€

CRITICAL MASS MODULA-3 (CM3)

Integrated Development Environment (IDE)

4+

CM3-IDE

Integrated Development
Environment

C re ate Powered by Modula-3

CM3-IDE: Critical Mass Modula-3 Integrated Development Environment |g

CM3IDE
User Guide

This page left blank intentionally.

CRITICAL MASS MODULA-3 INTEGRATED DEVELOPMENT ENVIRONMENT

CM3-IDE

User Guide

elego Software Solutions GmbH
Gustav-Meyer-Allee 25 / Building 12
13355 Betlin

June 2008

CM3-IDE was originally developed as Reactor by Bill Kalsow and Farshad Nayeri at Critical Mass, Inc.,
now named IGEN Corporation. The software was later open-sourced through the tireless efforts of
Randy Coleburn and Olaf Wagner.

elego Software Solutions ‘inherited’ the complete sources for the Critical Mass Modula-3 compiler and
development system from Critical Mass, Inc., in 2000, and has since made several releases of the system in
source and binary form. In March 2002 elego Software Solutions also took over the repository of the other
active Modula-3 distribution PM3,; till then maintained at the Ecole Polytechnique at Montreal.

So currently elego Software Solutions is hosting the complete CVS source code repositories and providing
several possibilities to download Modula-3 sources or installation archives. You must decide if you want
sources, CVS repositories (RCS files), or installation archives, and you can get them in several ways: using
(anonymous) CVS, CVSup, HTTP, or FTP.

Everybody who wants to work on the CM3 ot PM3 sources directly can get write access if he/she provides an
ssh key (protocol version 2 (DSA) preferred). Send email to m3-support@elego.de if you are interested, and
have a look at the CM3 configuration management rules available on the web site:
http://modula3.clegosoft.com/cm3/

This manual is derived from the original Reactor User Guide published by Critical Mass, Inc.
Copyright © 1996 Critical Mass, Inc. All Rights Reserved.

This manual, as well as the software described in it, is furnished under license and may not be used or copied in
accordance with the terms of such license.

Except as permitted by such license, no part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior
written permission of Critical Mass, Inc.

The information in this manual is furnished for informational use only, is subject to change without notice, and
should not be construed as a commitment by Critical Mass, Inc., or by elego Software Solutions. Critical Mass,
Inc. and/or elego Softwate Solutions assumes no responsibility or liability for any etrors or inaccuracies that
may appear in this manual.

Critical Mass, the Critical Mass logo, Reactor, the Reactor logo, CM3, and Critical Mass Modula-3 are
trademarks of Critical Mass, Inc.

Alpha AXP and Digital Unix are trademarks of Digital Equipment Cotporation. OSF/1 is a registered
trademark of Open Software Foundation, Inc. Unix is a registered trademark of UNIX System Laboratories,
Inc. SPARC, SunOS, and Solatis are trademarks of Sun Microsystems. Microsoft is a registered trademark of
Microsoft Corporation. Windows and Win32 are trademarks of Microsoft Corporation. IBM and AIX are
registered trademarks of International Business Machines Corporation. HP, HP Precision Architecture, and
HP/UX are trademarks of Hewlett Packard. PostScript, and Acrobat are registered trademarks of Adobe
Systems Incorporated.

Table of Contents

0. Introduction 1

0.1 About This Manual 1

0.1.1 Welcome to CM3-IDE! 1

0.1.2 What’s Inside 1

0.1.3 Typographic Conventions 2

0.1.4 Before You Begin 2

0.1.5 Keeping in Touch 2

0.2 About CM3-IDE 3

0.2.1 CM3-IDE’s Development Environment 3

0.2.2 Systems Development with CM3-IDE 4

0.2.3 Programming in CM3-IDE 4

1. Learning the Basics 5
1.1 Starting CM3-IDE

1.2 A Quick Walkthrough 7

1.3 Creating a Package From Scratch 15

1.3.1 List of All Packages 15

1.3.2 Creating New Packages 17

1.3.3 Procedure Calls in CM3-IDE: What is “10.Put?” 20

1.3.4 The 10 Interface 20

1.3.5 CMS3-IDE Makefiles (m3makefile) 24

1.4 Summary 27

2. The CM3-IDE Environment 29

21 Common Tools, Icons, and Visual Elements 29

211 Quick Access Icons 30

2.1.2 Action Buttons 31

21.3 The Find Type-in 32

2.2 CM3-IDE Start Screen 32

221 Start Screen: System 34

2.2.2 Start Screen: Language

2.2.3 Start Screen: Help

224 Customizing the CM3-IDE Start Screen
2.3 Summary Screens

2.3.1 Package Summary

2.3.2 Library Summary

2.3.3 Program Summary

2.3.4 Interface Summary

2.3.5 Module Summary
24 CM3-IDE’s Web Namespace

2.4.1 CM3-IDE URLs

2.4.2 Example CM3-IDE URLs

2.4.3 Regular Expressions in CM3-IDE URLs

25 Summary

Building and Sharing Packages

34
34
35
36
36
37
39
40
a1
42
43
43
44
45

a7

3.1 Building Packages
3.2 Directory Structure of a Package
3.3 CM3-IDE makefiles
3.3.1 Basic Makefile Commands
3.3.2 Additional Makefile Commands
3.4 Managing Multiple Packages
3.5 Shipping Packages
3.6 Package Roots
3.6.1 Example: Creating a New Package Root
3.7 Sharing Packages
3.71 Example: Adam’s and Eve’s Joint Project
3.8 Builder Options

3.9 Summary

Customizing CM3-IDE

48
49
50
51
53
53
54
55
56
57
58
62
64

65

4.1 CM3-IDE Configuration Screen
411 Navigating to the Configuration Page
4.1.2 Saving Configuration Changes
4.1.3 Display Settings
4.1.4 Package Roots Settings
4.1.5 Communication Settings

4.1.6 Miscellaneous Settings

66
66
66
66
68
69
69

4.1.7 Helper Procedures 70

4.2 Summary 72
5. Beyond The Basics 73
5.1 Exceptions: Error Handling in CM3-IDE 74
5.1.1 How Exceptions Work 74
5.1.2 Declaring Exceptions 74
5.1.3 Triggering Exceptions: RAISE Statement 75
5.1.4 Handling Exceptions: TRY-EXCEPT Statement 75
5.1.5 Cleaning up: TRY-FINALLY Statement 76
5.1.6 Trapping All Exits from a Block of Code 77
5.1.7 An Example of Exception Handling 77
5.1.8 Programming without Exceptions 77
5.1.9 Making Programs Robust with Exceptions 79
5.2 Object Types: Object-oriented Programming 81
5.2.1 Programming with Objects: A Complete Example 83
5.3 Threads: Managing Concurrent Activities 86
5.4 Opaque Types: Information Hiding And Encapsulation 88
5.4.1 Fully Opaque Types 89
5.4.2 Clients of an Opaque Type 91
5.4.3 Partially Opaque Types: Revealing Types in Moderation 92
5.4.4 Subtyping Partially Opaque Type 94
5.4.5 Clients of a Partially Opaque Type 96
5.5 Generics: Resuable Data Structures and Algorithms 97
5.5.1 Using Generics 98
5.5.2 A Generic Example: List 98
5.5.3 Parameter to a Generic: Atom 99
5.5.4 Instantiating a Generic: AtomList 99
5.5.5 Using Instances of Generics 99
5.5.6 Instantiating Generics for User-Defined Types 101
5.5.7 Instantiating Generics in a Makefile 102
5.6 Unsafe Constructs: System Programming in CM3-IDE 102
5.6.1 Unsafe Coding Example 103
5.7 Summary 105
6. Development Recipes 107
6.1 Robust Distributed Applications: Network Objects 108
6.1.1 The Common Interface 108

6.8 Summary

Tables

7.1.7 Sequences

7.1.9 Sets

7.2 Standard Libraries

7.2.6 Threads

7.3 Systems Development

6.1.2 A Network Object Server 109
6.1.3 A Network Object Client 113
6.2 Client/Server Computing: Safe TCP/IP Interfaces 115
6.2.1 A TCP/IP Client: Finger 115
6.2.2 A TCP/IP Server: HTTPD 117
6.3 Taking Persistent Snapshots of Objects: Pickles 120
6.4 Quick Comparison of Large Data: Fingerprints 122
6.5 Portable Operating System Interfaces 124
6.6 Dynamic Web Applications: the Web Server Toolkit 135
6.7 Interacting with C Programs 137
6.7.1 Calling C: A Unix Example 137
6.7.2 Calling C: A Win32 Example 139
6.7.3 Calling Modula-3 from C 140
142

CM3-IDE Interface Index 143

71 Data Types, Data Structures, and Algorithms 144
711 Basic Data Types 144
7.1.2 Collections, Lists, Tables, Sets 145
713 Linked Lists 145
7.1.4 Sorted Linked Lists 145
7.1.5 Property lists 145
146

7.1.6 Sorted tables 146
146

7.1.8 Priority queues 147
147

7.1.10 Sorting Lists, Tables, and Arrays 147
148

7.21 Math, Geometry, Statistics, Random numbers 148
7.2.2 Floating point 148
7.2.3 Environment, Command line parameters 148
7.2.4 1/0 streams, Reading and Writing, Files 148
7.2.5 Formatting, 1/0 Conversion 149
149

150

7.3.1 Distributed and Client/Server Development 150
7.3.2 Databases and Persistence 150

vi

7.4

8.
8.1

8.2

8.3

8.4

8.5

8.6

7.3.3 Operating System, Files, Processes, Time 151
7.3.4 Interoperability with C 153
7.3.5 Low-level Run-time Interfaces 153

Miscellaneous 153
Further Information 155

Books 156
8.1.1 System Programming with Modula-3 156
8.1.2 Modula-3 156
8.1.3 Algorithms in Modula-3 156
8.1.4 Programming with Modula-3: An Introduction to Programming with Style 157

Technical Documentation 157
8.2.1 Reactor White Paper 157
8.2.2 Some Useful Modula-3 Interfaces 157
8.2.3 Network Objects 158
8.2.4 Trestle Reference Manual 158
8.2.5 VBTkit Reference Manual: A toolkit for Trestle 158
8.2.6 Obliqg-3D Tutorial and Reference Manual 158

Introductory Programming Articles 158
8.3.1 Modula-3 Reference and Tutorial 158
8.3.2 Net Balance: A Network Objects Example 159
8.3.3 Building Distributed OO Applications: Modula-3 Objects at Work 159
8.3.4 Partial Revelation and Modula-3 159
8.3.5 Initialization of Object Types 159
8.3.6 Trestle Tutorial 159
8.3.7 Trestle by Example 160

Systems Built Using Modula-3 160
8.4.1 The Juno-2 Constraint-Based Drawing Editor 160
8.4.2 Zeus: A System for Algorithm Animation and Multi-View Editing 160
8.4.3 Writing an Operating System with Modula-3 160
8.4.4 The Whole Program Optimizer 160

Parallel Programming 161
8.5.1 An Introduction to Programming with Threads 161
8.5.2 Synchronization Primitives for a Multiprocessor: A Formal Specification 161

Garbage Collection 161
8.6.1 Compacting Garbage Collection with Ambiguous Roots 161
8.6.2 Distributed Garbage Collection for Network Objects 162

8.6.3 Portable, Mostly-Concurrent, Mostly-Copying Garbage Collection for Multi-

Processors 162
8.7 Comparisons to Other Languages 162
8.7.1 A Comparison of Modula-3 and Oberon-2 162

8.7.2 A Comparison of Object-Oriented Programming in Four Modern Languages 162

8.8 Summary 163

viii

Figures

Figure 1. The Start SCIEeN... ..o 6
Figure 2. EXamMPles ALCa....cccciiiiiiiiiiiiiiiiicr s 7
Figure 3. A Package SUummary ... 8
Figure 4. A Module SUMMALYccoiiiiiiiiiiiiiiiie e 10
Figure 5. A Schematic of the IO Interface......ccoeviiiiniiciiiniiciniiccncccicn, 12
Figure 6. Building a package. ... 13
Figure 7. A Package Summary containing a Built Program.........c.ccccveiiiiiinnnnee. 13
Figure 8. A Program Summary with a Run Button ... 14
Figure 9. Running "Hello Wortld".........ccccviiriiniiniiicicccceeeeceeeseienaes 15

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.

Packages Page: Listing of All Packages in CM3-IDE...........ccccccceuviviinnnee. 16
Top of the Packages Page........cocuviiiciciiiiiiiiiiiiiicincccsccccennes 17
Package Creation Dialog........ccoviiiiiiiiiiiiiiiiiiiiciccnccesieieans 18
The top of the Module Summary Page.........cccccvviiiivviniiivniciiicnnns 19
A Procedure Call Crossing Module Boundaries..........coovviviiniiiiicnanes 20
The top of the IO INterface.......coouiiieiiieiiiiiiiiiiinicccreenes 21
Some Procedures Defined in the IO Interface......ccooovveiviviicininiicininines 22
The top of a Program Summary page.........ccceeevviieriininicnieninicesinecens 26

Quick Access Icons for /proj/hello/src/Hello.m3....... 30
CM3-IDE’S Start SCIEEN ...cuviiiriiiiiciniictece s 33
A Package SUMMALYc.covviiiiiiiiiiiiciiesceeeee s 36
A Library SUMMATy....ccoccueeeueieiiininirinisteeeeeeeesesesesesesesesesesesenes 38
Top Portion of a Program SUmMmary ... 39
An Interface SUMMALY ...t 40
Portions of a Module SUMMALyccevviviviininininiiccccceceeieierererererenenenes 41
CM3-IDE’s Build BUtton ... 48
CM3-IDE Package Directory Structureccoovvvivivirivininininiiicccccnene 49
Package Roots Section of the Configuration Screencccoevvuvevivivivinnee. 56
The “Package Roots” section of Eve’s Configuration Page..........cc.c...... 59
Save Changes and Display Settingscccooueveueivinirieriininieniiniceesiicenes 66
Package Root and Communication Configurationccceceeveevvuvirireneenee. 68
Miscellaneous Settings and Helper Procedurescccovvivvivivvivinnininnnnee 70

This page left blank
intentionally.

INTRODUCTION

0. Introduction

0.1 About This Manual

0.1.1 Welcome to CM3-IDE!
If you are reading this manual because you would like to learn how to use CM3-IDE,
you’ve come to the right place.

This manual will teach you what you need to know to use CM3-IDE for your
development tasks. To make the most of this manual and of CM3-IDE, you should try
out the hands-on tutorials using CM3-IDE’s development environment.

0.1.2 What’s Inside

Chapter 1, Learning the Basics on page 5 introduces you to the basic concepts of
CM3-IDE: packages, modules, interfaces, importing, and exporting, by walking
through two hands-on tutorials.

Chapter 2, The CM3-IDE Environment on page 29 tours the commonly used screens in
the CM3-IDE development environment.

Chapter 3, Building and Sharing Packages on page 47 explains how to build
packages, and how to share them with others developers in your team. By the end of

Chapter 3, you should have a solid understanding of the CM3-IDE development
environment.

Chapter 4, Customizing CM3-IDE on page 65 describes CM3-IDE’s Configuration
page. Use this information to tailor CM3-IDE’s behavior to fit your individual or team
development needs.

Chapter 5, Beyond the Basics on page 73 introduces the more advanced language
features, such as object types, threads, exception handling, generics, and provisions for
unsafe code.

Chapter 6, Development Recipes on page 107 includes recipes for building some
simple, but real applications: client/server computing, distributed computing, building

INTRODUCTION

dynamic web applications, integrating legacy code, and using operating system
interfaces.

Chapter 7, CM3-IDE Interface Index on page 143 outlines the most common of the
hundreds of interfaces in CM3-IDE.

Chapter 8, Further Information on page Error! Bookmark not defined. cites other
sources of information about CM3-IDE.

0.1.3 Typographic Conventions
In this manual, the body text is typed in a serif typeface. References to code are typeset
a sans serif code typeface, for example:

FOR 1 := 1 TO 10 DO IO.PutInt(i) END;

Performing some tasks may involve multiple steps. To help continuity of the text in
this manual, each step is marked on the left hand-side with a “STEP” icon.

0.1.4 Before You Begin
To achieve the most from reading this user guide, you should:

® Know the basics of programming. Reading this manual does not require
extensive programming expetience, however, you are expected to know the
basics.

® Jearn how to operate your web browser and text editor. CM3-IDE allows you
to use a browser and editor of your choice; hence you must know how to use
them before you can use CM3-IDE effectively.

If CM3-IDE’s default browser and editor don’t match your preferences,
change the CM3-IDE settings as desctibed in Chapter 4, Customizing CM3-
IDE on page 65.

¢ Install CM3-IDE on your system. For instructions, see the Installation Guide
distributed with your copy of CM3-IDE.

0.1.5 Keeping in Touch
Our web address is http://modula3.clegosoft.com/cm3/. Visit us there for updates
and information about CM3-IDE. Good luck. We hope you enjoy using CM3-IDE!

INTRODUCTION

0.2 About CM3-IDE

CM3-IDE is a complete environment for the development of robust, multi-platform,
client/server and distributed applications.

CM3-IDE provides built-in support for modern systems programming tasks through
the use of features such as multi-threading, automatic garbage collection, exceptions,
and separation of interfaces from implementations.

CM3-IDE’s strength lies in its support for the development of high-performance back-
end servers and middle layers in a multi-tier architecture. You can also use CM3-IDE
to build user interfaces.

0.2.1 CM3-IDE’s Development Environment

CM3-IDE development environment is a dynamic, custom web server. To navigate
within the environment, you use a standard web browser such as Netscape Navigator
or the Internet Explorer.

Each file in your project and every command in CM3-IDE maps to a location in the
CM3-IDE’s web namespace. CM3-IDE continually tracks changes in your system and
uses the information to build and maintain hypertext links to program components.

This unique design has many advantages, among them:

® The web is an intuitive metaphor to most users, hence it is easy to begin using
CM3-IDE.

e CM3-IDE’s feel and function remain the same on all platforms.

® Within your projects, you can embed references to external documentation,
point out relationships with other projects in your system, or create links to a

INTRODUCTION

README file. You can embed a reference to a CM3-IDE project in an e-
mail message.

® CM3-IDE’s web-based metaphor allows you to quickly access information
about program components, types, and their relationships.

0.2.2 Systems Development with CM3-IDE

CM3-IDE’s high-performance compiler generates native code from the same source
code whether you run on Windows or Unix. The smart but simple-to-use builder
keeps track of dependencies between various program elements automatically, whether
or not you use makefiles. Customizing CM3-IDE is straightforward, also.

The CM3-IDE installation includes a collection of portable, well-documented, and
thread-friendly libraries, giving you access to thousands of calls in several hundred
interfaces.

CM3-IDE’s simple repository system allows you and your co-workers to share released
code.

0.2.3 Programming in CM3-IDE
CM3-IDE’s primary programming language is Modula-3.

Modula-3’s Pascal-like syntax and concise definition make it easy to learn and use; yet
Modula-3 is an extremely powerful and versatile development tool. Modula-3 has been
used extensively for building robust, distributed programs for over a decade.

A language reference, tutorial, and many examples are available online as part of the
CM3-IDE environment.

LEARNING THE BASICS

Read this chapter
if you have never
used CM3-IDE
before.

1. Learning the Basics

This chapter introduces you to CM3-IDE’s web-based environment, and to five basic
concepts that are central to CM3-IDE: packages, nodules, interfaces, importing, and
exporting. By the end of this chapter, youll be familiar with these concepts and with
some of the screens that you’ll use often.

If you haven’t installed CM3-IDE yet, follow the instructions in the CM3-IDE
Installation Guide to get started. The rest of this chapter also assumes that you know
how to use your web browser and your text editor well.

The chapter is divided into three parts:

Starting CM3-IDE on page 6 outlines how you start the CM3-IDE development
environment.

A Quick Walkthrough on page 7 uses the old standby, the “hello world” program to
tour the browse and build features of CM3-IDE. In this first tutorial, you’ll learn how
to:

® create a new package from an existing example
® build a simple “hello world” program
® run the program from within CM3-IDE

® cxplore how CM3-IDE automatically updates its virtual namespace to keep up
with changes to your system

The second tutorial, Creating a Package from Scratch on page 15 covers some of
the same concepts as the first, but in greater depth. This time, you:

® create your own package
® open and run your text editor from within CM3-IDE
® cdit and compile sources and makefiles

® browse one of CM3-IDE’s library packages.

LEARNING THE BASICS

1.1 Starting CM3-IDE

You can start CM3-IDE by typing CM3-IDE at the command-prompt, assuming the
CM3-IDE program is in your executable path. If you haven’t installed CM3-IDE vyet,
or you are unable to locate the executable program for CM3-IDE, see the CM3-IDE

Installation Guide.

Once started, CM3-IDE automatically spawns your web browser and points it to
CM3-IDEs start screen, as in Figure 1.

odula

CM3-IDE: Critical Mass Modula-3 Integrated Development Environment g

SYSTEM ﬂ Packages Configuration
Libraries ﬂ Programs
LANGUAGE 0 Interfaces @ Modules
o Generic Interfaces @ Generic Modules
o Tvpes
HELP B Getting Started D User Guide
Tutorial b Reference
Examples D Technical Notes

Copyright {C) 19946 Criticsl hlzzz. Inc. All Rights Reserved. S22 licenzs for 2 fll description.

Figure 1. The Start Screen

At the top of the start page is the CM3-IDE logo, and below that a set of icons that
represent elements of the CM3-IDE environment. They are divided into three groups:
System, Language, and Help.

LEARNING THE BASICS

1.2 A Quick Walkthrough

Having started CM3-IDE, you will see CM3-IDE’s start page in your browser’s
window (Figure 1). Here we quickly walk through the building of a Hello World
example program.

The Start Screen. I'rom the start screen, follow the link to ¥ Examples. (It’s in the
Help category, toward the bottom of the screen.)

