides and
m3makefile are Quake scripts.)

CM3-IDE allows you to leave permanent overrides in your makefiles but it isn’t a good
practice. By keeping all override calls in an m3overrides file and not in a makefile,
you can readily switch between building packages based on private and public versions
of imported packages without editing files.

The overrides in effect when a package was built are automatically carried forward into
importers of the package, so there is no need to restate the complete set of overrides in

B U I L D I N G A N D S H A R I N G P A C K A G E S

 62626262

every package, only of those packages that are directly imported into the current
package. CM3-IDE’s builder will warn you if you overspecify your override options.

Shipping and the -override Option. Shipping a package that is built with overrides
makes little sense, as it depends on packages that are not available in the public package
root. CM3-IDE’s builder will refuse to ship a package that was built using overrides.
This safety check helps ensure that packages shipped to the public package root stay
consistent.

3.8 Builder Options

CM3-IDE’s builder options are listed here. You can find this information on-line by
specifying “-help” as your build option, or typing “cm3 -help” at a shell
command-line.

Modes.

-build

-ship

-clean

-find

(default: -build)

compile and link

install package

delete derived files

locate source files

Compiler Options.

-g

-O

-A

-once

-w0..-w3

-Z

(default: -g -w1)

produce symbol table information for the debugger

optimize code

disable code generation for assertions

don’t recompile to improve opaque object code

limit compiler warning messages

generate coverage analysis code

Program and Library Options.

-c

-a lib

-o pgm

-skiplink

(default: -o prog)

compile only, produce no program or library

build library lib

build program pgm

skip the final link step

B U I L D I N G A N D S H A R I N G P A C K A G E S

 63636363

Messages.

-silent

-why

-commands

-verbose

-debug

(default: -why)

produce no diagnostic output

explain why code is being recompiled

list system commands as they are performed

list internal steps as they are performed

dump internal debugging information

Information and Help.

-help

-?

-version

-config

print this help message

print this help message

print the version number header

print the version number header

Miscellaneous.

-keep

-times

-override

-x

-Dnm

-Dnm=val

-console

-gui

-windows

preserve intermediate and temporary files

produce a dump of elapsed times

include the “.m3overrides” file

include the “.m3overrides” file

define the quake variable nm with the value TRUE

define the quake variable nm with the value val

produce a Windows CONSOLE subsystem program

produce a Windows GUI subsystem program

produce a Windows GUI subsystem program

CM3-IDE’s makefiles are discussed in more detail later in CM3-IDE Makefiles on page
50. For information about customizing the behavior of the Build button, see
Customizing CM3-IDE on page 65, or review the configuration file cm3.cfg in your
installation.

B U I L D I N G A N D S H A R I N G P A C K A G E S

 64646464

3.9 Summary

A package is the unit of building and shipping in CM3-IDE. Each package is
represented by a directory on the filesystem. Packages typically have two subdirectories,
a source directory (named “src”) and a derived directory whose name varies per platform.
Each package may have a makefile in its source directory which is a set of instructions
for compiling sources in the package.

To build a package, use the Build button on the summary page of the package.

To make a package available for importing by other packages, ship it, by clicking the
Ship button on the summary page of the package.

CM3-IDE builder. The stand-alone program cm3 is CM3-IDE’s builder. You may
start the cm3 builder by either clicking the Build button from any package page, or by
invoking cm3 from the command line. See Builder Options on page 62.

Package roots. You can organize packages for your various projects into package
roots. A package root is a directory that can contain zero or more packages. See
Package Roots on page 55.

The public package root is CM3-IDE’s shared repository for shipped packages.
Packages in the public package root can be browsed and imported by anyone but they
cannot be edited or compiled in-place.

Overriding. The -override option can be used to tell cm3 to look for a file named
m3overrides in the source directory and, if it exists, evaluate it immediately before
evaluating m3makefile. See How Overrides Work on page 61.