Click on the item named “Hello World” (Figure 2). CM3-IDE will create a new
example program named “he 1107, and will take you to the package summary for the
hello package.

CM3_IDE Examples
@ cMADE | B example | @ indexhtml
Getting Started

+ Hello World
Loops, Conditionals, Basic Datatvpes, Arravs

-
+ Ranges, Sets

» Emumerations. Records, Arrays. Text Strings
-

Interfaces. Modules. and Importing

Figure 2. Examples Area

Packages

Using CM3-IDE, you divide your programming projects into packages. A
package is a unit of ownership in the CM3-IDE system. A project
consists of one or more packages. For large projects, different people
may “own’” different packages.
A CM3-IDE package comprises:

® zero or more modules

® zero or more interfaces

® 2 makefile (called “m3makefile”)

The makefile tells the compiler how to put everything together. For
simple programs, you may get away without having a makefile.

Each package has its own directory on your system, where all its source
files are stored together.

LEARNING THE BASICS

Package Summary. A package summary page outlines different elements that
comprise a package (Figure 3). You can follow the links on this page to view any of its
components.

@ Package: hello

< CMAIDE | Mproj | Hhells < o Quick Access Icons

Directory: C:\MySandbox\hello
Programming Basics: Hello World

You can divide your code into different modules. Many packages contain a main module,
usually named Main.m3 The main module specifies the main body of vour program. Here is
an example of a main program:

MCDULE Hello EXPORTS Main;
IMPORT I0:
BEGIN

IC.Put ("Hello World\n"):
END Hello.

To use another module, you import an interface exported by that module. In this example,
we have imported only the I0 interface to do simple input/output. By looking at the TMPORT
clause, you can easily find out what interfaces a piece of code depends on.

The last part of each module is its body. In this case, we are calling the procedure I0.Put
which prints the text string "Hello World" to the standard output.

O Deete old buird fites

[Clean | [Editm3makefile | G Edit the makefile
Options:

Build the package
H Subdirectories: src Q p d
@ Modules: ze110 < G List all modules

[H] Quake sources: m3makefile

@ Misc sources: index.html
E Cat g ies: Misc sources Modules Quake sources Subdirectories
Find

Figure 3. A Package Summary

At the top of the page, you'll see a row of Quick Access Icons. Below that, a button
labeled Build, and below that, package components, such as Subdirectories and
Modules.

Q Use the Quick Access Icons to navigate to other locations in the CM3-IDE
Environment. For more information, see The CM3-IDE Environment on page 29.

LEARNING THE BASICS

(B The Clean button tells CM3-IDE to delete files from previous builds.
Clean does not remove sources of your program.

O [Edimenaksie | The Edit m3makefile button statts your text editor and opens
the makefile for this package.

(D] The Build button activates CM3-IDE’s builder and uses the instructions in
your makefile to build the package. If there is no makefile, CM3-IDE’s builder will
scan your package’s directory tree and attempts to build a program based on that
information.

(E The modules available in this package are listed under the @ Modules heading.
This page has only one entry—it’s called Hello.

Modules

A module is a named collection of declarations, including constants, types,
variables, procedures, and their associated bodies.

Module Summary. Next, follow the link Hello under the heading @ Modules to go
to the summary page for the Hello module. Your browser will display a page titled
“Module: Hello” (Figure 4).

LEARNING THE BASICS

@ Module: Hello

@ cMIIDE | Pproj | Bhello | BAsre | @ Hello

Path: c: " MvSandroxinellolsreiHello.m3 Last modified: Jan 26 04:06

’Shipl [Clean ” Edit m3makefile ” Edit source

Options: |

MODULE Hello EXPORTS Main:

Each module must have a name, which is declared in the MODULE
statement. By convention, the main module for an executable program
exports the interface Main, as does the Hello module here.

Each module can also import interfaces exported by other modules. This
is how vou reuse code from libraries or vour own modules. Here, we have
imported interface To which is a simple input/output interface.

From the browser, vou can learn what the imported interfaces do by

Jollowing the link associated with their name.

TMPORT I0:

The main body of a module or the initialization section includes statements that are executed
at the begining of the program. In this case, we are the main module, and all we do is print
Hello World! on standard output.

BEGIN
IC.Put ("Hello World!'hwm™):
END Hello.

Don't forget to include the module name in the last END in vour program.

Figure 4. A Module Summary

10

LEARNING THE BASICS

Viewing Code of a Module. On this page, you can view the code for He110.m3, the
file containing the Hello module.

MODULE Hello EXPORTS Main;

CM3-IDE is case- IM PORT Io ;
sensitive. BEGIN
I0.Put (“Hello world\n”);
END Hello.

Note that CM3-IDE is case-sensitive. Keywords are always in upper-case.
Module Statement. The first line reads:
MODULE Hello EXPORTS Main;

This is the module statement. Each module must have a name; in this case the name is
Hello. By including “EXPORTS Main” in the module statement, this module is
considered to be the main module, i.e., the module containing the main body of the

program.

Main Module of a Program

Every program must have a single main module, specifying its main
body. The main module for your program exports the Main interface.
This can be done either by naming your main module Main, or by
including EXPORTS Main in the module statement for the main
module.

Import Statement. The next line reads:
IMPORT IO;

This is an zzport statement. To use items defined in another module, you zzport an
interface exported by that module. You do that by listing it here, in the import
statements for your module. In this example, we have imported only the IO interface
for doing simple output (Figure 5). By looking at the import statements for a module,
you can easily find out what interfaces it depends on.

11

LEARNING THE BASICS

Imports

I0 Interface

(10.13)

HeTllo module

(HeTlo.m3)

Figure 5. A Schematic of the IO Interface

exports

I0 module

(10.m3)

The module body simply calls the procedure in the IO interface, denoted by IO. Put.
IO.Put prints out the text string “He'11o Wor1d”, followed by a new line (\N) to

the standard output.

BEGIN

I0.Put (“Hello world\n”);

END Hello.

Interfaces

An interface defines what parts of a module are visible to its clients. An
interface can include declarations for types, procedures, constants, and

variables.

Usually, the name for an interface matches that of the module that
exports it; for example, the IO module exports the TO interface. (This

does not have to be the case at all times.)

A useful way to think about an interface is as a window into the module

that exports it.

Building a Package. This next step will produce an executable program by building

the sources for the hello package.

12

LEARNING THE BASICS

Click the Build button from the module summary. This will start the builder,
taking you to a Build Results page (Figure 6). From this page, you can view the output
from your build. Errors will appear here as hypertext links to the line of code that
generated them. With this example, you should not see any errors. If you do, retrace
your steps up to this point.

[Package: hello
& M3 IDE | Mproj | M hello

Directory: C:\MySandboxihello

Build time: Fek 1 13:15

Interrupt build

cd C:\MySandboxhello && cm3
——— building in HT38&6 ——-

Compiling Hello.m3 (new source)

linking hello_exe
link @C:%DOCUME~1%cm3%LOCALS~1%Temp'gk > hello.lst
mt /nologo /manifest hello.exe.manifest foutputresource:hello.exe;l

Done.

Figure 6. Building a package.

@ From Building to Running. Once built, follow the Il hello link in the Quick Access
Icons on top of the Build Results page. This returns you to the package summary for
the hello package. (You can also use the “Back” button on your browser.)

|Ship| [Clean || Editm3makefle |

Options:

H Subdirectories: NT386 =rc

a Programs: nellao

@ Modules: Hello

Figure 7. A Package Summary containing a Built Program

13

LEARNING THE BASICS

Program Summary. If you look at the bottom of the page, you’ll notice a change: You

should see a new category labeled K@ Programs. Next to the icon you'll see the word
“hel1T0.” This is the program you just built. Click on the word “he110” to navigate
to the Hello program summary.

[Program: hello
& CM3IDE | Mproj | Bhello | ENT386 | [hello

Path: c:\MvSandboxinello\NT386%hello.exe Last modified: Feb 1 13:15
Last built: Feb 1 13:15

[Ship| | Clean | | Editm3makefile |

Options:
Command: |C:\MySandboxihello\NT386\hello.exe
Directory: |C:\MySandboxihello\NT386

Figure 8. A Program Summary with a Run Button

Missing Program Icons in a Package Summary. If you don’t see a program icon in
your package summary, you may have to reload the page or click on the Rescan button
(when available) to update CM3-IDE’s browser view with the package contents on
your file system.

If you still can’t see a program icon, you probably did not build the package propetly.
(Perhaps you encountered a compilation or installation error.) Retrace your steps up to
this point, making sure you followed the instructions correctly, and compare their

results with the user guide.

Running a Program. Similar to other pages for a package, from the program summary
page, you can navigate to the package top, or to any package components, or rebuild
your program.

More importantly, you can run your program from this screen. (See Figure 8.) The Run
button is directly underneath the Build button. Next to the Run button is a type-in field
where you can enter the text as you would on a command line. (CM3-IDE should have
already done this for you.) Beneath that is a text box containing the path to the
directory in which your package resides.

Click the Run button now. Your program will run, and your browser will display the
result of the execution of the program. In this case, you should see the text “He 110
wor1d” appear in the program results page. (See Figure 9.)

14

LEARNING THE BASICS

@ Program: hello
P cM3IDE | Mproj | Hhello | ANT386 | H hello

Path: c:\MvSandbox\hello \NT3864vhello.exe Last modified: Feb 1 13:15
Last built: Feb 1 13:15

cd C:\MySandboxhello\NT386 && C:\MySandbox'hello\NT386Yhello.exe
Hello World!

Done.

Figure 9. Running "Hello World".

You've just built and run your first CM3-IDE program.

You may use the & CM3-IDE icon at the top left of the page you are on to return to
the CM3-IDE start screen.

1.3 Creating a Package From Scratch

In the first tutorial you used a ready-made package that comes with CM3-IDE. All you
had to do was navigate to it, build and run it. This time, you’ll create a new package,
open your text editor from CM3-IDE, add some code, and take a look at a very basic
makefile.

1.3.1 List of All Packages
From the CM3-IDE Start Page, follow the link to Packages to see a list of all available
packages that are currently available within CM3-IDE. (See Figure 10.)

15

LEARNING THE BASICS

Packages
& cIDE | [package

Last scanned: Feb 1 13:47

’ Rescan ” Create package

a proj packages:

Q Rescan packages

e Create a new package

CV Banner DummyNavServer ccTool hello

CWV Mes=sageTool TestPixmap fingerprint likSciBRes3
@ public packages:

CH3 IDE m3front Sgml

anim3D m3linker sha...

binIC m3m. . . sho...

bitvector m3objfile slisp

calculator m3quake smalldb

cm3 m3s. .. sSortedtableextras

[11 = PR m3t. Sta...

crvbt m3zume stubgen

codeview mentor Syn...

cube metasyn table-list

db mg tapi

debug mgkit tcl

deepcopy mklib tc

digraph moex tempfiles

dirfp net udp

embutils obl ui

events odbe uni

fisheve opengl vbtkit

fix nl parseparams wvideovbt

for... patternmatching visualoblig

http pkl-fonts vocgi

Jun... rdwr voquery

Jwideo realgeomecry vorun

lib... rehearsecode web.

listfuncs replayheap windowsResources

m3b. .. serial Zeus

m3c. .. set

Find 4—@ Find a particular entry

G Private packages

Q Puplic packages

J

Figure 10. Packages Page: Listing of All Packages in CM3-IDE

Each (highlighted) package name represents a link to the summary page of a particular
package. Some of the functions available on this page are:

Q Rescan tells CM3-IDE to update its database from the files in your filesystem.

(B Create New Package takes you to the New Package dialog, where you can create a

new package.

G Your private packages are normally filed under “proj.”

LEARNING THE BASICS

(D] Public packages are normally filed under “pub1ic.”

(E The Find type-in field instructs CM3-IDE to only list entries that match a
particular regular expression, such as “M*”.

1.3.2 Creating New Packages

Navigating to the Create Package dialog. Near the top of the page, you should see
two buttons. (See Figure 11.) Click the right button, “Create package”. CM3-IDE will
take you to the Create Package dialog.

Packages

& cMaDE | M package

Last scanned: Feb 1 1347

[Rescan][Create package] G Create a new package

[P | proj packages:

CWV Banner DunmyNavServer cecTool hello
CWV MessageTool TestPixmap fingerprint likSciRes3

a public packages:

CHM3 IDE m3front Sgml
anim3D m3linker sha...
binIC m3m. . . sho...
bitwvector m3obhjfile slisp
calculator miquake =smalldb

Figure 11. Top of the Packages Page

17

LEARNING THE BASICS

The Create Package dialog. Before CM3-IDE can create a package, you need to
specify some information about the package to be created (Figure 12).

o Click here to return to start page
Create package

CcM3mE | Dform | [newpkg

(Specify the new package's root, name and kind)

Package root to use

® proj Instruct CM3-IDE which package root to use
Name of the package
< G Name the package
What kind of a package
® nPTU%TE*ﬂl Assign package type
© MLibrary

[Create New Package]

Figure 12. Package Creation Dialog
Q To return to CM3-IDE’s start page, follow the @ CM3-IDE link.

(B Package roots are used by CM3-IDE to organize your packages. Before CM3-IDE
can create any package, it needs to know what root that package will reside in. The
package root “proj —where your private packages reside—is a good place for

@ this example package. Choose proj. @ proj

m G Enter the name of your package here. Under “Name of the Package”, enter
“MyPackage”.

(D When you create a new package, you’re given the option of creating a library and
program. You are not locked into your decision here. Under “What Kind of

@ Package,” select I Program.

Click on the “Create new package” button at the bottom of the screen. CM3-IDE will
create your package and point your browser to the package summary for the new

package.

18

LEARNING THE BASICS

Package Summary. You have just created the package MyPackage, but it doesn’t
do anything yet. You will need to write some code.

Look for the @ Modules icon on the part of the page where the program elements are
summarized. You’ll see that there is only one module listed there, named
“MyPackage”. Click on it.

Module Summary. You may remember this page from our previous example. A
module summary contains the code and relevant information regarding a module in a
package. About half-way down the page you should see the module’s code:

MODULE MyPackage EXPORTS Main;
BEGIN
END MyPackage.

Every CM3-IDE program must have a single main module, so when you tell CM3-
IDE to create a program, CM3-IDE starts you off with an empty main module. Notice
that there is no IMPORT statement here, and there is nothing between the keywords
BEGIN and END. You will need to supply these.

Coding a Module. Near the top of this page, find the row of action buttons. Click on

[Editsource | CM3-IDE should start your text editor and open the file
MyPackage.m3.

@ Module: Hello

& c3E | Dproj | Mhello | Bsre | @ Hello

Path: c:\MySandboxi\helloisreiHello.m3 Last modified: Jan 26 04:06
Last built: Feb 1 13:51

[Ship] [Clean] [Editm3makefile] [Editsource]4— Click here to start your text editor

Options:

Figure 13. The top of the Module Summary Page

In your text editor, add the following line between the line containing the word
MODULE and the line containing the word BEGIN:

VAR name: TEXT; (* a string variable called “name” *)

This line uses the keyword VAR to declare a variable called “name”, to be a string. The
line ends with a semi-colon. Comments in CM3-IDE begin with (*” and end with

4:7',-) b3

19

LEARNING THE BASICS

@ Add the following lines between the line containing “BEGIN” and the line containing
“END”:

10.Put(“Enter the name of your nemesis: ”);
name := IO.GetLine(); _
I0.Put(name & “ is a stupidhead.\n”);

The first line calls the procedure I0. PUt passing the string “Enter the name
of your nemesis:”.

The second line calls the procedure I0.GetL1ne and puts the string returned from
that procedure into the TEXT variable you declared above, name.

The third line calls IO . PUT again, passing it the string in the parentheses that follow.

1.3.3 Procedure Calls in CM3-IDE: What is “l0.Put?”
The expression I0. PuUt refers to a procedure PUt in an interface called IO.
I0.Getl1ne refers to the Get11ne procedure in the interface IO. (See Figure 14.)

name of the interface containing the procedure

procedure name

parameters for this call (if any) go between the parentheses
/\

I0.Put(“This is the stuff I want to print to standard output\n.”)

Figure 14. A Procedure Call Crossing Module Boundaries

The identifier to the left of the “.” is the name of the interface in which the procedure
is declared. The one to the right of the “.”” is the name of the procedure. Parameters for
this call go inside the parentheses that follows the procedure’s name.

Interfaces in CM3-IDE are used to bundle relevant procedures, types, and constants in
one syntactic unit. For example, the IO interface includes all the procedures you may
need for simple input/output.

1.3.4 The IO Interface

Some of the procedures in the TO interface will be used in the package you are
building. Before using a procedure, you may want to make sure you are calling the
correct procedure by reviewing the interface where it is defined. The next few steps
show how you can explore the TO interface from your current package.

@ Navigating to the 10 Interface. Lcave your text editor open and return to your web
browser. Your browser should still show the module summary for MyPackage.

20

LEARNING THE BASICS

@ Click on the @ CM3-IDE icon at the top of the page to return to the start screen.

@ On the start screen, find the € Interfaces icon and click on it. to navigate to a list of
all available interfaces. Find and click on the word “T0.” (Depending on your CM3-
IDE display settings, you may have to click on an “I. . .” entry first.) This should
bring you to the “I0” interface (Figure 15).

© Interface: 1O

@ cM3DE | Bpublic | Hlibm3 | Bere | Hew | @10

Path: c:\cm3\pke' libm3\ srehrw’I0.i3 Last modified: Jan 24 14:44
Exported by: I0.m3 Imported by: 65 units

The 10 interface provides textual input and output for simple programs. For more detailed control, use
the interfaces Rd, Wr, Stdio, FileRd, FileWr. Fnt, and Lex.

The input procedures take arguments of type Rd. T that specify which input stream to use. If this
argument is defaulted, standard input (Stdic.scdin) is used. Similarly, if an argument of type W=z . T to
an output procedure is defaulted, stdic.stdout is used.

INTERFACE I0;
IMPORT Rd, Wr;

PROCEDURE Put (txt: TEXT; wr: Wr.T := NIL);

Ouiput txt to vr and flush vr.

Figure 15. The top of the IO Interface

Look at the top of interface I0. Beneath the Quick Access Icons, you'll see
information about the path, last modified date, and import and export lists. You can
use the links under “Imported by’ to find out what units use this interface, or the links
under “Exported by’ to see where the procedures declared here are defined.

Further down the page is a list of elements declared in the TO interface (Figure 16).
The procedure PUt is at the top of the list, and GetL1ne is fifth from the top; these
are the procedures used in MyPackage. Notice that the procedure names here are
highlighted.

21

LEARNING THE BASICS

INTERFACE I0;

IMPORT Rd, Wr;

PROCEDURE Purt (txt: TEXT:; wr: Wr.T := NIL):
Output txt to vr and flush vz.
PROCEDURE PutChar(ch: CHAR; wr: Wr.T := NIL):
Quiput ch to vr and flush wr.
PROCEDURE PutWideChar (ch: WIDECHAR; wr: Wr.T := NIL);
Output ch fo wr and flush vr.
PROCEDURE Putlnt (n: INTEGER:; wr: Wr.T := NIL):
Qutput Fmt . Int (n) to vr and flush vz
PROCEDURE PutReal (r: EEAL; wr: Wr.T := NIL):

Quiput Fmt .Real (r) to vr and flush vr.

PROCEDURE ECF (rd: Rd.T := NIL): BOCLEAN;

Retwrn TRUE iff zd is at end-af-file.

EXCEFTION Error;

The exception Exrror is raised whenever a Get procedure encounters syntactically invalid input,
inchuding unexpected end-of-file.

PROCEDUEE GetLine (rd: Rd.T := NIL): TEXT RAISES {Error}:

Read a line of text from rd and retwn it.

A line of text is either zero or more characters terminated by a line brealk, or one or more characters
terminated by an end-of-file. In the former case, GetLine consumes the line break but does not
inchude it in the returned value. A line break is either {'tt "n"} or {'tt "r'n"}.

Figure 16. Some Procedures Defined in the IO Interface

@ Click on the name of the procedure GetLine. Your browser will display the module
summary page of the IO module, which contains the code for this procedure.

Now, you know what I0.GetLine and I0.Put do.

22

LEARNING THE BASICS

Wrapping up the code. Return to your text editor. Insert the cursor immediately
below the line:

MODULE MyPackage EXPORTS Main;

ED

IMPORT IO;
The file in your text editor should now read as follows:

MODULE MyPackage EXPORTS Main;
IMPORT IO;
VAR name: TEXT; (* string variable called “name” *)
BEGIN
I0.Put(“Enter the name of your nemesis: ”);
name := IO.GetLine();
I0.Put(name & “ is a stupidhead.\n”);
END MyPackage.

What did you just do? You have imported the TO interface in your module, so that you
can access the two procedures declared inside it: IO . Put and I0.GetLine.

Modules and Interfaces: Importing and Exporting

You can control how modules and interfaces interact through IMPORT
and EXPORT statements.

A modnle defines a collection of program elements. These elements could
be constants, types, variables, or procedures. The module exporss an
interface to make some of its component elements available to dzents.

An interface is a list of the elements to be made available. Any file that
IMPORTs an interface is said to be a dient of the interface. The
MyPackage module used in this example is a client of the interface IO.

You can only access the procedures contained in a module by importing an interface
that was exported by that module. To use I0.Put and I0.GetL1ne, you needed
to import the TO interface. You did that by inserting “IMPORT IO right after the
module declaration.

Back to the Package. Now that you have reviewed the IO interface, it is time to
build your program.

@ Save your file, MyPackage .m3, and quit your text editor.

23

A CM3-IDE
makefile is named
m3makefile.

LEARNING THE BASICS

In your web browser, find “Build Package: MyPackage” in your browser’s history
(usually listed under the “Go” menu.) Or just hit the “Back” button of your browser
enough times to get back to the MyPackage summary.

In the next few steps, we will quickly review the makefile for this project. Then we will
build and run the program.

1.3.5 CM3-IDE Makefiles (m3makefile)

A CM3-IDE makefile is named m3makefile. A makefile is a text file containing
instructions that tell CM3-1DE’s builder how to build a program or a library. An
instruction is followed by one or more arguments in parentheses, similar to a
procedure call in a programming language. Indeed, to build your package, CM3-IDE
interprets your m3makefile as a little program.

Each instruction may specify a library, interface, or module to be included as part of
the build. Comments in makefiles start with % and continue to the end of line.

For simple programs you can omit the makefile, and the builder will automatically find
your modules and interfaces and their dependencies. However, creating makefiles for
CM3-IDE packages is a good idea in general, especially since they are easy to create.

The button on the far right of the row of buttons near the top of the “a package
summary”’ page is labeled “Edit m3makefile”:

Click on [_Edtm3makefle | N3 IDE will start your text editor, and open the file
“m3makefiTle”. Here is what you should see in your text editor:

% Makefile for MyPackage
import(“1ibm3”)
implementation(“MyPackage”)
program(“MyPackage”)

When you create a new package, CM3-IDE automatically creates a basic makefile for
you. As your package grows and becomes more complex, it is up to you to make sure
your makefile is up-to-date, though doing so is straightforward.

Let’s take a look at the makefile for this package, line by line.
The first line:
% Makefile for My Package
is a comment. The rest of the line after % is ignored by CM3-IDE.
The second line:

import(“1ibm3”)

24

LEARNING THE BASICS

is a makefile import command. The TIMPOrt command tells the compiler that the program
uses routines in the standard library, 11bm3. That’s the library that contains the IO
interface and module.

Libraries

In CM3-IDE, a /ibrary is a package whose code may be reused as part of
another library or an executable program. To use functionality of a
library, you must import it in your makefile.

To learn more about libraries see Chapter 3, Building And Sharing
Packages on page 47. To see a list of available libraries in CM3-IDE,

click the ™ [ibraries icon on the start screen.

Most makefiles include one or two import commands. If you use routines from other
libraries, you must include other import commands that tell the compiler which
libraries to include.

The third line:
implementation(“MyPackage”)

marks the program MyPackage .m3 as a module implementation for your package.
In your makefile, there must be one imp1ementation command for each “.m3”
file in your program. In this case, there was only one such file: MyPackage .m3.

Finally, the last line:
program(“stupidhead”)

tells the compiler to name the resulting executable file “stupidhead”. On
Windows, executables have an “@Xe@” extension.

Quit your text editor, and, if you’ve modified your makefile, make sure you don’t save
the changes. The makefile is fine as it is.

Click the button in the package summary for MyPackage. CM3-IDE will
build your program, and point you to the Build Results page for MyPackage which
will show any compiler error messages (in this case, you should not have gotten any)
and warnings (which you may ignore for the moment.)

Your program is now ready to run. This program, however, is a bit more interactive
than the one in this chapter’s first tutorial. You will need to run this one from a

25

LEARNING THE BASICS

command-line prompt. Once CM3-IDE has created an executable, you can run it
directly from the operating system. This is what we’ll do with this program.

Click the B MyPackage icon in the Quick Access Icons area, or on the Back button of
your browser to return to the package summary for MyPackage. You should see a

link to the stupidhead program next to the B Programs category. If you don’t,
click the Reload button of your web browser.

Click on the name of your new program to go to its program summary. At the top of
that page, immediately beneath the Quick Access icons, you can read the location of
the new program in your file system, right after “Path:”.

@ Program: MyPackage

& cM3IDE | [sandbox | B MyPackage | EINT386 | Bl MyPackage

Path: c:\MySandbox\MyPackage \NT386 \MyPackage.exe Last modified: Mar 5 14:07

[Ship| [Clean | [Editm3makefle |

Options:
Command: C\MySandboxiMyPackage\NT386\MyPackage.exe
Directory: C\MySandboxi\MyPackage\NT386

@' Moduoles: MyFPackage

Categories: Modules

Find

Figure 17. The top of a Program Summary page

At the command-line, change your working directory to the one containing the
executable. Type “MyPackage” at the shell prompt to run the program. Here is what
you should see in your system window:

Enter the name of your nemesis:

Do what it says; type the name of your nemesis here. If you enter “My b0SS” the
program will write:

My boss 1is a stupidhead.

at the shell window and exit. What an intelligent and well-conceived program!

26

CM3-IDE is case-
sensitive.

All keywords in
CM3-IDE are
capitalized.

LEARNING THE BASICS

14 Summary

In CM3-IDE, projects ate divided into packages. A project can consist of one more
packages. A CM3-IDE package comprises one or more modules and interfaces, along
with a makefile that tells the compiler how to put everything together. Unlike their
ancestors, CM3-IDE makefiles don’t need dependency definitions.

Modules and interfaces are the building blocks of a CM3-IDE package. A module is a
named collection of declarations, including constants, types, variables, and procedures.
An interface can be thought of as a window into a module’s functionality. To use
another module, you #zport an interface that was exported by that module.

Both interfaces and modules may use #port statements. By looking at the import
statements for a module, you can easily discover its dependencies on other interfaces.

The basic form of a module and an interface is:

MODULE module-name; INTERFACE interface-name;

IMPORT intf-1, intf-2,..; IMPORT intf-1, intf-2,..;

Declarations;

BEGIN Declarations;

Statements;

END module-name. END interface-name.
Statements terminate with a semicolon (““;). Comments begin with “(*” and end
with “¥*)”.

CM3-IDE makefiles, usually named m3makef1i Te, define the steps for building a
package. Here is a simple makefile:

% Makefile for a simple package
import(“1ibm3”)

implementation(“module_name”)
program(“program_name”) o library(“lib_name”)

Comments in makefiles start with % and continue to the end of the line. The call
“program’ at the end of a makefile marks that this package should be built as an
executable program; the call “11brary” means this package should be built as a
reusable library.

27

LEARNING THE BASICS

This page left blank
intentionally.

28

THE CM3-IDE ENVIRONMENT CI I

Read this chapter
for an overview of
CM3-IDFE’s
common user
interface
elements.

You also can learn
about CM3-IDFE’s
web namespace
here.

2. The CM3-IDE
Environment

This chapter describes CM3-IDE’s common screens, tools, and icons. You can use
this chapter as a reference for finding information about elements of CM3-1DE’s
development environment.

If you haven’t already, you may consider reviewing the previous chapter to learn the
basics of the CM3-IDE environment.

There are four sections in this chapter:

Common Tools, Icons, and Visual Elements on page 29 describes the common tools
and icons within the CM3-IDE environment.

CM3-IDE Start Screen on page 32 describes CM3-IDE’s top-level screen in detail.

Summary Screens on page 36 describes screens that are most useful for your
development tasks with CM3-IDE. Each screen accompanies a summary of the
information and links available from that page.

CM3-IDE’s Web Namespace on page 42 provides more in-depth information about
CM3-IDE’s web namespace.

2.1 Common Tools, Icons, and Visual Elements

CM3-IDE’s design defines a consistent environment for navigating, building, and
sharing your programs. Common icons, tool buttons, and visual elements reinforce the
relationship between different elements, enhancing your ability to find, filter, or act
upon information presented within the CM3-IDE development environment.

Here we describe three important elements common to most CM3-IDE pages: Quick
Access Icons, Action buttons, and the Find Type-in.

29

THE CM3-IDE ENVIRONMENT

2.1.1 Quick Access Icons

& cMAIDE | Mproj | Mhello | Bsre | @ Hello

From the CM3-IDE start screen, click on any icon. Wherever you wind up, you will
find a row of small icons that cross the top of the page, just under the title for the page.

This row of icons is called the quick access icons. The left-most icon 64 (CM3-IDE)
always returns you to the start screen. They can bring you to the top of a package, the
current subdirectory, or to program, module, or interface summaries of your package
components. They can speed your navigation by allowing you to quickly move from
one part of the CM3-IDE environment to another.

Together, these icons present an active, visual placeholder for your location in the
CM3-IDE web namespace. By using them, you can eliminate most of the Back and
Forward activities common to web navigation of complex namespaces.

@ Module: Hello

G

& cMAIDE | Dproj | M hello | @ Hello
A

l é Go to the current module summary

Go to the source directory

>

Go to the package summary

9 Go to the current package root

o Go to CM3-IDE’s start screen

Figure 18. Quick Access Icons for /proj/hello/src/Hello.m3

Figure 18 displays a sample row of quick access icons. The icons are arranged
according to their level in CM3-IDE’s web namespace hierarchy:

Q the left-most icon (the one with the CM3-IDE logo @) will take you all the way
back to the start screen

(B takes you to the package root containing the current package

G takes you to the package summary for the current package

30

THE CM3-IDE ENVIRONMENT

(D] takes you to the sources for your current package. CM3-IDE uses the “Src”
subdirectory of a package to keep the sources for your program.

(E the last icon in the path points to the current page, which happens to be a module
summary in this example. You can click on the last icon to reload the current page.

The quick access icons work well in conjunction with the history mechanism of your
web browser. If you navigate using the quick access icons, your web browser will not
lose the starting point in your navigation. Quick access icons allow you to move to a
page you’ve already visited without causing your browser to lose track of your current
page in its history.

2.1.2 Action Buttons
|Ship| [Clean| | Editm3makefle | |[Build |

In many ways, working with CM3-IDE is just browsing a web server—much of CM3-
IDE’s functionality allows fluid navigation within your programming workspace, for
example, to jump from a package summary page to the summary page for a library it
builds. Each icon or link on a CM3-IDE screen is usually a reference to another
element within CM3-IDE.

However, CM3-IDE is more than just a fancy web server. Many CM3-IDE screens
allow the invocation of actions. For example, a module summary screen includes an
action to invoke an editor on the code for the module. Such actions are represented by
action buttons. The set of available actions varies from page to page, and so does the set
of action buttons. Here we describe some of the common action buttons:

Forces CM3-IDE to scan the filesystem to update its state for the current
page.

Builds the currently selected package and shows you the result of the build. Use
y p g y

the text field to the right of the Build button to enter options for the builder. For more

information on building, see Building and Sharing Packages on page 47.

Erases derived files from the current package. Clean will not erase source
programs. For more information on building, see Building and Sharing Packages on
page 47.

Releases the current package as a public package, making its contents available
for importing, browsing, or executing by other developers in your team. For more on
shipping, sec Building and Sharing Packages on page 47.

[Editm3makefle | [pgycrs your text editor to open the makefile used to build the

cutrent program.

31

THE CM3-IDE ENVIRONMENT

Instructs your text editor to open the source file corresponding to the
current page.

Command: |C:\MySandboxihello\NT386\hello.exe

Directory: |C\MySandbox\hello\NT386

Instructs CM3-IDE to run the specified command in the specified directory. CM3-
IDE normally fills in the command and directory fields, but you may change them.

2.1.3 The Find Type-in

Find

Wherever CM3-IDE displays a dynamic list of choices (for example, the list of all the
packages in your system, or the list of all the modules in a particular package), it also
presents the Find fjpe-in. It allows you to filter the set of available entries in the current
screen to a smaller set, based on the information specified in its type-in field.

To use the find type-in, simply type in the text you are searching for and press return.

The find type-in can accelerate your navigation within CM3-IDE in several ways:

® instead of visually searching a screen for a particular element, you may type the
element name, for example “Main.m3”, in the find type-in.

® instead of searching within a multi-page list of entries by navigating, you can
type the name of the item of interest. For example, in the find type-in for the
list of all interfaces in your system, you may type “Fingerprint” to view
the interface Fingerprint.

® instead of using CM3-IDE’s navigation via links, you may directly jump via a
(full or partial) URL to any element. For example, while visiting package
MyPackage, you may type “/interface/I0” in the find type-in to visit
the interface TO. (See CM3-IDE’s Web Namespace on page 42 for more
information on CM3-IDE URLs.)

2.2 CM3-IDE Start Screen

The CM3-IDE environment consists of many screens (called pages in web-speak.) The
next two sections describe some of the more common CM3-IDE screens.

The start screen is the screen you see when you first start CM3-IDE. From any page in

CM3-IDE, you can return to this screen by clicking on the CM3-IDE icon & located
at the top-left corner of your page.

32

THE CM3-IDE ENVIRONMENT

CM3-IDE: Critical Mass Modula-2 Integrated Development Environment g

SYSTEM ﬂ Packages Configuration
Libraries ﬂ Programs
LANGUAGE 0 Interfaces @ Modules
e Generic Interfaces @ Generic Modules
o Tvpes
HELF B Getting Started B} User Guide
Tutorial E" Reference
Examples D Technical Notes

Copyright (C) 1904 Criticsl Mazss. Inc. All Rights Ressrvad. Saa licenss fr 2 fill description.

Figure 19. CM3-IDE’s Start Screen

On the start screen you'll see three groups of icons. The groups are labeled System,
Language, and Help. Each group includes a few links.

e System icons allow you to browse, modify, and customize the CM3-IDE
system. You can create a package by following the Bl Packages link.

® Language icons provide access to program elements in your system. You can
find out about all the available interfaces by following the @ Incerfaces link.

® Help icons refer you to on-line help and information sources. You can find

many CM3-IDE examples by following the * Examples link.

33

THE CM3-IDE ENVIRONMENT

Here we describe each of the icons on the start screen.

221 Start Screen: System

EZ Packages. Click on this icon to go to the Packages page, where you will see the list
of packages in your system organized under package roots (such as public, the public
package root, and proj, your private package root.) Click on a package name on the
Packages page to visit a summary page for that package.

(For more information about packages, and their organization, see Building and
Sharing Packages on page 47.)

Configuration. Click here to go to CM3-IDE’s Configuration page.

(For information about changing your configuration, see Customizing CM3-1DE on

page 65.)

i Libraries. Click here to see a list of all libraries in your system. Clicking on the
name within this list will take you to that library’s summary.

(For more about libraries, sec Building and Sharing Packages on page 47.)

@ Programs. Click on the Programs to see a list of all programs in your system.
Clicking on the name within this list will take you to that program’s summary, where
you can execute the program.

(For more information about programs, sce Learning the Basics on page 5.)

2.2.2 Start Screen: Language

O Interfaces, @ Generic Interfaces. Click on the Interfaces icon to view the list of
all available interfaces where you may click on the name of any interface to view its
summary page. Generics Interfaces works similarly.

o Modules, @ Generic Modules. Click on the Modules icon to view the list of
available modules where you may click on the name of any module to view its
summary page. Generics Modules works similarly.

© Types. Click the Types icon to view the list of types available in all the programs
on your system. Selecting a type from the list of all types causes CM3-IDE to display
information about that type.

2.2.3 Start Screen: Help

[Getting Started. If you haven’t read the CM3-IDE User Guude, click here for a
quick starting point. The page includes an annotated start page, along with tips about
many of the common CM3-IDE elements.

34

THE CM3-IDE ENVIRONMENT

Novice users may use this page as their start page. See Customizing CM3-IDE on page
65 to learn how to change your start page.

Impatient users can follow this link to find basic information so that they can start
using CM3-IDE immediately.

Advanced users may use its HTML source to learn more about customizing CM3-
IDE. (See also CM3-IDE’s Web Namespace on page 42.)

> user Guide. Click here to get to the on-line user guide. The CM3-IDE User Guide
is available in PDF format. Your CM3-IDE distribution contains a copy of Adobe
Acrobat PDF Reader for supported platforms.

Tutorial. Following the tutorial link, you will see the list of available tutorials. Two
tutorials are available currently: one on Modula-3 and another on Trestle, the portable
user interface toolkit shipped with your CM3-IDE distribution.

[® Reference. Click here to view an on-line, hypertext version of the Modula-3
language definition. This is the on-line version of the printed language definition you
received as part of the CM3-IDE package.

Examples. Click here to see a list of example packages for CM3-IDE. When you
click on the name of any example package in the list, CM3-IDE creates a private
package for you, allowing you to build, modify, and experiment with the example
program without corrupting its sources.

You can use the example packages to study many of the programming concepts of
CM3-IDE. Sources within examples contain on-line documentation that will guide you
through learning various CM3-IDE concepts.

> Technical Notes. Click here to see a list of technical reports and information
sources about the Modula-3 programming language. View them on-line or print them
out as PostScript or Acrobat PDF documents.

2.2.4 Customizing the CM3-IDE Start Screen

You can change your CM3-IDE start screen at any time. Novices may like to use
annotated start screens that include helpful comments; advanced users may want to
tailor the start screen for more specific needs.

See Customizing CM3-IDE on page 65 for more information about changing your start
screen.

35

THE CM3-IDE ENVIRONMENT

2.3 Summary Screens

For each programming element in CM3-IDE, there is a corresponding summary
screen. The rest of this section describes the common summary screens. Most of these
screens are described as part of the hands-on examples in the previous section.

Consider working through the examples in Learning the Basics on page 5 to learn
mote about CM3-IDE.

231 Package Summary
A package summary describes a package and its contents. From a package summary,
you can access both sources and derived files in a package.

@ Package: fingerprint
3 CM3IDE | [proj | I fingerprint

Directur}': C:“\MySandbox\fingerprint

Quick Comparison of Large Data: Fingerprints

You can use the Fingerprint interface to compare large amounts of data. Fingerprints
can also be used for efficient comparison of complex object graphs.

M3Compare takes two file names from the command line and reports whether the files
are the same or different. The program does not crash due to exceptions.

[Ship| [Clean || Editm3makefile

Options: |

H Subdirectories: =rc

@ Modules: M3Compare

ﬂl Quake sources: m3makefile

ﬂl Misc sources: index.html

Categories: Misc sources Modules Quake scources Subdirectories

Find |

Figure 20. A Package Summary

36

THE CM3-IDE ENVIRONMENT

Click on any package component (such as an interface or a module) to view it. When
browsing package components, you can always return to this page by clicking on the
package icon (marked by package-name) as part of the quick access icons.

From top to bottom, a package summary contains:
® quick access icons
e filesystem directory for the current package

® textual description of the current package. This information is extracted from
an 1ndex. html or README source file in the current package. An
index.htm] file for a package is interpreted within the web namespace for
the package. Hence, it can include hypertext links to other package elements,
or other names within CM3-IDE. See CM3-IDE’s Web Namespace on page
42 for more information on CM3-IDE URLs.

® action buttons for this package, to build, ship, or clean the package

® asummary of the sources and derived files that comprise the current package.
Clicking on the name of an element will point your browser to the files for that
element.

® find type-in. Type in a regular expression to search within the names available
in this package. For example, typing in “M*”” will show you all the elements
that start with “m”.

As is the case with any web page, the information available as part of a package
summary may become stale. To bring a package summary up-to-date with its directory
contents, reload the package summary page, or use the Rescan button if it is visible.
(The Rescan button is only enabled if you have specifically configured CM3-1IDE to
display it. See Customizing CM3-IDE on page 65 for more information.)

2.3.2 Library Summary

A library summary desctibes a library—a group of sources and compiled files in a
package that can be used in construction of other packages. The summary page also
shows the sources and derived files that comprise the library, where the library resides,
and when it was last modified.

37

THE CM3-IDE ENVIRONMENT

[Library: netobj-interface

& cM3IDE | D proj | I netobj-interface | H NT386 | M netobj-interface

Path: c:\MySandbox\netobj-interface \NT386\netobj—interface.lik
Last modified: Feb 1 14:02 Last built: Feb 1 14:02

|Ship | | Clean || Edit m3makefile

Options:

0 Interfaces: Bank Bank Account vl Bank T vl
@ Modules: Bank Account vl Bank T vl
Categories: Interfaces Modules

Find |

Figure 21. A Library Summary

Public libraries (filed under /pub11i € in CM3-IDE’s namespace) may be imported by
other packages in CM3-IDE. For more information about using and sharing libraries,
see Building and Sharing Packages on page 47.

From top to bottom, a library summary consists of the following elements:
® quick access icons

® path to the library; last modified date; and last build date. If the last build was
during the current session, the last built date is a link to the result of that build.

® action buttons for the library
® summary of the sources and derived files that comprise the current library.
Clicking on the name of a library element listed here will point your browser to

that element’s summary page.

® the find type-in.

38

THE CM3-IDE ENVIRONMENT

2.3.3 Program Summary

A program summary desctibes an executable program built using the CM3-IDE system.
The summary page for a program shows the sources and derived files that comprise
the program, where the program resides, and when it was last modified.

@ Program: hello
& cM3IDE | DMproj | Mhelto | BNT386 | B hello

Path: c: " MySandbox\hello \NT386 hello.exe Last modified: Feb 1 13:15

|Ship| [Clean | | Editm3makefile |

Options: |
Command: |C:\MySandboxihello\NT386\hello.exe
Directory: E:C:_‘.L_-M"_-,-'Sandbux‘.;_.r}ellﬁ‘;_fgl-'l'.?réﬁ

@ Modules: Hello

Categories: Modules

Find |

Figure 22. Top Portion of a Program Summary

Public programs (filed under /pub1i € in CM3-IDE’s namespace) are visible to other
developers in your group. For more information about using and sharing programs, see
see Building and Sharing Packages on page 47.

From top to bottom, a program summary consists of the following elements:
® quick access icons

® path to the program; last modified date; and last build date. If the last build was
during the current session, the last built date is a link to the result of that build.

® action buttons for this page, including the Run button
® summary of the sources and derived files that comprise the current program.

Clicking on the name of a program element listed here will point your browser
to that element’s summary page.

39

THE CM3-IDE ENVIRONMENT

2.3.4 Interface Summary
An interface summary describes an interface. See Learning the Basics on page 5 if you
would like to learn about interfaces.

@ Interface: Fmt
W cMAIDE | Bpublic | Blibm3 | Bsre | B imtlex | @ Fme

Path: c: ' cm3'pkot libm3 sre’ foclex \Fnc.i3 Last modified: Jan 24 14:44
Exported by: Fmtm3 Imported by: 357 units

The Fmt interface provides procedures for formatting numbers and other data as text.
\index {writing formatted data} ‘index {formatted datalwriting }

INTERFACE Fmt:
IMPORT Word, Eeal AS R, LongReal AS LE, Extended AS ER:

PROCEDURE Bool (b: BOOLELHN) : TEXT:;

Format b as {\tt "TRUE"} or {tt "FALSE"].

FROCEDUEE Char(c: CHAR): TEXT:

Return a text containing the character c.

Figure 23. An Interface Summary

From top to bottom, an interface summary consists of the following elements:
® quick access icons
® file information for this interface (physical path, last modified)
® export and import dependencies (if the interface is part of a compiled

package). Click on “imported by” to see the sources that import this interface.
Click on “exported by’ to see the sources that export this interface.

40

THE CM3-IDE ENVIRONMENT

® action buttons for this interface, such as Build, Ship, Clean, or Edit Source.
These actions are only available when you are allowed to build the package that
contains the cutrent interface.

® the code for the interface.

You may click on any of the links within the body of an interface to reach the
corresponding program element. For example, you click on a procedure name to view
the procedure body within the corresponding module. Some cross-reference links may
not be available until the enclosing package is built.

23.5 Module Summary
A module summary describes an module. See Learning the Basics on page 5 if you
would like to learn about modules.

@ Module: NetObjServer
& cM3IDE | Bproj | B netobj-server | Hsre | m:\?etﬂbiﬂen'er

Path: c: " MySandboxnetokij-servertsrc\letlhiServer . m3
Last modified: Aug 14 18:53 Last built: Feb 1 14:.03

[Ship] [Clean ” Edit m3makefile] [Edit source

Options:

MODULE HetCbjSerwver EXPORTS Main:
IMPORT EBEank, NetCki, Thread:
IMPORT IC, Fmc:

Create an implementation object for the Sank. T network object.

TYPE
BankImpl = Bank.T OBJECT
accounts : ARBAY Bank.hcctlMNum OF LZccount;
OVERREIDES
findiccount := Findiccount:;
END ;

Figure 24. Portions of a Module Summary

From top to bottom, a module summary consists of the following elements:

® quick access icons

a1

THE CM3-IDE ENVIRONMENT

¢ file information for this module (physical path, last modified)

® action buttons for this module, such as Build, Ship, Clean, or Edit Source.
These actions are only available when you are allowed to build the package that
contains the current interface.

® code for the module.

You may click on any of the links within the module body to reach the corresponding
program element. For example, you click on a procedure name to view its declaration
in the corresponding interface. Some cross-reference links may not be available until a
package is built.

Following the links in the MODULE or EXPORTS clauses of the code, you will visit the
interfaces exported by this module. Following the links in the IMPORT clause for a
module will take you to the interfaces imported by this module.

Most modules include many links to other elements (inside or outside the module)
referred to by the code in the module. CM3-IDE marks up your code dynamically to
help you navigate your programs.

2.4 CM3-IDE’s Web Namespace

This section describes CM3-IDE’s web namespace. It is intended as a reference for
advanced users.

The heart of CM3-IDE’s user interface is its custom web server; CM3-IDE is driven
by HTTP requests from your browser. To do this, CM3-IDE associates every one of
its elements with a URL or a path.

To see the URL to the current CM3-IDE element, turn on the “Location” or the
“URL” display on your browser. CM3-IDE URL:s are not only useful for internal use
by CM3-IDE itself, they can be used by you in the same way you use ordinary web
URLs. You can send URLs referring to a CM3-IDE package, or interface, or even a
procedure to a co-worker. Or you may save bookmarks to useful URLs within CM3-
IDE. Moreover, you may refer to various elements within CM3-IDE’s namespace
from your own sources and documentation.

For example, you may include in the index . htm1 file for a package, a link to a
procedure in your package, with an implementation note for the procedure that points
to a particular section of the language reference.

The possibilities for extending CM3-IDE based on this concept are endless. The rest
of this section aims at explaining the basic syntax and semantics for CM3-IDE URLs.

42

THE CM3-IDE ENVIRONMENT

2.4.1 CM3-IDE URLs
A CM3-IDE URL follows the format:

http://host: port/path

where Jost is the host name where you are running CM3-IDE (default: 1ocalhost
which is the host running your browser), por? is the port that the CM3-IDE server uses
(default: 3800), and path is the location of the element within the CM3-IDE
namespace. A typical CM3-IDE path may be:

http://localhost:3800/interface/I0

By convention, we omit the protocol, host, and port information for a CM3-IDE
URL, so the above example will be described as:

/interface/I0

If an expression matches multiple elements within CM3-IDE’s namespace, CM3-IDE
will display a list of matches and will allow you to choose one. If there is only one
match for your query, CM3-IDE will automatically display its contents. (Note that even
a fully-qualified name, such as /modu’le/Ma1in, may result in multiple matches.)

A URL also may contain a trailing action, specified via brackets “[” and “]”. For
example, /interface/10/[edit] opens your text editor with the file
containing the IO interface, or /proj/hello/[build] builds the package hello.

24.2 Example CM3-IDE URLs
Here we briefly include some examples of URLs for CM3-IDE.

/proj your private packages

/public all public packages
/interface/IO interface 10

/module/M* all modules that start with “M”
/intf/*/Get* all interface contents starting with “Get”
/10g the last 500 lines of the CM3-IDE log
/help on-line help

/reference language reference

/ the start page
/proj/hello[build] build my private package hello

/module/Hello.m3/[edit] edit Hello.m3 module

43

THE CM3-IDE ENVIRONMENT

2.4.3 Regular Expressions in CM3-IDE URLs

CM3-IDE’s namespace lookup includes support for regular expressions. That is, in
CMB3-IDE, paths that express a regular expression (with the correct syntax) are valid
URLs. This feature is useful in browsing the large amounts of information available in
CM3-IDE.

In particular, you may use the regular expression language in the find type-in. For
example, at any point of time, you can type in “/interface/Rd*” in a find type-in
to search all interfaces whose name starts with “Rd”, or

“/interface/(Rd|Wr) /Get*” to find all declarations in Rd and Wr which
start with Get.

Regular Expressions Syntax. Here is a list of meta-characters that you may use in

CM3-IDE URLs.

any string of zero or more characters
@ any single character
<exprl>|<expr2> strings matching <exprl> or <expt2>
<exprl>&<expr2> strings matching <exprl> and <expr2>
(expr) strings matching <expr>

(and has higher precedence than or)
* the single character ** (asterisk)
\@ the single character @’ (at sign)
\ | the single character ‘|’ (vertical bar)
\& the single character ‘&’ (ampersand)
\ (the single character ‘(* (left parenthesis)
\) the single character)’ (right parenthesis)
\\ the single character “\” (back slash)

To learn more about CM3-IDE URLs, examine the sources of fixed CM3-IDE
screens, such as /help/getting-started.html, or
/example/*/src/index.html or even the dynamically generated CM3-IDE

pages.

44

THE CM3-IDE ENVIRONMENT

2.5 Summary

This chapter describes the common user interface elements in CM3-IDE.

Quick Access Icons. To quickly navigate within the CM3-IDE screens, use the quick
access icons. They are displayed on top of every screen. (See page 30.)

Action Buttons. Each CM3-IDE screen supports a number of actions, for example, a
module may support an edit action, and a package may support a build action.
Available actions for each CM3-IDE element are presented as action buttons in the
summary page for that element. (See page 31.)

The Find Type-in. You may search for a particular element within the currently
displayed list, or specify a path to a new place in the CM3-IDE namespace in the find
type-in box. (See page 32.)

CM3-IDE Start Screen. The start screen is displayed when CM3-IDE starts up. It
provides links to directories of elements in the CM3-IDE environment, such as
interfaces, modules, packages, libraries, programs, and types. You may also customize
CM3-IDE to use a different start screen. (See page 32.)

Summary Screens. Fach programming element, such as a package or an interface,
has a corresponding summary screen within CM3-IDE. Each summary displays a
particular element, links to relevant information, and action buttons for the relevant
actions. (See page 30.)

CM3-IDE’s Web Namespace. The heart of CM3-IDE’s user interface is a custom
HTTP sever. CM3-IDE screens are normal web pages; you can send references to
them in e-mail to your co-workers, or save a bookmark for them in your browser.
CM3-IDE’s URLs may contain regular expressions. For example /interface/F*
displays a list of all interfaces that start with the letter “F”. Actions for an element are
enclosed in square brackets (““[“ and “]”). You can invoke actions by using URLs
also, for example, /module/Hello[edit] edits He110.m3 the file for the
He'l 10 module. (See page 42.)

45

THE CM3-IDE ENVIRONMENT

This page left blank
intentionally.

46

BUILDING AND SHARING PACKAGES CI I

Read this chapter
if you know the
basics of CM3-IDE
and would like to
learn how you can
build packages
and share them
with others in your
team.

3. Building and Sharing
Packages

This chapter covers the basics of building and sharing packages in CM3-IDE. It also
describes how CM3-IDE facilitates the building of large, multi-developer projects.

Each section of this chapter explores of a particular aspect of building and sharing
packages with CM3-IDE.

Building Packages on page 48 describes how to build a package by invoking CM3-
IDE’s builder.

Directory Structure of a Package on page 49 illustrates the directory structure of a
basic CM3-IDE package.

CM3-IDE Makefiles on page 50 defines the basic syntax for CM3-IDE makefiles.

Managing Multiple Packages on page 53 shows how to divide your projects into
multiple packages.

Shipping Packages on page 54 describes how to ship a package to make it available
for importing.

Sharing Packages on page 57 explains how to share packages in a multi-developer
team with CM3-IDE.

Builder Options on page 62 lists the command-line options available for CM3-IDE’s
builder, cm3.

47

BUILDING AND SHARING PACKAGES

3.1 Building Packages

Along with navigational links, many of CM3-IDE’s screens include associated actions.
For example, a package summary page may allow a “build” action to bring the package
up-to-date, or a module summary may allow an “edit” action to edit the source file for

that module.

Most CM3-IDE pages include buttons for valid actions. For example, the Build
button denotes the “build” action on package pages.

Starting from the CM3-IDE start screen, click on the Il Packages icon. Following any

of the links under B “proj” packages—your private directory—will lead you to a
package summary page. If you have followed Learning the Basics on page 5 propetly,
you will see at least two links: hel 10 and MyPackage.

Summary pages of your packages or their components always include a Build button.

Options:

Figure 25. CM3-IDE’s Build Button

Clicking on the Build button will start CM3-IDE’s builder, and display the build results
on the screen. If there are any errors, CM3-IDE displays hypertext links to errors in
your source files.

CM3-IDE’s builder is called “cm3”, short for Critical Mass Modula-3. Indeed, cm3 is a
stand-alone compiler/builder for the Modula-3 language that is integrated within the
CM3-IDE environment.

At the start of a build, €m3 first looks for a makefile for the current package.
(Makefiles in CM3-IDE are named “m3makefi1e”) If it can’t find 2 makefile, it
attempts to build a program from the files in your package directory. While you don’t
always need to create a makefile, it is a good idea to create one for clarity.

CM3-IDE’s makefiles are discussed in more detail later in this chapter. You can find
more information about customizing the behavior of the Build button in Customizing
CMB3-IDE on page 65, or in the CM3 configuration file (Cm3 . cfg) in your CM3-IDE
installation.

48

Names of CM3-
IDE’s derived

directories:
ALPHA_OSF
HPPA
IRIX5
IBMR2
LINUXELF
NT386
SOLsun
SOLgnu
SPARC

BUILDING AND SHARING PACKAGES

CM3-IDFE’s Builder

CM3-IDE’s combined builder and compiler, CM3, has been designed
specifically for the creation of robust and distributed programs.

When you click CM3-IDE’s Build button, CM3-IDE invokes €M3 to
build your program. You may also invoke €CM3 from the command-line
by issuing the command CM3 from your command-line shell. See
Builder Options on page 62 for mote information on running M3 from
the command-line.

3.2 Directory Structure of a Package

Each package in CM3-IDE resides in a directory, with sources in a source subdirectory,
and generated files in a derived subdirectory.

The source directory for a package is named “SrC”; its contents are the same on all
platforms. In contrast, the name and contents of the derived directory for a package
varies from one platform to another.

The source subdirectory, “src”.

Source files and makefile reside here.

MyPackage

package directory
<derived>
e.g. NT386,
HPPA, ...

The derived subdirectory.
The builder generates system-dependent
object files in the “derived” directory.

Figure 26. CM3-IDE Package Directory Structure

49

BUILDING AND SHARING PACKAGES

The name of the derived directory denotes the platform where CM3-IDE built the
system, for example, NT386 is the platform name for Win32 running on Intel x86
processors, and HPPA is the name for HP/UX running on HP Precision Architecture
series.

The default names for derived directories are:

ALPHA_OSF Digital Unix (OSF/1) on DEC Alpha
HPPA HP/UX on HP Precision Architecture
IRIX5 SGI Irix on SGI/MIPS

IBMR2 AIX on IBM RS/6000

LINUXELF Linux/ELF on Intel x86

NT386 Win32 (Win95 or NT) on Intel x86
SOLsun Solaris 2 on SPARC (Sun C compiler)
SOLgnu Solaris 2 on SPARC (GNU C compiler)
SPARC SunOS 4 on SPARC

The separation of source and derived files is useful when building larger programs,
because it:

® isolates source files for backup, revision control, and searching

® cnables sharing the same source tree across operating systems and
architectures, without confusing object files from different platforms.

This arrangement, combined with CM3-IDE’s multi-platform libraries, simplifies the
management of large, multi-platform programs.

3.3 CM3-IDE makefiles

If you have worked through the tutorials in Learning the Basics on page 5, you've
already seen and used a basic makefile. This section describes makefiles in more detail.

A CM3-IDE makefile (named m3makefi1e) is a small script which tells how to
build a package. Most instructions in a makefile are calls to pre-defined functions of
CM3-IDE’s builder, such as “import”, or “program”. Together with the builder,
these predefined functions replace the need for a “make” utility. Function calls replace
declarations in the makefile, and the builder takes care of the dependencies between
modules.

50

BUILDING AND SHARING PACKAGES

Working with Makefiles

To view a makefile, navigate to the Package Summary page, and click
the makefile name under “Quake sources”.

To edit a makefile from any package, click the button labeled “Edit
m3makefile”. CM3-IDE will start your text editor and open the makefile
for the current package.

Here is an example of a simple CM3-IDE makefile:

% m3makefile for SimplePkg
import(“1ibm3”)
import(“ui”)
module(“Editwindow”)
implementation(“Editor”)
program(“editor”)

A CM3-IDE makefile is a script in a simple programming language called Quake, used
by both CM3-IDE and €m3. You can find more information about Quake in the
CM3-IDE on-line help under /help/cm3/quake . html. Nonetheless, coding
simple makefiles will not require much knowledge beyond what is described here.

3.3.1 Basic Makefile Commands
The following are the commands used most often in CM3-IDE makefiles.

Most makefiles start with one or more import commands:
import(“package-name”)

The import command specifies a package to be imported in the build process. Any
package that builds a library may be imported.

Most programs import the standard Modula-3 library, called 11bm3, via the

command:
import(“Tibm3”)

Declaring Sources. The following commands declare the source files in your package
that are to be included in the build:

51

BUILDING AND SHARING PACKAGES

interface(“X”)

Declares that the file X. 13 contains an interface. All interface files that you want to
include in your build must appear in interface commands. Don’t forget to leave off the
“.13” extensions.

implementation(“X”)

Declares that the file X. M3 contains 2 module. All module files that you want to
include in your build must appear in an implementation command.

module(“X”)

Declares X. 13 and X.m3 with one command. The moduTe command is really a
short-hand for doing both an interface and an impTementation. This
command is used most often, as many CM3-IDE modules consist of a single interface
and implementation.

generic_interface(“X”
generic_implementation(“X”)
generic_module(“X”)

Similar to their non-generic counterparts, the generic_interface, and
generic_implementation commands declare the generic interface and
implementation files to be included in the build. The command generic_module
is a shorthand for calling generic_interface and
generic_implementation. Generic interface and module files use the <. 19"
and “.mg” extensions. Sec Generics: Reusable Data Structures and Algorithms on
page 97 to learn more about generics.

Making sources visible to others. The above calls declare their arguments to be built,
that is, but visible only within the current package. To declare an interface so that other
team members can access it, you use the capitalized version of the same command, for
example:

Interface(“X”)
and
Module (“X”).

Programs and Libraries. To tell the builder to build an executable, include the
program command at the end of your makefile:

program(“executable-name”)

52

BUILDING AND SHARING PACKAGES

A makefile may have only one program command. It specifies what to name the
program executable. Use the capitalized version of this command, Program, to make
the program available to other developers.

If the makefile is describing a collection of interfaces and modules that are designed to
be a library to be used by other packages, use 11brary instead of program:

Tibrary (“library-name”)

3.3.2 Additional Makefile Commands

Many standard packages in your CM3-IDE distribution define new makefile
commands. Importing these packages makes the new commands available. For
example, the standard library 11bm3 includes a makefile command bund1e which
will bundle a file in your source directory so that it’s available at run-time.

For reference information about makefile commands and their syntax, see CM3-IDE’s

on-line help under /help/cm3/cm3.help.

3.4 Managing Multiple Packages

Building a large and complex project as one package is certainly possible but probably
not wise. Even if you are programming on a project by yourself, you may want to
divide your project into more manageable pieces.

Suppose you are building an editor library and a number of editor programs which,
using the editor library, support editing of various file format.s

A natural division of your code would be to put the core editor functionality in one
library package (called 11bed1 t in this example), and put each editor incarnation
(called htm1-editor in this example) in its own program package. To create an
editor program, you import the 11bed1 t library and add some additional formatting
code and a main module. Building such a package results in an editor program.

The makefile for the Tibedit package would look like:

% makefile for edit library
Module(“Edit”)

...other makefile statements. ..
Interface(“Format”)
Library(“Tibedit”)

The commands Module, Interface, and Library are capitalized to denote that
the corresponding interfaces, and the library should be made available to other
packages.

53

BUILDING AND SHARING PACKAGES

The makefile for the htm1-editor package would look like:

% makefile for html-editor
import(“libm3”)
import(“libedit”)
module(“HTMLFormat”)
implementation(“HTMLEditor”)
program(“html-edit”)

How do you make the 11bed1 t library available to htm1-edi tor’s build? The
simplest way to make the functionality of a package available to other packages is the
ship command. To make the library package 11bed1 t available for reuse in the
program package htm1-editor, you need to ship the 11bed1 t library, first.

After you've successfully built the 11bed1 t package, you may ship it by clicking on
the Ship button on its package summary page.

After shipping the 11bed1 t library, you can build the htm1-edi tor package,
which depends on the 11bed1 t package.

3.5 Shipping Packages

Shipping a package makes the contents of the package available to other packages in

your system. The Ship button, located above the Build button on any package
page ships the current package.

Shipping does not modify the private copy of your package. It simply copies the
essential parts into a public version of the package.

You may continue working on your private copy, and ship another version at your
convenience.

Once shipped, CM3-IDE will keep track of two copies of your package:

® a private copy, which you just built. You can continue to change and build this
copy without affecting other packages. In the default settings, this copy would
resides under /proj in CM3-IDE’s namespace.

® a public copy of your package which is available to other packages. In the
default settings, this copy would reside under /pub’1i € in CM3-IDE’s
namespace.

54

BUILDING AND SHARING PACKAGES

Shipping Packages

Shipping a package makes its contents available to other packages in your
system. Once shipped, a package can be imported into other packages,
and it’s listed with the public packages.

To ship a package from CM3-IDE, you can click the Ship button. CM3-
IDE copies the contents of the package to the public package root. From
the command-line shell, you use the command “cm3 -ship” to ship
packages.

3.6 Package Roots

So far, we have discussed two kinds of packages:

® your private packages, listed under “proJj” packages in the CM3-IDE 1
Packages page. The two you created in Learning the Basics on page 5,
hel10 and MyPackage, are examples of private packages. Their respective
URLs are /proj/helloand /proj/MyPackage.

® public packages, listed under “pubTi C” packages in the CM3-IDE H
Packages page. The standard library package, 11bm3 which you have
imported into your own packages is an example of a public package. Its URL is

/public/Tibm3.

In CM3-IDE, packages are kept in directories called package roots. The package roots
proj and pub1i C are examples. CM3-IDE is pre-configured to use proj for your
private packages, and pub 11 C for the public packages. Indeed, you can create new
package roots to organize your projects, or coordinate sharing with others. For
example, you may use a package root graphics to contain all the graphics-related
packages in your development group.

Within CM3-IDE, the name of a package root resides at the top level of CM3-IDE’s
namespace. For example, the package root graphics would map to /graphics,
and the htm1-edi tor package contained in the graphics root would map to
/graphics/html-editor.

On your filesystem, a package root is represented as a directory that contains zero or
more packages. CM3-IDE supports building or browsing packages in multiple package
roots. You can add new package roots by using CM3-IDE’s configuration screen. (See
Customizing CM3-IDE on page 05.)

55

BUILDING AND SHARING PACKAGES

3.6.1 Example: Creating a New Package Root
In this example, we create a new package root and configure CM3-IDE to add the new
package root to its database.

m Create a directory for a package root. To create and configure CM3-IDE to use a
package root, you must first create a directory for the package root. To do so, create a
directory on your filesystem, such as:

D:\users\harry\graphics (Win32)
/usr/harry/graphics (Unix)

@ Navigate to the package roots settings. I'rom the start page, click on the
Configuration icon to visit CM3-IDE’s configuration screen. The second section of
CM3-IDE Configuration is labeled “Package Roots.” The Package Roots section of
the configuration page is where you list the package roots in your system.

The package roots specified in this section are scanned periodically by CM3-IDE. Each
root is either available for building or browsing. When you are sharing packages with
others, you should use the “browse” option, so that you don’t accidentally alter their
code. You configure your own package roots to allow building.

By default, your CM3-IDE installation comes with two pre-defined roots:

® Your private packages, listed under “pro3j” packages in CM3-IDE, reside in
the directory (SHOME/proj on Unix, or BSHOME%\proj on Win32).

® The public packages, listed under “pub11 C” packages in CM3-IDE, reside in
the pkg subdirectory of your CM3-IDE installation.

When you ship a package, the contents of your package are copied to the public
packages, making them available to other programmers in a controlled fashion.

Package roots: [Help]

®prowse Obuild
@ bprowse Obuild
proj C:\MySandbox Obrowse ®build
public c\em3\pkg ®browse Obuild
®browse Obuild
@ prowse Obuild

Figure 27. Package Roots Section of the Configuration Screen

m Back to the example. Next, choose one of the blank rows to specify your new
package root. You need to specify three pieces of information about a root: its name in

56

BUILDING AND SHARING PACKAGES

CM3-IDE’s namespace, its filesystem path, and whether it is to be used for building or
browsing:

Choose the name.

Specify a short name for the new package root in the left-most field. You will
use this short name to refer to this package root in CM3-IDE. Choose a short
and descriptive name like “graphi cs” which will be known as
/graphics within CM3-IDE. If the new root name collides with existing
root names, CM3-IDE will substitute something less useful, like “Ro0t001”.

Specify the path to the package root.

Specify the absolute path to the directory where this package root resides.
CM3-IDE will periodically scan for packages from the path you specify.
Examples are:

D:\USERS\HARRY\GRAPHICS (Win32)
/usr/harry/graphics (Unix)

Enable either building or browsing for this package root.

Check the option “build” to make packages in this root available for editing
and building.

If you are configuring a new root to browse packages belonging to other
developers, make sure to check the “browse” option so that you don’t corrupt
their packages inadvertently. (The public package root is an example of a
browse-only package root, while your private package root, proj, allows
building and editing of packages.)

@ When you finish entering the information about the new root, click on

[Save and apply changes

| Save and Apply Changes.

3.7 Sharing Packages

This section describes how to share a package with other developers and how to access
its functionality.

Imagine that you are working on a large project as part of a team of programmers.
You've been assigned to write a library that will be used by other programmers. To test
and run their code, they need a stable copy of your library available to them at all times.
What if you’re still working on your code? How do you make sure they are using the
most current version? How do you test and change your revised version of a library

57

BUILDING AND SHARING PACKAGES

while simultaneously allowing others to continue their work based on a stable release of
your package?

The answer in CM3-IDE, as you might have guessed, is shipping. In CM3-IDE, you
ship your packages to copy them to the public package root, where they are available to
others in your team. Each CM3-IDE installation has one public package root. The
code you ship becomes available for browsing and importing by others, but they may
not edit or compile it.

In contrast, you, who shipped the package in the first place, are considered to be the
owner of this package; you are responsible for its upkeep. The buildable sources for
your packages remain in your private directory; they are in your complete control. In
fact, shipping a package does not affect its contents in any way.

You may continue to work on your package after shipping it. Whenever you are
comfortable with your changes, you may ship the package again, making the new
changes available to others. CM3-IDE will overwrite the old shipped files in the public
package root with the new ones.

3.71 Example: Adam’s and Eve’s Joint Project

In the following example, we examine a project that involves multiple programmers
and multiple packages. We’ll review some of the concepts discussed eatlier in the
context of a multi-developer project.

Imagine two developers Adam and Eve working on a shared project Garden. As smart
developers, they have decided to use CM3-IDE for their Garden development. As
organized developers, they first set up their environment to make sharing easy.

Creating directories for package roots. The first step is to create a directory that
contains both of their package roots (presumably with group write permissions):

E :\GARDEN\ (Win32)
/proj/garden/ (Unix)

Next, they create package roots for themselves:

E : \GARDEN\EVE (Win32) /proj/garden/eve (Unix)
E : \GARDEN\ADAM (Win32) /proj/garden/adam (Unix)

Packages in Eve’s directory are her responsibility. Adam may be able to browse the
code in Eve’s packages, but he should not be able to modify the package contents. If
Adam needs a change in one of Eve’s packages, he should ask Eve to make the
change.

Configuring package roots. Next, Adam and Eve use the configuration page of
CM3-IDE to set up their package roots.

58

BUILDING AND SHARING PACKAGES

Eve types the package root name “@ve”, with the path set to the full path to the
directory she just created for her packages:

E:\GARDEN\EVE (Win32)
/proj/garden/eve (Unix)

Eve checks the “build” option for her own package root, so that she can build new
packages in her newly created package root.

Eve wants to be able to look at Adam’s packages but she wants to make sure she
doesn’t accidentally do anything to them. So Eve includes Adam’s package root, but
she is careful not to check the “build” option. The only other choice is the “browse”
option.

Eve is ready to leave the Configuration page. The package root section of her
configuration looks like:

Package roots: [Help]

@browse Obuild
@hrowse Obuild

proj C:\MySandbox Orprowse ®build
public clem3ipkg @ browse Obuild
ave C\Garden\Eve O browse ®puild
adam C\Garden\Adam @ browse Obuild

@browse Obaild
@browse C‘baild

Figure 28. The “Package Roots” section of Eve’s Configuration Page

Saving changes to the configuration. Before leaving the Configuration page, Eve
clicks the Save and Apply button.

Adam sets up his package roots in a similar fashion, but in Adam’s configuration,
Adam’s package root is available for building and Eve’s is only available for browsing,.

Note that Adam and Eve could have chosen different names for their roots, but then
communicating would have been harder.

Assigning project responsibilities. Now that they have organized their development
environment, Adam and Eve meet to decide how to break up the work:

® Adam agrees to work on the end application, p1 €. The package pie will
reside in Adam’s package root, and will be available in Adam’s and Eve’s CM3-
IDE as /adam/p1ie.

59

BUILDING AND SHARING PACKAGES

® Eve agrees to work on the core library, named app1e. The package apple
will reside in Eve’s directory, and is available as /eve/apple.

e Adam’s package, pie, will need Eve’s package, apple.

Adam and Eve are the owners of their respective packages. No one else is allowed to
modify sources in someone else’s package root. Working in a team however, each
allows the other to browse the current state of their Garden-related packages. (CM3-
IDE does not enforce this policy; you must use your filesystem to do that.)

Getting ready to code. Adam and Eve spend some time discussing the design of the
application until they agree on an initial set of interfaces that Eve’s app 1€ needs to
support. The separation of interface from implementation in CM3-IDE is key to
allowing Adam and Eve to work independently:

® Eyve starts the first implementation of the app1e interfaces.

® Adam starts the design and implementation of P €, assuming the agreed upon
apple interfaces.

Shipping the first release. When Eve is satisfied with app 1€, she ships it. Now,
there are two copies of the app 1 e package, Eve’s private copy (/eve/apple) and
the public copy (/pub1ic/appTle). Once Eve ships her package:

® Adam can import app1e in the makefile for pie and build it.

® Eve may continue working on app 1€, shipping it whenever she finds a
proper checkpoint where the code is stable.

Testing before a release. If app 1€ becomes too complex, Eve may need to “unit
test” its functionality before shipping so that Adam’s p1 € is not affected by new bugs.

No problem: Eve can create her own package jui Ce just for the purpose of testing
the quality of app1e. As a savvy developer, Eve also advertises Ju Ce as a sample
program that uses @app1e. This is convenient for Adam since he can see the juice
package as /eve/juice in his CM3-IDE’s namespace even if Eve doesn’t ship it.
Moreover, because he configured ju1Ce for browsing only in his CM3-IDE
configuration, Adam can’t corrupt jJui Ce by accident.

Eve is left with one problem: jJu1 e is supposed to test app 1€ before apple is
shipped, but since Ju1 Ce needs to import app1e, app1e needs to be shipped
before Jui Ce can test it.

How does Eve overcome this problem? Simple: she needs to force jui Ce to use her
private version of apple (/eve/app1e) instead of the publicly available version
(/public/apple).

60

BUILDING AND SHARING PACKAGES

Overriding a build. When building jui ce, Eve will need to tell CM3-IDE not to
look in the public package root for the shipped app 1e. Instead, she must specify
where to get app 1€; this is called overriding.

To overtide a build, Eve must perform two steps:

First, she must create an overrides file (named “m3overrides”)in juice’s source
directory that includes the names of the overridden packages and where to find them.
In this example, Eve puts:

override(“apple”, “C:\\GARDEN\\EVE”) (Win32)
override(“apple”, “/proj/garden/eve”) (Unix)

in the m3overrides file.

Then, when building jui ce, Eve types “~override” as the build option to tell the
builder that it should use the overrides file.

Finally, Eve compiles her jui Ce package, tests app 1€, and when she is happy with
the quality of app e, she ships it. Next time Adam builds p1e, the builder will notice
the fresh app 1€ and will use it.

How Overrides Work. An overrides file contains a set of override commands to
specify new paths for the builder to find packages. Each line of the override list
contains the name of the package to replace and the path to the package root
containing the new package, i.e.:

override(package, replacement-package-root)
where package and replacement-package-root are strings.

Note that you must escape the backslash character on Win32 by typing “\\”” as your
path delimiter.

When the —override option is specified, CM3 looks for a file named
m3overrides in the package’s source directory. If the file m3overrides exists,
it is evaluated prior to evaluating m3makefile. Both m3overrides and
m3makefile are Quake scripts.)

CM3-IDE allows you to leave permanent overrides in your makefiles but it isn’t a good
practice. By keeping all override calls in an m3overrides file and not in 2 makefile,
you can readily switch between building packages based on private and public versions
of imported packages without editing files.

The overrides in effect when a package was built are automatically carried forward into
importers of the package, so there is no need to restate the complete set of overrides in

61

BUILDING AND SHARING PACKAGES

every package, only of those packages that are directly imported into the current
package. CM3-IDE’s builder will warn you if you overspecify your override options.

Shipping and the -override Option. Shipping a package that is built with overrides
makes little sense, as it depends on packages that are not available in the public package
root. CM3-IDE’s builder will refuse to ship a package that was built using overrides.
This safety check helps ensure that packages shipped to the public package root stay
consistent.

3.8 Builder Options

CM3-IDE’s builder options are listed here. You can find this information on-line by
specifying “~he’lp” as your build option, or typing “cm3 -hel1p” at a shell

command-line.

Modes.
-build compile and link
-ship install package
-clean delete derived files
-find locate source files

(default: —build)

Compiler Options.

-9 produce symbol table information for the debugger
-0 optimize code

-A disable code generation for assertions

-once don’t recompile to improve opaque object code
-w0..-w3 limit compiler warning messages

-Z generate coverage analysis code

(default: -g -wl)

Program and Library Options.

-C compile only, produce no program or library
-a 1lib build library lib

-0 pgm build program pgm

-skiplink skip the final link step

(default: -0 prog)

62

BUILDING AND SHARING PACKAGES

Messages.

-silent
-why
-commands
-verbose
-debug

(default: —why)

Information and Help.

-help

-7
-version
-config

Miscellaneous.

-keep
-times
-override
-X

-Dnm
-Dnm=val
-console
-gui
-windows

produce no diagnostic output

explain why code is being recompiled

list system commands as they are performed
list internal steps as they are performed
dump internal debugging information

print this help message
print this help message
print the version number header
print the version number header

preserve intermediate and temporary files

produce a dump of elapsed times

include the “.m3overrides” file

include the “.m3overrides” file

define the quake variable nm with the value TRUE
define the quake variable nm with the value val
produce a Windows CONSOLE subsystem program
produce a Windows GUI subsystem program
produce a Windows GUI subsystem program

CM3-IDE’s makefiles are discussed in more detail later in CM3-IDE Makefiles on page
50. For information about customizing the behavior of the Build button, see
Customizing CM3-IDE on page 65, or review the configuration file cm3 . cfg in your

installation.

63

BUILDING AND SHARING PACKAGES

3.9 Summary

A package is the unit of building and shipping in CM3-IDE. Each package is
represented by a directory on the filesystem. Packages typically have two subdirectories,
a source directory (named “S1C”) and a derived directory whose name varies per platform.
Each package may have a makefile in its source directory which is a set of instructions
for compiling sources in the package.

To build a package, use the Build button on the summary page of the package.

To make a package available for importing by other packages, 542 it, by clicking the
Ship button on the summary page of the package.

CM3-IDE builder. The stand-alone program €m3 is CM3-IDE’s builder. You may
start the CM3 builder by either clicking the Build button from any package page, or by
invoking €M3 from the command line. See Builder Options on page 62.

Package roots. You can organize packages for your various projects into package
roots. A package root is a directory that can contain zero or more packages. See
Package Roots on page 55.

The public package root is CM3-IDE’s shared repository for shipped packages.
Packages in the public package root can be browsed and imported by anyone but they
cannot be edited or compiled in-place.

Overriding. The —override option can be used to tell €M3 to look for a file named
m3overrides in the source directory and, if it exists, evaluate it immediately before
evaluating m3makef1i1e. Sec How Overrides Work on page 61.

64

CUSTOMIZING CM3-IDE CI I

4. Customizing CM3-IDE

This chapter describes how to customize CM3-IDE. The configuration screen is like a
control panel for CM3-IDE—it controls many aspects of CM3-IDE’s behavior. CM3-
IDE’s configuration settings are persistent; the configuration information is saved

Read this chapter
to learn how to
customize CM3-

IDE. across sessions.

This chapter This chapter does not cover configuration of CM3-IDE’s builder program, cm3. The
contains builder can be invoked from outside CM3-IDE and its configuration settings may be
information about modified independently of CM3-IDE’s. See the cm3 . cf(file in your CM3-IDE
CM3-IDFE’s installation to configure the behavior of your CM3-IDE builder. To learn more details
configuration about configuring the builder, see Building and Sharing Packages on page 47.

page.

Since changing your configuration settings has a permanent effect on your
development environment, you should apply care when changing configuration
parameters.

Navigating to the Configuration Page on page 66 points you to the CM3-IDE
configuration page.

Saving Configuration Changes on page 66 shows you how to apply and save changes
in your configuration.

Display Settings on page 66 controls the display aspects of CM3-IDE— start screen,
and layout of dynamically configured pages.

Package Roots Settings on page 68 allows you to add, delete, or modify package roots.

Communication Settings on page 69 specifies the settings used by CM3-IDE to
communicate with your web browser.

Miscellaneous Settings on page (69 allows you to change the number of threads for
the CM3-IDE server and verbosity of messages.

Helper Procedures on page 70 tell CM3-IDE how to build, ship, or clean packages,
run programs, or edit files.

65

CUSTOMIZING CM3-IDE

4.1 CM3-IDE Configuration Screen

From time to time, you may need to change the configuration of your CM3-IDE
development environment. For example, you may like to change the layout of lists in
CM3-IDE to match your window settings, or you may want to share packages with a
co-worker. For these kinds of tasks, you may alter CM3-IDE’s behavior from the
Configuration page.

4.1.1 Navigating to the Configuration Page

From the CM3-IDE start page, follow the <~ Configuration link in the System group
to navigate to the configuration page.

4.1.2 Saving Configuration Changes
At the top and bottom of this page are the Save and Apply Changes buttons (Figure
29). To save changes to your CM3-IDE settings, click on this button.

Important Note. Your personal configuration is kept in:

%HOMEX%\proj\CM3-IDE.cfg (Win32)
$HOME/proj/CM3-IDE.cfg (Unix)

If the HOME environment vatiable is not set when CM3-IDE was started, CM3-IDE
won’t be able to save your changes to the configuration. Otherwise, changes to your
configuration will persist across sessions.

CMB3-IDE Configuration

& oMaIDE | Bform | B configure

[Save and apply changes]

Display: [Help]

Home page:

Max display items: 75

Max display width (chars): 70
Max display width (columns): 5
Multiple windows: IG’}r:nff Onn

Figure 29. Save Changes and Display Settings

4.1.3 Display Settings

You can control many aspects of the CM3-IDE screen layout (Figure 29). CM3-IDE’s
display settings, in conjunction with the display settings of your web browser will allow
you to make your navigation in CM3-IDE more comfortable.

66

CUSTOMIZING CM3-IDE

Start Page. The start page setting specifies the full path for a file containing the
HTML that CM3-IDE displays initially. If a file is specified, CM3-IDE will use it as the
start page; otherwise, CM3-IDE will use its own default start page.

When a start page is specified, its parent directory is available at the URL /user
within your CM3-IDE’s namespace, so you may refer to entries in /US€Tr in your
CM3-IDE pages.

For examples of a start page, use your browser’s “Save As”” command (usually under
the File menu) to save a copy of the default start page to your filesystem. You may then
modify the file, and point CM3-IDE to the new version of the start page. Another

good beginning for a start page is the > Getting Started page, located at the URL
/help/getting-started.html.

See CM3-IDE’s Web Namespace on page 42 for more information regarding the
specification of URLs in your HTML files.

The rest of the display settings control how CM3-IDE displays lists of items. If you’re
using a small font or a large screen, you may want to adjust these values to better suit
your preferences.

Max display items. Defines the maximum number of items for a list displayed on one
page. For lists more than the maximum number of items, CM3-IDE will coalesce
entries with common prefixes and suffixes, in an effort to fit the list to the screen size.

Max display width (chars). Defines the maximum number of characters that CM3-
IDE will put into a single line of a dynamically generated list. CM3-IDE’s lists are
usually displayed in fixed-width fonts.

Max display width (columns). Defines the maximum number of columns that CM3-
IDE will put into a single line of a dynamically generated list.

Multiple windows. Controls whether CM3-IDE will use non-standard window

targeting to direct its output to multiple browser windows (1his is an experimental feature
in release 4.1 of CM3-IDE.)

67

CUSTOMIZING CM3-IDE

& cusaDE | [form | ﬂmnﬁgure

[Save and apply changes]

Display: [Help]

Home page:

Max display items:

Max display width (chars):
Max display width (colomns):

Moltiple windows: @off Don

Package roots: [Help]

| | | | @ browse
| | | | @ browse
|pr0j | |C:‘;MySandbox | O browse
|pub|ic | |c:\cm3‘tpkg | ® browse
|eve | |C:‘;Garden‘;Eve | O browse
|adam | |C:1Garden‘.ﬁdam | ®prowse
| | | | ® browse
| | | | @ browse
Commmnication: [Help]

Host name: |Ioca|host

IP address: |

Server port: 3800

Obuild
Opuild
®build
Cpuild
®build
Cpuild
Obuild
Cpuild

Figure 30. Package Root and Communication Configuration

4.1.4 Package Roots Settings

CM3-IDE supports browsing and building packages from multiple package roots.

Here, you can specify the list of package roots used by CM3-IDE, and their

characteristics (Figure 30). For setting each package root, you must specify the

following:

® ashort name that will be used by CM3-IDE to form URLs. The package roots
map to the top of the URL hierarchy, i.e., the package root named
graphics will map to /graph1ics within CM3-IDE.

® a full path in the file system where the package root resides

® aboolean specifying whether the user is allowed to build packages filed under

this root

The default settings map /proj to your private packages and /pub11C to the

public packages in you system.

68

CUSTOMIZING CM3-IDE

See Building and Sharing Packages on page 47 for more information about package
roots.

4.1.5 Communication Settings

When started, CM3-IDE determines the local IP address and name of the machine it’s
running on, and uses this information for communication with your web browser. If
networking is not installed propetly, or you are accessing CM3-IDE remotely, you may
need to override the default communication configuration (Figure 30).

Host name. Defines the name of the machine running CM3-IDE. The URLs
generated by CM3-IDE will contain this name and the browsers attached to CM3-IDE
will need the name. The default host name is 1Tocalhost, referring to the host
where the CM3-IDE is executing. This value should work on most platforms that
support TCP/IP, even those that only have intermittent SLIP or PPP connections. If
no value is specified for the host name, CM3-IDE attempts a reverse name server
lookup using the host’s IP address.

IP address. Defines the IP address of the machine running CM3-IDE. You should
not need to explicitly define your IP address unless your networking installation is
badly broken, or if you are trying to cross DNS naming boundaries. In case you need

it, the IP address bound to TocaThost is usually 127.0.0.1.

Server port. Defines the TCP port number that CM3-IDE will use. You may need to
change CM3-IDE’s default value if it conflicts with one of the TCP services already
running on your machine. Usually, using port numbers below 1024 requires special
privileges. Ports 80 and 8080 are often used by regular web servers.

4.1.6 Miscellaneous Settings

Verbose log. Determines how much information is generated in CM3-IDE’s console
log. It’s best to leave the verbose log off, unless you are trying to track down a problem
with CM3-IDE. CM3-IDE’s logged messages display on your console window. The
last 500 lines of the log are available at the URL “/10g”.

Server threads. Determines the number of concurrent threads within CM3-IDE that
can service HTTP requests. If CM3-IDE becomes sluggish because there are too many
users contending for a limited number of server threads, it may help to increase the
number of threads. However, it is more likely that CM3-IDE just needs to run on a
machine with more memory.

Refresh interval. Determines the number of minutes for CM3-IDE to wait between
full rescans of the package roots. Setting too small a value can overload the file system
and degrade performance.

69

CUSTOMIZING CM3-IDE

Misc: [Help]

Verbose log: @off Oon
Antomatic package scans: C}off C}on

Server threads:
Refresh interval (minmntes):

CM3-IDE URL: http://localhost:3800/
System package root: c:h\cm3\pkg
Build directory: NT3E26

Helper procedures: [Help]
Browser:
proc start_browser (initial url) is i
cm3_exec ("start fwait C:\\progra~l\\intern~1\\iexplore.exe",
initial url)
return TRUE %==> server terminates when browser terminates n
end w
Build:
proc build package (pkg, options) is
cm3_exec ("ecd", pkg, "&& cm3", options)
end
Ship:
proc ship package (pkg) is
cm3_exec ("cd", pkg, "&& cm3 -ship")
end
Clean:
proc clean package (pkg) 1is
cm3_exec ("cd", pkg, "&& cm3 -clean”)
end
Run:
proc run program (dir, cmd) is
cm3_exec ("ecd", dir, "&& ", cmd)
end
Edit:
proc edit file (file, line) 1is "~
cm3_exec ("start C:\\Progra~l\\Window~1l\\Accessories\\wordpad.exe",
file)
end L3
~

Figure 31. Miscellaneous Settings and Helper Procedures

4.1.7 Helper Procedures
CM3-IDE uses a number of small helper procedures to interact with its external
environment (Figure 31). These procedures are written in Quake, a small interpreted

language. Modifying helper procedures should be easy and the default helper

70

CUSTOMIZING CM3-IDE

procedures are quite short. CM3-IDE’s use of these interpreted procedures maximizes

your ability to configure and control CM3-IDE’s behavior. For more information on
Quake see the CM3-IDE on-line help under /help/cm3/quake.html.

Helper Procedure for Starting the Browser. \When CM3-1DE statts, it calls the
start_browser helper procedure, passing it the URL of the start screen. If
start_browser returns FALSE, the server continues running; otherwise, the
server terminates when the function returns. The default implementation starts your
web browser automatically.

Helper Procedures for Build, Ship, Clean. The helper procedures
build_package, ship_package, and clean_package are used to build,
ship, and clean a package. They are called when the corresponding action buttons are
pressed. The default versions of these procedures call the CM3-IDE builder (Cm3)
after changing the working directory to the package.

Helper Procedure for Run. CM3-IDE calls run_program to execute the program
whose location is passed as a parameter. You may use this procedure to start debuggers
ot shell windows (via “Xterm -e” command on Unix, or “start” command on
Windows). The program summary page allows you specify the arguments passed to
run_program.

Helper Procedure for Edit. CM3-IDE calls edit_file(file, 1ine) toedit
1 1€ initially positioned at 11ne. The default procedure assumes that the editor
supports a “+11Nn€” option common to most programmer’s editors. If your editor
doesn’t support line placement, simply delete the portion of the default procedure that
passes the +11Nne option in the @xec call.

71

CUSTOMIZING CM3-IDE

4.2 Summary

CM3-IDE’s Configuration. The CM3-IDE configuration screen acts as a central
control panel for the CM3-IDE environment. You can change many of CM3-IDE’s
settings to alter its default behavior. To navigate to the configuration page, follow the
Configuration link from the start page or go to /form/configure within CM3-
IDE’s namespace.

Save and Apply Changes. You must click on the “Save and Apply Changes” button
before your changes to the configuration page can be applied. Once applied, changes
persist across CM3-IDE sessions.

Display settings. Change CM3-IDE’s start screen or alter the layout of dynamically
generated pages by modifying the display settings.

Package Roots Settings. Add or delete package roots from your environment using
this setting. See also Building and Sharing Packages on page 47.

Communication Settings. Different network environments require different
communication settings. You may need to change these settings if you have specialized
communication needs, for example, to run without networking or on a remote
machine. CM3-IDE uses the host name “localhost” and the port number 3800
by default.

Miscellaneous Settings. Change settings for the number of threads used in CM3-
IDE’s web server, the verbosity of CM3-IDE’s logged messages, and the refresh
interval for background scanning.

Helper Procedures. Usc the helper procedures to modify how CM3-IDE builds,
ships, and cleans packages. You can also change how your editor is invoked, and how
CM3-IDE runs programs.

Customizing CM3-IDE’s Builder(cm3). To customize the behavior of CM3-IDE’s
builder (€m3), review and modify the cm3 . g file in your installation of CM3-IDE.
The file includes in-line comments regarding the significance of various settings, and
should be easy to modify. The cm3 . cfg configuration file usually resides in the same
directory as the CM3 executable in your file system. To find out for sure, invoke the
builder from a shell command line as “cm3 -config”.

72

BEYOND THE BASICS

5. Beyond The Basics

This chapter introduces more advanced language concepts as a starting point for your

Read this chapter ;
exploration of system and application programming with CM3-IDE.

to learn about

advanced
language This chapter treats the language concepts pedagogically; each concept is presented

concepts. informally and is illustrated through a complete example program. The description of
concepts and features in this chapter is incomplete; for complete and precise
definitions of language features, see the Language Reference.

This chapter is divided into six parts. Each part describes a distinct feature of the
language, and demonstrates the feature in a complete program. You can find the

sources for the programs in this chapter in the I Examples section of your CM3-IDE
environment.

Exceptions: Error Handling in CM3-IDE on page 74 illustrates the use of exceptions
for building robust programs.

Object Types: Object Oriented Programming on page 81 showcases basic object-
oriented programming in a simple program.

Threads: Managing Concurrent Activities on page 86 describes how to use threads
to manage concurrent activities.

Opaque Types: Information Hiding and Encapsulation on page 88 demonstrates the
use of opaque types to hide the implementation of a type from its clients. The section

continues with partially opaque types, which can be used to reveal partial information

about objects to select clients.

Generics: Reusable Data Structures and Algorithms on page 97 outlines the use of
parametrized interfaces for creating polymorphic data structures and algorithms.

Unsafe Constructs: System Programming in CM3-IDE on page 102 introduces you to
the unsafe subset of the language.

73

BEYOND THE BASICS

5.1 Exceptions: Error Handling in CM3-IDE

Error handling in CM3-IDE 1s done with language-level exceptions. Exceptions help
separate error handling logic from the main code.

If you want your program to remain vigilant at all times for errors where exceptions are
not available, you need to explicitly check for failure at every function call in your
program. Due to the usual pressures of software development, returning or checking
error codes for failure is seldom done thoroughly. Careful programmers who check for
every error condition often design elaborate arrangements of if-then statements, or
non-standard “setjmp” calls. Most of these methods make programming much
more difficult for the careful programmer, hence encouraging sloppy treatment of
errofs.

Error-checking with exceptions enables the programmer to easily, and reliably handle
all error conditions in their programs.

5.1.1 How Exceptions Work

In CM3-IDE, when a program encounters a situation deemed abnormal by the
programmer, the runtime generates an exception, and begins to look for a handler for
the exception to handle the abnormal condition.

If an exception is not handled in the cutrent procedure, the calling procedure is
searched. If no handler for that particular exception is found there, the runtime will
continue following the chain of called procedures until it finds a procedure that handles
that particular exception. If no handler is found, the computation terminates, for
example, by entering the debugger.

Hence, it is possible to handle errors anywhere in a chain of procedure calls, without
having to continually check error codes.

For a precise definition of the semantics of exceptions, see the Langunage Reference. Here
we describe the syntax for raising and handling exceptions, and illustrate the use of
exceptions in a simple program.

5.1.2 Declaring Exceptions
All exceptions must be declared at the top-level of an interface or a module. An
exception may include a parameter.

EXCEPTION exception-name [“(” exception-parameter “)”];

In the following example, DriveNotReady is a parameter-less exception and
ReadError is an exception that takes a TEXT parameter:

74

BEYOND THE BASICS

INTERFACE CDROM;

EXCEPTION DriveNotReady;
EXCEPTION ReadError(TEXT);

PROCEDURE Reaql(sector: INTEGER) : TEXT
RAISES {DriveNotReady, ReadError};
END CDROM.

5.1.3 Triggering Exceptions: RAISE Statement
You can trigger the handling of an exception through the use of the RAISE statement.
The statement:

RAISE exception [“(” exception-parameter “)”];

raises an exception, passing control of the program to the innermost exception handler
for that exception. Use the RAISE statement to raise an exception. If the exception is
defined with a parameter, one must be supplied when the exception is raised.

5.1.4 Handling Exceptions: TRY-EXCEPT Statement

TRY
guarded-statements
EXCEPT
“|” exception-name { “,” exception-name .. } “=>" action-statement
“l” exception-name “(” parameter-name “)” “=>" action-statement
[ELSE statements]
END

The TRY-EXCEPT statement guards statements between TRY and EXCEPT with the
exception handlers between EXCEPT and END.

An exception raised by a guarded-statement is handled by the action-
statement which has a matching handler for the exception, or by the ELSE clause,
if present. If an exception is caught, execution continues with the statement following
the END, otherwise the exception is passed on to the enclosing scope.

Example:

EXCEPTION Failure(Severity); _
TYPE Severity = {Low, Medium, High};

TRY

...Code that may raise Failure, 10.Error, or Lex.Error ...
EXCEPT
| I0.Error => I0.Put(“An I/O error occurred.”)

| Lex.Error => I0.Put(“Unable to convert datatype.”)
| Failure(x) => IF x = Severity.Low
THEN IO.Put(“Not bad”)
ELSE 10.Put(“Bail out”)
END
END;

75

BEYOND THE BASICS

Important Note. The language defines RETURN and EXTIT in terms of exceptions,
hence the ELSE clause of a TRY-EXCEPT statement may catch a RETURN or an
EXIT. You should refrain from using the ELSE clause of a TRY-EXCEPT statement

whenever possible.

5.1.5 Cleaning up: TRY-FINALLY Statement
The TRY-FINALLY statement is typically used for clean-up activities.

TRY
guarded-statements
FINALLY
cleanup-statements
END

TRY-FINALLY guarantees that C1eanup-statements are called no matter
what happens in the guarded-statements. If one of guarded-
statements raises an exception, the same exception is re-raised by TRY -
FINALLY after the Cleanup-statements are executed.

TRY-FINALLY is useful for clean-up activities, like closing file handles, even when
the I/O operations may fail:

rd := I0.0penRead(“myfile”);

TRY
WHILE NOT EOF(rd) DO

I0.PutLine (IO0.GetLine(rd));

END;

FINALLY

Rd.Close(rd);

END;

Important Note. As RETURN and EXIT semantics ate defined in terms of
exceptions, TRY-FINALLY will not only act upon an ordinary exception, but it also
acts upon a RETURN or an EXIT. This is often handy for adding wrappers to a block
of code to print debugging information no matter how the block of code behaves.

76

BEYOND THE BASICS

5.1.6 Trapping All Exits from a Block of Code
For example, starting with a procedure with multiple return paths:

PROCEDURE SomeProc(): BOOLEAN RAISES {Invalid} =
BEGIN
FOR i := 1 TO 10 DO
CASE option[i] OF
‘a’..’z’ => RETURN TRUE;
| “1’..°9° => EXIT;
ELSE RAISE Invalid;
END;
RETURN FALSE;
END SomeProc;

Suppose you would like to print a message every time a procedure exits, no matter how
it exits: It is easy to add a TRY-FINALLY statement to catch every exit from the
procedure. Simply add a TRY-FINALLY around the procedure’s body; the
FINALLY clause will be called no matter how the program exits SOmeProcC’s scope.

5.1.7 An Example of Exception Handling

The next two programs illustrate how to use exceptions to make your programs more
robust against failures. The first one is a simple file copy program that does not deal
with exceptions. The second incarnation catches exceptions, and hence is more robust.

5.1.8 Programming without Exceptions
Here we review the implementation of the COPY program. This program may crash at
run-time due to uncaught exceptions.

Indeed, if you compile the sources for this version of the copy program, you will notice
a number of warnings regarding possible exception failures at run-time. It is easy to
cause a run-time crash: simply attempt to copy a non-existent file. The compiler
warnings notify you about possible run-time failures at compile-time. 1f you fix all the
exception-related warnings in all the sources of a program, your program will never
crash from an unhandled exception.

Let’s start with the main module, named COpy. The COpPY program is simple:
® Make sure that the user has specified arguments correctly.
® If parameters are wrong, return an error code and exit.

® Otherwise, pass them along to Fake0S . Copy.

77

BEYOND THE BASICS

MODULE Copy EXPORTS Main;
IMPORT FakeOS, Params, Process, IO;
BEGIN
IF Params.Count # 3 THEN
I0.Put (“Syntax: copy <source> <destination>\n”);
Process.Exit (2);
END;
WITH source = Params.Get(1l) DO
WITH destination = Params.Get(2) DO
FakeOS.Copy (source, destination);
END;
END;
END Copy.

As a user-defined interface, FakeOS provides access to the FakeOS module. Copy a
file named source to a file named destination.

INTERFACE FakeOS; -
PROCEDURE Copy(source, destination: TEXT);
END FakeOS.

The FakeOS module supplies the body of the COpY procedure. The COpy
procedure creates new reader and writer streams from the input and output files, reads
the contents from the input, and writes it to the output.

The procedures Fi1eRd.Open and FiTewWr.0pen are used for reading and
writing files, Rd . GetText and Wr.PutText for input and output, and
Wr.Close and Rd.Close to close the I/O streams.

FakeOS . Copy does the following;
® Open a reader and a writer to the source and destination
® Read the contents of the reader
o Write the contents into the writer

e Flush and close the reader and the writer

78

BEYOND THE BASICS

MODULE FakeOS;
IMPORT Rd, wr, FilerRd, Filewr;
PROCEDURE Copy(src, dest: TEXT) =
VAR rd: Rd.T; wr: wr.T;

BEGIN _
rd := FileRd.Open (src);
wr := Filewr.open (dest);

WITH contents = Rd.GetText (rd, LAST(INTEGER)) DO
wr.PutText (wr, contents);
END;
Rd.Close (rd);
wr.Close(wr);
END Copy;

BEGIN
END FakeOS.

Note that FakeOS . Copy does not handle any exceptions raised by
FileRd.Open, Filewr.Open, Rd.GetText or Wr.PutText. You may
review the definition of these procedures in the standard libraries to find out about the
exceptions they may raise. You can easily create a situation where an uncaught
exception, causes a run-time crash.

5.1.9 Making Programs Robust with Exceptions

The previous version of FakeOS . COpY has a serious problem: it crashes when any
1/O exception (e.g., disk full, no permission to write) is raised. The new version of the
FakeOs interface and implementation illustrates how to use exceptions to build
robust programs. The main module COpY still calls the FakeOS interface. The
required changes are:

1. Add an Error exception with a TEXT parameter to the FakeOS interface.

2. Change FakeOS . Copy to raise Error when there is a problem, and
include a text string describing the problem.

3. Modify the COpY module to handle this exception by printing an etror
message for the user.

INTERFACE FakeOS;

EXCEPTION Error (TEXT);

PROCEDURE Copy(source, destination: TEXT) RAISES {Error};
END FakeOS.

79

BEYOND THE BASICS

Here is the implementation of the new FakeOS:

MODULE FakeOS; _
IMPORT Rd, Wr, FileRd, Filewr;
IMPORT Thread, OSError;

FakeOS works similatly to the last version, but this time it catches exceptions using
the TRY-EXCEPT clause. For each exception that is raised by the called procedures,
we propagate an EFror exception to the caller of FakeOS . Copy.

PROCEDURE Copy(src, dest: TEXT) RAISES {Error} =
VAR
rd: Rd.T;
wr: Wr.T;
<* FATAL Thread.Alerted *>
BEGIN
TRY
rd := FileRd.Open (src);
wr := Filewr.Open (dest);
WITH contents = Rd.GetText (rd, LAST(INTEGER)) DO
wr.PutText (wr, contents);
END;
Rd.Close (rd);
wr.Close(wr);
EXCEPT
| Rd.Failure =>
RAISE Error (“reading from “ & src & “ failed”);
| wr.Failure =>
RAISE Error (“writing to “ & dest & “ failed”);
| OSError.E =>
RAISE Error (“a system problem occured”);

END
END Copy;

BEGIN
END FakeOS.

Note that the exception Thread.Alerted is marked as fatal, because we didn’t
want to handle it. The FATAL pragma lets the programmer tell the compiler that a
particular exception is intentionally not being handled. You should employ the FATAL
pragma carefully; excessive use of the FATAL pragma results in crash-prone code. If
FakeOS . Copy was to deal with multiple threads, it should deal with
Thread.Alerted propetly.

What happens to the C10Se statements if there is an exception raised while the files
are open? Yes, that’s a problem—if an exception occurs while copying, the files may be
left open—and you can use a TRY-FINALLY statement to deal with it. Review the
language reference or tutorial to learn about TRY-FINALLY.

While these kinds of issues are usually not important in short-lived programs, they are
very important for long-lived, multi-threaded applications (for example, a network
object server) where resource management is critical.

80

BEYOND THE BASICS

This program is now robust against various system exceptions raised by calls in
FakeOS or Copy modules. If the program hadn’t been handling a particular
exception, you would have seen a warning at compile-time. This same program,
without source modifications, will work without silent or unexpected errors due to
system exceptions on all supported operating systems.

5.2 Object Types: Object-oriented Programming

This section assumes that you are familiar with the concepts of object-oriented
programming.

An object associates some state with some bebavior. A Modula-3 object is a record—its
state—paired with a method suite—its behavior.

TYPE
AnObjectType “=“ [parent-object-type] OBJECT
object-fields
[METHODS methods]
[OVERRIDES overrides]
END

An object is a record paired with a method suite, a collection of procedures that operate
on the object. The fields of an object are specified just like those of records. Methods
look like fields that hold procedure values, with the following syntax:

methods = { method “;” .. }
method = identifier signature [“:=

procedure-name]

A method signature is similar to a procedure signature (See the section on procedure
declarations in the Langunage Reference). 1f a method declaration includes “ =", the
associated procedure must accept objects of this type as its first parameter; the rest of
the parameters much match the signature. The first parameter is often referred to as
the se/f parameter.

Overrides specify new implementations for methods declared by an ancestor object-type:
(An ancestor is either the parent of this type, or its parent’s parent, o ...)

overrides = { override “;” }

override = method-name “:=" procedure-name

Object types form a single-inheritance hierarchy. The type ROOT is the supertype of all
object types. Objects are traced references by default, hence they are garbage-collected
by default.

Example. et’s create an object type PO1ygon which contains an open array of
coordinates. We also define an initialization method n1t, and a verification method
verify, for all objects of this type. Subtypes of POTygon may override the init
method, and must override the verify method.

81

BEYOND THE BASICS

TYPE
Polygon = OBJECT
coords: REF ARRAY OF Point.T;
METHODS
init(READONLY p: ARRAY OF Point.T): Polygon := Init;
verify() := NIL; (* To be overridden by subclasses. *)
END;

PROCEDURE Init (self: Polygon;
READONLY p: ARRAY OF Point.T) =
BEGIN
self.coords := NEW(NUMBER(p));
self.coordsA := p;
self.verify(); (* verify that initialization was proper. *)
RETURN self;
END;

The subtype Drawab1e adds the draw method and assigns the Draw procedure as
the default implementation for the draw method.

TYPE
Drawable = Polygon OBJECT METHODS
draw() := Draw;
END;

PROCEDURE Draw (self: Drawable) =
BEGIN

WITH p = self.coordsA DO

FOR i = FIRST(p) TO LAST(p) DO

DrawLine(p[i], p[(i+1) MOD NUMBER (p)])
END;

END;
END Draw.

Type Rectang]le is a concrete implementation of an object. It will override the
verify method to make sure there are four sides to this polygon and that the sides
have the right properties.

TYPE
Rectangle = Drawable OBJECT METHODS
OVERRIDES
verify := verify;
END;

PROCEDURE Verify (self: Rectangle) =
BEGIN
WITH p = self.coordsA, dist =
<* ASSERT NUMBER(p) = 4 *>
<* ASSERT dist (p[0],p[2]) = dist (p[1],p[3]1) *>
END
END Verify;

Point.DistSquare DO

82

BEYOND THE BASICS

Assuming pointisa ARRAY [1..4] OF Point.T,todrawanew Rectangle
object, you must do:

VAR
rect: Rectangle;
BEGIN
rect := NEwW(Rectangle);

rect.init(points);
rect.draw();

END
Or the shorthand:
VAR o)
rect := NEW(Rectangle).init(points);
BEGIN
rect.draw();
END

5.2.1 Programming with Objects: A Complete Example
The complete program ObjeCts is another example of the use of objects.

MODULE Objects EXPORTS Main;
IMPORT IO;

The type Person declares a new object type with fields ¥ rstname, Tastname,
and gender. Person also defines a method fulTname () which is implemented
by procedure FulTName.

TYPE

Person = OBJECT
firstname, lastname: TEXT;
gender: Gender;

METHODS
fullname(): TEXT := FullName;

END;

Gender = {Female, Male};

PROCEDURE FulIName (self: Person): TEXT =

CONST Title = ARRAY Gender OF TEXT {“Ms.”, “Mr.”};
BEGIN
RETURN Title[self.gender] & “ ” & self.firstname &

& self.Tlastname;
END FullName;

Any code that can see the declaration of the object type P€Irson can create new
instances of that type. So, anywhere in this module, you can create a new instance of
the type Person. (You can use interfaces to control the visibility of object types. See
Opaque Types: Information Hiding and Encapsulation on page 88 for more
information.)

83

BEYOND THE BASICS

Here a new object is assigned to the variable john.

VAR
john := NEwW(Person,
gender := Gender.M™male,
firstname := “John”,
Tastname := “sSmith”);

Here is a procedure, Describe, which takes a P@rson object and a text description
and prints a line to the standard output using the fulTname () method.

PROCEDURE Describe (person: Person; description: TEXT) =
BEGIN

I0.Put (person.fullname() & “ is “ & description & “.\n”);
END Describe;

Describe calls the fulTname method of its first parameter. Of course, different
Person objects can have different implementations of the fu'l Tname method, so,
ultimately you can pass different subtypes of P@rson into this procedure. Here we
create one such subtype, named Emp10oyee which has some additional fields. Note
that it shares the same implementation as Person for the fulTname () method.

TYPE
Employee = Person OBJECT

company: TEXT;

END;

Next, we create a new instance of this type, named jane. You can list the fields of an
object in any order when you initialize it.

VAR
jane := NEW(Employee,
firstname := “Jane”,
lasthame := “Doe”,
company := “ACME Ltd”,
gender := Gender.Female);

You can create new subtypes that override existing methods. In the next subtype, the
fulTname () method of DOCtOr object, implemented via Ful1DoctorName,
skips the first name and uses a professional title for referring to a DOCtOF instance.
Note that PrintDoctorName’s self argument is of type DOCtor.

TYPE
Doctor = Person OBJECT
title: TEXT := NIL;
OVERRIDES
fullname := FullDoctorName;
END;

84

BEYOND THE BASICS

PROCEDURE FullDoctorName(self: Doctor): TEXT =

VAR
result: TEXT := “Dr. “ & self.lastname;
BEGIN
IF self.title # NIL THEN
result := result & “, ” & self.title & “, ”;
END;

RETURN result;
END PrintDoctorName;

Let’s create a couple of instances of DOCtor.

VAR
dr_who := NEw(Doctor,
lasthame := “who”,
title := “Time Lord”);
dr_quinn := NEw(Doctor,
Tasthame := “Quinn’,
title := “Medicine woman”);

There is also a shorthand for creating one-of-a-kind objects types as part of a NEW call.
That’s how jOe gets created.

VAR
joe := NEwW(Person, firstname := “Joe”,
Tasthame := “Schmo”,
fullname := AnAverage);

PROCEDURE AnAverage(self: Person): TEXT =
BEGIN
RETURN “An average “ & self.firstname & “ “ &
self.Tastname;
END AnAverage;

Finally, make a few calls to Describe just to show that it works.

BEGIN
Describe (john, “a nice person”);
Describe (jane, “an employee of “ & jane.company);
Describe (dr_who, “a bit weird”);
Describe (dr_quinn, “not for real”);
Describe (joe, “probably good enough for working” &
“on this project”);
END Objects.

Feel free to create your own subtypes of Person!

For more information on controlling visibility of object declarations, sec Opaque
Types: Information Hiding and Encapsulation on page 88.

85

BEYOND THE BASICS

5.3 Threads: Managing Concurrent Activities
A Thread is the fundamental concurrency abstraction in Modula-3.

Using threads, you can create concurrent activities within a single activation of a

program.

Threads can be very useful for structuring real-world programs, because they often
need to deal with multiple activities. For example, a program that needs to interact with
the user and manage a long-running query to a database can use a thread for each task,
so that one task can progress without waiting for the other tasks.

Threads enforce a separation of concerns of concurrent activities in your program,
which helps you manage each task better.

Using the required Thread interface, you can create and manage threads in an
operating-system-independent manner. The Thread interface provides operations for
communication and synchronization between threads. Standard libraries distributed
with your system are thread-friendly. Indeed, some libraries, such as the user interface
toolkit Trest’le, use threads in order to perform their background activities.

For a good introduction to threads, read Andrew Birrell’s atticle, Introduction to
Progranming with Threads, included on-line as part of your CM3-IDE distribution. The
sample program ThreadExamp1 e briefly outlines how you can program with
multiple threads.

ThreadExample is a simple multi-threaded program:

MODULE ThreadExample EXPORTS Main;
IMPORT Thread, Fmt, IO;

Driven by commands from the standard input. For each user request, the program
spawns a new thread which waits for a specified elapsed time.

ThreadClosure. The following fragment creates a new dosure object, which embodies
the state of a thread. In this case, the Thread.Closure subtype TimeClosure
contains the state required for a timer thread: a length of time that a thread must pause.

By convention, thread closures override the app 1y method to designate the work to
be done. TimerClosure’s implementation is in procedure TimerApply.

TYPE
TimerClosure = Thread.Closure OBJECT
time: LONGREAL;
OVERRIDES
apply := TimerApply;
END;

86

BEYOND THE BASICS

TimerApply performs the work of the timer threads:
® print out a message that it has started
® wait for t1me seconds

® print out a message that it has finished.

The local variable COUNT allows the user to match the start and finish messages.

PROCEDURE TimerApply (cl1: TimercClosure): REFANY =
VAR
count := Counter();
BEGIN
Print(“\nStarting timer ” & Fmt.Int(count) &
“ for ” & Fmt.LongReal (cl.time) & “ seconds.”);
Thread.Pause (cl.time);
Print (“\nFinished timer ” & Fmt.Int(count) &
“ after ” & Fmt.LongReal (cl.time) & “ seconds.\n”);
RETURN NIL;
END TimerApply;

Thread Synchronization. The variable timer_count keeps track of the count for
the threads created; t1mer_count_mu, a musex (or a lack) protects the critical
sections, where multiple threads may be contending for timer-count.

VAR
timer_count: CARDINAL := 0;
timer_count_mu := NEW(MUTEX);

counter returns a new counter. COunter’s critical section (the place where
multiple threads may be racing each other) is protected by a LOCK statement. Note
that mutex is automatically unlocked upon exit from the scope of the LOCK
statement, so RETURN timer_count effectively unlocks timer_count onits
way out of the procedure.

PROCEDURE Counter(): CARDINAL =
BEGIN
LOCK timer_count_mu DO
INC (timer_count);
RETURN timer_count;
END;
END Counter;

Forking Threads. The main program waits for user input and forks threads for new
timers when the user asks for one.

The main loop reads input from the user to determine how long the next forked thread
should pause. A closure is created dynamically to be passed into Thread . Fork,
which will fork a new thread and run closure.apply().

87

BEYOND THE BASICS

VAR
input: CARDINAL;
closure: TimercClosure;
BEGIN
LOOP
I0.Put(Prompt);
input := I0.GetInt();
closure :=
NEW(TimerClosure, time := FLOAT(input, LONGREAL));
EVAL Thread.Fork (closure);
END;
END ThreadeExample.

There was no need to wait for the forked thread in this example. To wait for a forked
thread to complete, you call Thread. Join (th) which returns the value returned
by the thread’s app 1y method.

th := Thread.Fork (cl);
... do other activities ...
result := Thread.Join (th)

Other calls in the Thread interface, such as Signal,wait, and Broadcast
provide for more intricate synchronization patterns. For a thorough introduction, see
Andrew Birrell’s article, Introduction to Programming with Threads, available on-line in the
Technical Notes section of your CM3-IDE distribution.

5.4 Opaque Types: Information Hiding And
Encapsulation

Encapsulating implementation details is a key technique in managing the growth of
large programs. Often, you may want to reveal references to data structures in a
module, while hiding the structure and implementation of a datatype. Opaque types are
a mechanism for enforcing such a separation. An gpague #jpe is a name that denotes an
unknown subtype of a known reference type. For example, all you know about an
opaque subtype of REFANY is that it is a traced reference. (REFANY is the root of the
traced heap.) The actual type denoted by an opaque type name is called its concreze pe.

Different scopes can reveal different information about an opaque type. For example,
what is known in one scope only to be a subtype of REFANY could be known in
another scope to be a subtype of ROOT.

An opaque type declaration has the form:

TYPE T <: U

where T is an identifier and U an expression denoting a reference type. It introduces
the name T as an opaque type and reveals that U is a supertype of T. The concrete type
of T must be revealed elsewhere in the program.

88

BEYOND THE BASICS

5.4.1 Fully Opaque Types

The simplest way to hide information is to divide your program into two groups:
portions of your code where everything about the structure of a type is revealed, and
portions where nothing is revealed. This dichotomy is the essence of fully opaque types.
A fully opaque type is a subtype of REFANY, or ADDRESS, corresponding to a traced
or untraced reference to an unknown type.

By combining fully opaque types with interfaces, you can create abstract datatypes with
full encapsulation: the interface pairs the name of the type, with a set of procedures
that operate on that type.

In the next example, the P@rson interface exports an opaque type Person. T, and
the operations New and Describe.

INTERFACE Person; IMPORT Wr;
Declare Person. T as an opaque type.

TYPE
T <: REFANY;

The Person interface defines an opaque type T (often called an abstract data type) with
two operations:

® New for creating new instances

e Describe for printing textual descriptions.

Since none of the clients can “see through” this opaque interface, it should describe
precisely what the implementation does without revealing Aow the implementation
works.

The statement U <X V means that U is a subtype of V. When you see such a
declaration, you can assume that an instance of U supports at least as many operations
as an instance of V. In this case, since V is REFANY, all you can assume about
Person.T is thatitis a traced reference. It’s traced, so you don’t have to worry about
managing its memory. It’s a reference so you can store it, or compare it with another
reference of the same type for equality.

Gender = {Female, Male};
Person.Gender is an enumeration type with elements Female and Male.

PROCEDURE New (firstname, lastnhame: TEXT;
gender: Gender): T;

Create a new Person. T given a first name, a last name, and a gender.

89

BEYOND THE BASICS

PROCEDURE Describe(person: T; desc: TEXT; wr: Wr.T := NIL);

Write a textual description, d@SC, of a Person. T to the writer stream Wr. If Wr is
not specified, write the description to the standard output.

END Person.

Note that nothing about the implementation of P@rson. T is visible to clients of
Person. Indeed, the compiler will not know any more information while compiling
clients of this interface; hence, if you change the implementation for this module, you
don’t have to recompile its clients.

MODULE Person;
IMPORT IO, Wr;

The Person module implements the opaque type Person.T. To do so, it reveals
the representation of Person. T completely. Within the module, we can use the
items declared in the interface without qualification. Hence, T in this module refers to
Person.T and Gender refers to Person.Gender

Since the only information specified in the PE€rson interface is that Person.Tisa
reference—or more precisely, Person.T <: REFANY—the implementation can
specify the full structure of the object. Indeed, the full revelation of Person.T is
similar to an ordinary object type declaration.

REVEAL
T = BRANDED OBJECT
firstname, lastname: TEXT;
gender: Gender;
METHODS
fullname(): TEXT := FullName;
END;

The BRANDED keyword is required in all full revelations and ensures that instances of
Person.T are distinct from all other types with the same structure. Essentially, the
BRANDED keyword overrides Modula-3’s structural equivalence for this type. See the
language reference for more information about branding.

Next, we declare an array of title names. The outside wotld, of course, does not know
about the existence of this array as it is not visible from the interface Person.

CONST
Title = ARRAY Gender OF TEXT {“Ms.”, “Mr.”};

Procedure FulTName is the implementation of method fullname() of
Person.T. Since Ful 1Name is not exported by the Person interface it will not
be visible to any outside modules.

20

BEYOND THE BASICS

PROCEDURE FullName (p: T): TEXT =
BEGIN
RETURN Title[p.gender] & “ “ & p.firstname &
“ 7 & p.lastname;
END FullName;

The next procedure, DeSCribe, is exported and hence visible to all clients of the
Person interface. Since Describe is defined within this module, the
representation of p. fulTname () is visible within its body.

PROCEDURE Describe(p: T; desc: TEXT; wr: Wr.T := NIL) =
BEGIN

10.Put (p.fullname() & “ is “ & desc & “.\n”, wr);
END Describe;

BEGIN
END Person.

5.4.2 Clients of an Opaque Type
OpaqueExamp]e is a client of the Person interface:

MODULE OpaqueExample EXPORTS Main;
IMPORT Person;

There, we assign new Person. T instances to three variables jane, june, and
john (using various combinations of positional and keyword parameter binding.)

VAR
jane: Person.T :=
Person.New(firstname := “June”,
Jastname := “Doe”,
gender := Person.Gender.Female);
june := Person.New(“June”,”Doe”,
gender := Person.Gender.Female);
john := Person.New("John”,”Doe”, Person.Gender.male);

Next, we call Person.Describe a few times. Note that jane. firstname,
jane.Tastname, or even june. fullname() are not available in this module,
even though they are available within the implementation of P@rson, since
Person.T is an opaque type.

CONST
address = “123 Main Street”;

BEGIN
Person.Describe (jane, “lives at “ & address);
Person.Describe (june, “lives at “ & address);
Person.Describe (john, “lives at “ & address);

Indeed, if you were to invent your own P@€rson type—even if its structure was the
same as that of Person . T—the compiler would prevent you from passing the
imposter into Person.Describe. The only way to get a new Person. T object
is by calling Person.New.

91

BEYOND THE BASICS

END OpaqueExample.
By using opaque types, the P@rson interface achieves full encapsulation.

Sometimes full encapsulation is too strong. In the rest of this section, you learn how to
encapsulate only parts of your objects.

5.4.3 Partially Opaque Types: Revealing Types in Moderation

Opagque types hide and reveal type information in an extreme manner. If the concrete
implementation of an opaque type is revealed in your current scope, you know
everything about the structure and the implementation of the type. If the concrete
revelation is not available in your scope, then you may know nothing about the
structure and implementation for the type.

In practice, you may need more control over the visibility of types in different parts of
your programs. Partial revelation of opaque types enables fine-grained control over the
visibility of fields and methods of your objects.

A natural extension of the opaque type concept, partially opaque types may be used to
generalize the language-enforced visibility rules. Using partial revelation, you may
define visibility rules that fit your particular application, instead of confining your object
types to the hard-coded public, private, protected, and friend visibility rules common in
other languages.

A new version of the P@rson interface illustrates partial revelation. A partially opaque
type Person. T is defined, with two operations 1nit and fullname.

INTERFACE Person;

Using the idiom TYPE T <: Public; Public = OBJECT ... END,the
next fragment states that the P@rson. T supports at least operations 1Nt and
fullname, without revealing the exact structure of Person. T, or revealing what
other methods Person. T may support.

To declare Person. T, first, we declare a type T as a subtype of Pub11i C.

TYPE -
T <: Public;

Then, we define Pub 11 C, the publicly available revelation of this Person.T to be
an object type, with the methods init and fullname.

PubTic = OBJECT
METHODS
init(firstname, lastname: TEXT; gender: Gender): T;
fullname(): TEXT;
END;

92

BEYOND THE BASICS

The name Pub11 C is used here by convention, not by a hard-coded rule. The method
N1t initializes the object using 1 rstname, Tastname, and gender and
returns the initialized object. The 11t method is used by convention to initialize
values as they are.

The method fullname returns the full name of the Person.T object in question.

Gender = {Female, Male};
END Person.

In contrast with fully opaque definition of the person interface, there is no need to
provide a New procedure in the interface. Clients of this interface can freely instantiate
Person.T using the built-in NEW operation. Another difference is that clients of a
partially-opaque type can invoke methods on it. In this case, the methods 1n1t and
fulTname are available to all clients of Person. After calling a built-in NEW
operation, you can call N1t to initialize the newly instantiated object. The method
fulTname returns a text string containing the name of a person; hence, there is no
need for the DesSCribe procedure to exist inside this module.

Declaring a partially opaque type also allows clients of this interface to create new
subtypes of Person.T. By calling Person.T.n1t, such subtypes can assure that
the Person. T portion of the object is initialized propetly.

MODULE Person;

The implementation of the P@rson interface implements the partially opaque type
Person.T. To do so, it reveals the representation of Person. T fully.

The Person interface already defines the signatures for procedures 1n1t and
fulTname. It is the role of this module to implement these methods, and add the
underlying implementation structure. The BRANDED keyword will ensure that
instances of other types with identical structure cannot masquerade as Person.T
objects.

REVEAL
T = Public BRANDED OBJECT
firstname, lastname: TEXT;
gender: Gender;

OVERRIDES
init := Init;
fullname:= FullName;
END;

Procedure INi t initializes a P@rson. T object, and returns the Se 1T parameter just
initialized.

93

BEYOND THE BASICS

PROCEDURE Init (self: T; firstname, lastname: TEXT;
gender: Gender): T =

BEGIN
self.firstname := firstname;
self.lastname := lastname;
self.gender := gender;
RETURN self;

END Init;

Define the procedure FulTName, the implementation of method fulTname () of
Person.T. Procedure FulTName itself is not exported to the clients of Pe@rson
interface, but the method fulTname () of Person. T is visible to clients.

PROCEDURE FullName (p: T): TEXT =
BEGIN
RETURN Title[p.gender] & “ ” & p.firstname & “ ” &
p.lastname;
END FullName;

CONST

Title = ARRAY Gender OF TEXT {“Ms.”, “Mr.”};
BEGIN
END Person.

5.4.4 Subtyping Partially Opaque Type
In the next module, Employee. T is defined as a subtype of a partially opaque type
Person.T.

INTERFACE Employee;
IMPORT Person;

TYPE
T <: Public;
Public = Person.T OBJECT
METHODS
init(first, Tast: TEXT;
gender: Person.Gender;
company: TEXT): T;
END;
END Employee.

The declaration of EMployee. T is similar to that of Person.T. In this case, only a
new method is declared. (As you will see, Employee. T also overrides the
implementation of Person.T. fulTname () method, however, Employee’s
clients need not know this. So, if the implementation of fulTname () changes,
Employee’s clients don’t need to be re-compiled.)

Employee.Publi c defines the publicly available definition of Employee.T, to
be used in full revelation of Employee. T inside Emp10yee’s implementation.

94

BEYOND THE BASICS

MODULE Employee;
IMPORT Person;
IMPORT TextIntTbl, Fmt;

REVEAL
T = Public BRANDED OBJECT
company: TEXT;
id: INTEGER;
OVERRIDES
init := Init;
fullname := FullName;
END;

The above statement gives the full implementation of Employee . T, along with its
fields company, and 1d, and its method implementations. Note that
Employee.Publicisjust a shorthand for Person.T OBJECT METHODS
init(...) END;itis named Pub11C only for convenience.

VAR
employee_count := NEW(TextIntTbl.Dpefault).init();

Init defines the implementation of the EmMployee.T.1n1t method. It takes an
extra COMPanNy parameter.

PROCEDURE Init (self: T;
first, Tast: TEXT;
gender: Person.Gender;
company: TEXT): T =

VAR
emp_id := 0;

BEGIN
EVAL Person.T.init(self, first, last, gender);
self.company := company;

EVAL employee_count.get(company, emp_id);
INC(emp_id);
self.id := emp_id;
EVAL employee_count.put(company, emp_id);
RETURN self;

END Init;

FulTname defines the implementation of the Employee . T. fullname method.
Note how it uses its supertype’s Tul Tname method by calling

Person.T.fullname(self, ...).
PROCEDURE FullName(self: T): TEXT =
BEGIN
RETURN Person.T.fulTlname(self) & “, ” &

:emp1oyee #° & Fmt.Int(s§1f.id) &

at ” & self.company & “,”;
END FullName;

95

BEYOND THE BASICS

BEGIN
END Employee.

5.4.5 Clients of a Partially Opaque Type
The main module, PartiallyOpaque, imports both Person and Employee

MODULE PartiallyOpaque EXPORTS Main;
IMPORT Person, Employee;
IMPORT IO;

The next procedure, Describe, uses the fullname method of Person.T to
print a textual description of a person. Note that Person. T does not reveal its
internal structure, but it does reveal the fulTname method, which is enough to allow
the Describe procedure to be included this module instead of the Person
module.

Instead of having to change P@rson every time a client requires 2 new Describe
procedure, the new structure allows each client to implement its own Describe
procedures without affecting Person.

PROCEDURE Describe(p: Person.T; desc: TEXT) =
BEGIN

I0.Put (p.fullname() & “ is ” & desc & “.\n”);
END Describe;

The next statements assign new Person . T instances to four variables John, jane,
june, and jack. Note the use of the v 1= NEW(T) .init(...) idiomin
declaring, instantiating, and initializing these instances.

VAR
john := NEwW(Person.T).init(“John”, “Doe”,
Person.Gender.Male);

jane := NEW(Employee.T).init(“Jane”, “Doe”,
Person.Gender.Female,
“ACME Ltd”);

june := NEW(Employee.T).init(“June”, “Doe”,
Person.Gender.Female,
“Mass. State”);

jack := NEW(Employee.T).init(“Jack”, “smith”,

Person.Gender.Male,
“ACME Ltd”);

96

BEYOND THE BASICS

Now, assign 2 new Person. T with a special fulTname method to the variable
madonna

VAR
madonna := NEW(Person.T, fullname := Madonna);

PROCEDURE Madonna(<*UNUSED*>self: Person.T): TEXT =
BEGIN

RETURN “Madonna”
END Madonna;

The main body will make a few calls to Describe. Note the use of
john .fullname) to call a method defined on a Person. T, and
Person.T.fullname(june) to calla Person.T method on an
Employee.T. Of course, the latter case is type-checked at compile-time.

CONST _
address = “123 Main Street”;

BEGIN
Describe (madonna, “a pop icon”);
Describe (john, “a resident at ” & address);
Describe (jane, “a resident at ” & address);
Describe (june, “a resident at ” & address);
Describe (jack, john.fullname() & “’s brother.”);
Describe (june, “called “ &
Person.T.fullname(june) & “ outside work”);
END PartiallyOpaque.

Partially opaque types are powerful structuring constructs for building large programs.
For more information on partially opaque types, see the language specification, and 1/O
Streams: Abstract Types, Real Programs in Syszerzs Programming with Modula-3.

5.5 Generics: Resuable Data Structures and
Algorithms

A genericis a template for instantiating similar modules. Generics—called parameterized
types, or templates in other languages— allow you to build generic data structure and
algorithm code and readily use them in different contexts. For example, a generic hash
table module could be instantiated to produce tables of integers, tables of text strings,
or tables of a user-defined type. Different generic instances are compiled
independently: the source program for the generic and its parameters is reused, but the
compiled code for one instance has no relationship with other compiled instances.

To keep Modula-3 generics simple, they are confined to the module level: generic
procedures and types do not exist in isolation, and generic parameters must be entire
interfaces. In the same spirit of simplicity, there is no separate type checking associated

97

BEYOND THE BASICS

with generics. Implementations are expected to expand the generic and type-check the
result.

Usually generic interfaces and modules contain code that operates independently of the
type of data it operates on. The type that the generic will be operating upon is defined

at compile-time.

5.5.1 Using Generics

In this example, we use the standard L1 St generic interface to implement a set
abstraction, and the standard Tabe generic interface to implement a mapping from
names to action procedures.

Before exploring the program, let’s review the L1St, Atom, and Atom-List
interfaces. An abbreviated version of each interface is included here; see the on-line
version of the interface for full comments.

5.5.2 A Generic Example: List
The generic interface L1St provides operations on linked lists of arbitrary element

types.
GENERIC INTERFACE List(Elem);

Where E1em. T is not an open array type and the E1em interface contains:

CONST Brand = <text-constant>;
PROCEDURE Equal(kl, k2: Elem.T): BOOLEAN;

Brand must be a text constant. It will be used to construct a brand for any generic
types instantiated with the L1 St interface.

CONST Brand = “(List ” & Elem.Brand & “)”;

A L1St.T represents a linked list of items of type E1em. T.

TYPE T = OBJECT head: Elem.T; tail: T END;
PROCEDURE Cons(READONLY head: Elem.T; tail: T): T;
PROCEDURE Listl1(READONLY el: Elem.T): T;
PROCEDURE List2(READONLY el, e2: Elem.T): T;
PROCEDURE List3(READONLY el, e2, e3: Elem.T): T;
PROCEDURE FromArray(READONLY e: ARRAY OF Elem.T): T;
PROCEDURE Length(]: T): CARDINAL;
PROCEDURE Nth(1l: T; n: CARDINAL): Elem.T;
PROCEDURE Member(1: T; READONLY e: Elem.T): BOOLEAN;
PROCEDURE Append(11: T; 12: T): T;
PROCEDURE AppendD(11: T; 12: T): T;
PROCEDURE Reverse(l: T): T;
PROCEDURE ReverseD(1: T): T;

END List.

298

BEYOND THE BASICS

5.5.3 Parameter to a Generic: Atom
Interface Atom will be used as a parameter to the LSt generic interface, hence
Atom must include 2 Brand constant and an Equal comparison procedure.

INTERFACE Atom,;

An Atom. T is a unique representative for a set of equal texts (like a Lisp atomic
symbol.)

TYPE T <: REFANY;

CONST Brand = “Atom-1.0";

PROCEDURE FromText(t: TEXT): T;

PROCEDURE ToText(a: T): TEXT;

PROCEDURE Equa](al, a2: T): BOOLEAN;

PROCEDURE Hash(a: T): INTEGER;

PROCEDURE Compare(al, a2: T): [-1..1];
END Atom.

5.5.4 Instantiating a Generic: AtomList
Finally, we instantiate a L1St with an AtOm parameter:

INTERFACE AtomList = List (Atom) END AtomList.

AtomL1i St can be imported by other modules that use lists of atoms. The main
program for this example imports AtomL 1 St.

Most generic interfaces have been pre-instantiated for common datatypes such as
Texts and Atoms. Indeed, AtomL1 St is one such interface. See the Interface Index
for an overview of the available generic interfaces. The language tutorial and reference
manual also describe the behavior of generics in more detail.

The rest of this section describes how you can use instantiated generics, and how you
can instantiate generics with user-defined parameters.

5.5.5 Using Instances of Generics

The main module, Generics, uses an AtOmML1 St to keep track of names, as well as
an instance of the Tab1e interface that maps Atoms to ACtions. The instantiation
of the table with a user-defined type ACt10n is described later. Import the ACtion
interface, defined in this package, and the AtOmACtionTb]1, a table mapping atoms
to actions.

MODULE Generics EXPORTS Main;

IMPORT Atom, AtomList;

IMPORT Action, AtomActionTbl;

IMPORT Process, IO; <* FATAL IO.Error *>

29

BEYOND THE BASICS

Atom List operations. Insert an element into the list.

PROCEDURE Insert (VAR Tist: AtomList.T;
atom: Atom.T) =
BEGIN
IF NOT AtomList.Member (list, atom) THEN
Tist := AtomList.Cons (atom, 1list);
END
END Insert;

Print all elements of the list by iterating over its members.

PROCEDURE Print(x: AtomList.T) =
BEGIN
WHILE x # NIL DO
I0.Put (Atom.ToText (x.head) & “ ”);
X = x.tail;
END;
END Print;

Command operations. Actions define initial values for the action table.

CONST
Actions = ARRAY OF Action.T {
Action.T { “show”, Show},
Action.T { “quit”, Quit},
Action.T { “reset”, Reset},
Action.T { “help”, Help}};

Each procedure defines what each action should do. Note that the proc field of
Action.T is defined to be a PROCEDURE (), so we can assign any of QUi t,
Rest, Help, or Show to fields of ACtions.

PROCEDURE Quit() = BEGIN Process.Exit(O); END Quit;
PROCEDURE Reset() = BEGIN input_set := NIL; END Reset;

PROCEDURE Show() =
BEGIN

Print(input_set); I0.Put (“\n”);
END Show;

PROCEDURE He1p() =
BEGIN
I0.Put(“Ccommands: show, reset, help, or quit.\n” &
“other items will be inserted into the Tist.\n”);
END Help;

100

BEYOND THE BASICS

The variable command_tab e is an atom=>action table; input_set is an atom
list, containing all the elements that will be entered.

VAR
command_tabTle := NEwW(AtomActionTbl.Default).init();
input_set : AtomList.T := NIL;
BEGIN
FOR X := FIRST(Actions) TO LAST(Actions) DO
EVAL command_table.put(Atom.FromText (x.name), X);
END;

I0.Put (“welcome to the atomic database.\n”);

I0.Put (“Try any of commands: show quit reset help.\n”);

I0.Put (“Any other string will be entered into the” &
“database.\n\n");

Loop, get the command line. If it’s a command, do it. Otherwise insert the command
line into the Tnput_set. If atomis in the command_tab1e then run the
corresponding ACt10N.T; otherwise, Insert the atom into the input_set.

LOOP
I0.Put (“atom-db > 7);
IF I0.EOF () THEN EXIT END;

VAR
cmd := I0.GetLine();
atom := Atom.FromText(cmd);
action: Action.T;

BEGIN

IF command_table.get(atom, action)

THEN action();

ELSE Insert(input_set, atom);

END;

END;
END;

END Generics.

See the Interface Index for more information on various kinds of generics.

5.5.6 Instantiating Generics for User-Defined Types

Since ACti0n is a user-defined type, there are no pre-instantiated interfaces available
for it. CM3-IDE provides handy makefile procedures for instantiating various generics
automatically.

The Table interface requires a ¢y and a value parameter:
GENERIC INTERFACE Table (Key, value) = .. END Table.

The Key in this case is Atom, the Value is an ACtion. Here, ACti0n is a user-
defined interface. ACtion. T, denoting actions for commands, is a procedure with no
parameters and no results. ACt10n.Brand is used by the table generic to create a
composite brand for our table.

101

BEYOND THE BASICS

INTERFACE Action;
TYPE
T = RECORD
hame : TEXT
handler : PROCEDURE(Q);
END
CONST
Brand = “Action”;
END Action.

5.5.7 Instantiating Generics in a Makefile

Finally, the makefile for this package will instantiate an atom=>action table with the
name AtomActionTbl:

import (“T1ibm3”)

table(“AtomAction”, “Atom”, “Action”)
module(“Action”)

implementation (“Generics”)

program (“atom-db”)

(If you haven’t built your package yet, you won’t be able to see the contents of
AtomActionTb because it is generated as part of the build process.)

5.6 Unsafe Constructs: System Programming in
CM3-IDE

This program illustrates the use of unsafe constructs, such as LOOPHOLE—an unsafe
cast.

The default mode for programs in CM3-IDE is safs, i.e., the language and its runtime
are responsible for checking run-time errors. For programming intricate systems,
integrating legacy systems, or making programs more efficient, you may decide that you
would like the freedom to perform tasks that circumvent language-enforced safety.

You have the freedom to perform unsafe operations in ##safe modules by using
additional operations, such as LOOPHOLE (an unsafe cast to an arbitrary type) or ADR
(address of a variable). These operations are restricted to unsafe modules because they
violate invariants enforced and assumed by the language in the safe modules.

With the freedom in unsafe modules comes the responsibility for the programmer to
check for run-time errors in place of the language runtime. Yox are now responsible for
making sure that a LOOPHOLE is not causing run-time errors.

Separation of safe and unsafe codes is a key technique in writing portable programs
that utilize unsafe or non-portable features of particular systems. Indeed it is common
practice for systems programmers to divide their code into safe and unsafe portions,

102

BEYOND THE BASICS

even if the programs are written in C. This way, the bulk of porting to a new platform,
lies in the unsafe portion. CM3-IDE extends this model by providing language support
for separation of safe and unsafe modules. Both interfaces and modules can be marked
as UNSAFE.

If you care about robustness of your code, you are best to code most (if not all) of your
programs in the (default) safe mode, since it is much easier to understand and explain
the behavior of safe programs, hence it is also easier to make them robust.

A safe module can only import safe interfaces, so in safe programming you can’t
mistakenly count on unsafe functionality in another unsafe module.

An unsafe module can make its functionality available to other safe modules by
exporting a safe interface. This is how you can bridge the safety gap—otherwise if your
program includes one unsafe module, then your whole program must be marked
unsafe. When you export a safe interface from an unsafe module, you the programmer
are guaranteeing the intrinsic safety of the calls in the safe interface.

One nice aspect of the inclusion of the unsafe features in the language is that you don’t
have to rely on calls to external, lower-level languages to make your programs more
efficient. Indeed, the unsafe portions of your code will have as much control over the
representation and layout of your data structures as you have when programming in an
unsafe language like C. The support for unsafe modules has been used to implement
operating systems, windowing systems, networking software, and the language run-
time itself in Modula-3, a task that is not easily accomplished with other high-level
languages.

5.6.1 Unsafe Coding Example

In this small example, an interface to the standard C library call abs is marked inside
an unsafe interface C11b, which is imported by an unsafe main program,
UnsafeExample. Note that UnsafeExampe cannot be marked safe because it
imports an unsafe interface.

UNSAFE INTERFACE Clib;
<*EXTERNAL*> PROCEDURE abs(x: INTEGER): INTEGER;
END Clib.

The pragma <*EXTERNAL*> declares a procedute to be provided at link-time by
external code. (In this case, by the C runtime.)

103

BEYOND THE BASICS

Following, the main module imports C11b and uses C11b. abs.

UNSAFE_MODULE UnsafeExampTle EXPORTS Main;
FROM Clib IMPORT abs;
IMPORT IO, Fmt;

CONST

an_

BEGIN

integer = 10;

.Put (“Absolute value of ”);
.PutInt (an_integer);

Put (“dis)

.PutInt (abs(an_integer));
Put (“.\n");

IO.

Put (“Absolute value of ” & Fmt.Int(-an_integer) &
“dis “ & Fmt.Int(abs(-an_integer)) & “.\n”);

END UnsafeExample.

As an application programmer using CM3-IDE, you need not worty about unsafe
modules unless you are writing code where efficiency is the first concern, or you are
using non-portable features of an operating system or external component. The full
details of the available unsafe features are described in the Ianguage Reference.

104

BEYOND THE BASICS

5.7 Summary

Exceptions. A robust program must handle error conditions well. Exceptions are a
convenient language construct for handling errors and abnormal conditions in a way
that preserves your program structure.

Objects. A flexible structuring construct for building programs, objects in CM3-IDE
are garbage-collected. They conform to a single-inheritance hierarchy.

Threads. Often you may need to manage multiple concurrent activities as part of your
program. Threads provide the required features.

See Andrew Birrell’s Introduction to Programming with Threads, in the Technical Notes
section of your distribution, for a thorough introduction to multi-threaded
programming.

Opaque types. For full encapsulation of the internal structure of types in one module
from other modules, you can use opaque types. Opaque type visibilities are enforced
by the language.

Partially Opaque Types. To allow multiple levels of visibility of objects in your
programs, you can use partially opaque types. They are a generalization of hard-coded
visibility rules such as public, private, protected, and friend modes in other languages.

Generics. Reuse is an important aspect of large program development. Known also as
templates or parametrized types, generic interfaces and modules allow you to reuse
data structures and algorithms. See CM3-IDE Interface Index on page 143 for a list of
available generics.

Unsafe Programming. While safe programming is the default for CM3-IDE, at times
you may not be able to avoid the need for unsafe code, for example, to write efficiency-
critical portions of your program, or to interface with other languages. Unsafe modules
allow you to perform tasks that are ordinarily disallowed by the language safety
semantics. CM3-IDE provides mechanisms for managing unsafe portions of your code
and for combining unsafe code with safe code.

105

BEYOND THE BASICS

This page left blank
intentionally.

106

DEVELOPMENT RECIPES

Read this chapter
if you know CM3-
IDE well, and
would like to use
CM3-IDE for
system
development.

6. Development Recipes

Assuming that you are familiar with the CM3-IDE environment and the Modula-3
language, this chapter describes a number of recipes for building simple realistic
systems applications.

A handful of complete programs illustrate the use of advanced facilities in CM3-IDE.

You can find the sources for programs in this chapter in the ¥ Examples section of
your CM3-IDE environment.

Using a simple automated bank teller scenario, Robust Distributed Applications:
Network Objects on page 108 illustrates how to build distributed applications with
Network Objects.

Client/Server Computing: Safe TCP/IP Interfaces on page 115 describes the safe,
multi-platform, and multi-threaded TCP/IP interfaces. A Finger client and a simple
HTTP server are described.

Taking Persistent Snapshots of Objects: Pickles on page 120 demonstrates how to
transcribe objects onto an I/O stream.

Quick Comparison of Large Data: Fingerprints on page 122 outlines how to take
fingerprints of large data structures, and use the fingerprints to compare the data
structures efficiently.

Portable Operating System Interfaces on page 124 illustrates the use of portable
interfaces for operating system services, such as: file systems access, process
management, thread creation, and environment variables. A complete and portable
command-shell program is used as a demonstration.

Dynamic Web Applications: the Web Server Toolkit on page 135 outlines a simple
contact database program based on the web toolkit.

Interacting with C Programs on page 137 shows how to have your code call C
programs or be called by C programs. Examples illustrate the integration of C source
code and libraries into CM3-IDE.

107

DEVELOPMENT RECIPES

6.1 Robust Distributed Applications: Network
Objects

Network Objects allows an object to be handed to another process in such a way that
the process receiving the object can operate on it as if it were local. The holder of a
remote object can freely invoke operations on that object just as if it had created that
object locally.

Further, it can pass the object to other processes. Thus, the Network Objects system
allows the development of not just simple client/setver applications, but more general
multi-tiered distributed applications.

When a program calls another through Network objects, we refer to the caller as #he
client, and the callee as #be server. In the context of network objects, the names client and
server signify roles in a particular interaction—a server may in fact be a client of
another server.

The contract between the client and the server is defined by a comon interface.

Here we describe a simple automated bank teller program as an example by outlining
each component: the interface, the client and the server.

6.1.1 The Common Interface
The Bank interface defines the common contract between client and server in our
example.

NetObj is the primary interface for building network object applications.
NetObj.Errorand Thread.Alerted may be raised by network object
operations. A Bank. T is a network object which supports the operation
findAccount, which returns 2 Bank . Account object. Type Bank . Account
supports operations deposit, withdrawand get_balance.

Network object operations can raise user-defined exceptions such as BadAmount,
and InsufficientFunds.

108

DEVELOPMENT RECIPES

INTERFACE Bank;
IMPORT NetObj;
FROM NetObj IMPORT Error;
FROM Thread IMPORT Alerted;
TYPE
T = NetObj.T OBJECT METHODS
findAccount (acct: AcctNum): Account
RAISES {Alerted, Error};
END;
TYPE
Account = NetObj.T OBJECT METHODS
deposit (amount: REAL)
RAISES {BadAmount, Alerted, Error};
withdraw (amount: REAL) RAISES {BadAmount,
InsufficientFunds, Alerted, Error};
get_balance (): REAL RAISES {Alerted, Error};
END;

TYPE
AcctNum = [1..100];

EXCEPTION
BadAmount;
InsufficientFunds;
END Bank.

A simple makefile instructs CM3-IDE that Bank . T and Bank . Account are
network objects. CM3-IDE will generate the required stubs automatically as part of
this library, so a client or a server in this scenario may use netobj-interface.

Import netobj to bring in the network object libraries.
import(“netobj”)
For each network object type I. T you must call netobj (I, T)

interface(“Bank”)
netobj(“Bank”, “T”)
netobj(“Bank”, *“Account”)
Tibrary(“netobj-interface”)

6.1.2 A Network Object Server
NetObjServer is a sample implementation of a network object server that exports
an implementation of the BanKk interface.

MODULE NetObjServer EXPORTS Main;
IMPORT Bank, NetObj, Thread;
IMPORT IO, Fmt;

109

DEVELOPMENT RECIPES

BankImpl defines a full representation for the Bank . T network object.

TYPE
BankImpl = Bank.T OBJECT
accounts : ARRAY Bank.AcctNum OF Account;
OVERRIDES
findAccount := FindAccount;
END;

Find an account in the table of accounts:

PROCEDURE FindAccount (self: BankImpl;
acct: Bank.AcctNum
): Bank.Account =
BEGIN
RETURN self.accounts[acct];
END FindAccount;

For Bank . Account network objects, Bank . Account uses a MUTEX to
synchronize access to its balance. It also implements the operations deposit,
withdraw, and get_balance.

TYPE
Account = Bank.Account OBJECT
Tock : MUTEX;
balance : REAL := 0.0;

OVERRIDES
deposit := Deposit;
withdraw := withdraw; (* not included ¥*)
get_balance := Balance; (* not included *)
END;

Deposit the money, making sure to serialize access with others trying to operate on this
account.

PROCEDURE Deposit (self: Account; amount: REAL)
RAISES {Bank.BadAmount} =
BEGIN
IF amount < 0.0
THEN RAISE Bank.BadAmount;
END;
LOCK self.lock DO
self.balance := self.balance + amount;
END;
END Deposit;

110

DEVELOPMENT RECIPES

Withdraw the money, making sure to serialize access with others trying to operate on
this account.

PROCEDURE Withdraw (self: Account; amount: REAL)
RAISES {Bank.BadAmount,

Bank.InsufficientFunds} =
BEGIN
IF amount < 0.0
THEN RAISE Bank.BadAmount;
END;
LOCK self.lock DO
IF self.balance < amount
THEN RAISE Bank.InsufficientFunds
END;
self.balance := self.balance - amount;
END;
END withdraw;

Get the balance, making sure to serialize access with others trying to operate on this
account.

PROCEDURE Balance (self: Account): REAL =
BEGIN
LOCK self.lock DO
RETURN self.balance;
END;
END Balance;

Create a new bank by instantiating all the account objects.

PROCEDURE NewBank () : BankImpl =
VAR b := NEwW (BankImp1);

BEGIN
FOR i := FIRST (b.accounts) TO LAST (b.accounts) DO
b.accounts[i] :=
NEW (Account, Tock := NEwW (MUTEX));
END;
RETURN b;

END NewBank;

111

DEVELOPMENT RECIPES

Print a summary of all the active accounts, i.e., ones that have a positive balance.

PROCEDURE PrintSummary() =
BEGIN
I0.Put (BankName & “: active account information\n”);
FOR i := FIRST(bank.accounts) TO LAST(bank.accounts) DO
IF bank.accounts[i].balance > 0.0 THEN
I0.Put (Fmt.Int(i) & “....... $”
Fmt.Real (bank.accounts[i].balance) & “\n”);
END;
END;
END PrintSummary;

Finally, the server’s global variables and main body. The main body prints the
summaries for accounts every 60 seconds. Since the network objects runtime forks and
manages threads to handle incoming calls, the server can simply loop, printing its
summary.

CONST
BankName = “LastNationalBank”;
VAR
bank := NewBank();
BEGIN
I0.Put (“Starting bank server.\n”);
TRY

(* Export the bank object under “LastNationalBank”. *)
NetObj.Export (BankName, bank);
I0.Put (“Bank server was exported as ” &
BankName & “\n”’);
LOOP
Thread.Pause (60.0D0);
PrintSummary();
END;
EXCEPT (* If there is a problem, print an error and exit. *)
| NetObj.Error =>
I0.Put (“A network object failure occured.\n”);
| Thread.Alerted => I0.Put (“Thread was alerted.\n”);
END;
END NetObjserver.

The makefile for the server is simple. Note that the server must import the library
defining the common interface. In this case, it’s called netobj-interface.

import(“netobj”)

import(“netobj-interface”) % the common interface
implementation(“NetObjServer”)
program(“netobj-server’)

112

DEVELOPMENT RECIPES

6.1.3 A Network Object Client
NetObjClient is a sample implementation of a network object client.

MODULE NetObjC]ient EXPORTS Main;
IMPORT Bank, NetObj, Thread;
IMPORT IO, Fmt, Scan, Text, FloatMode, Lex;
VAR
bank: Bank.T;
acctnum: Bank.AcctNum;
acct: Bank.Account := NIL;
cmd: TEXT;

Print a prompt on the screen and asks for input from the user. If the current account is
set, it will display the current account and the available balance.

PROCEDURE Prompt(txt: TEXT): TEXT RAISES {IO.Error} =
BEGIN
TRY
IF acct # NIL THEN
I0.Put (“\n[acct:” & Fmt.Int(acctnum) &
“, balance: $” &
Fmt.Real (acct.get_balance()) & “]);
END;
EXCEPT
ELSE (* since it is only a prompt, we ignore all exceptions *)
END;
I0.Put (txt & “ : ");
RETURN IO.GetLine();
END Prompt;

EXCEPTION
InvalidAccount;
Quit;

This client will take input commands and make calls to network objects. As you can
see, most of the work is in the reading of input from the user!

CONST
BankName : TEXT = “LastNationalBank”;
BEGIN
I0.Put (“welcome to ” & BankName & “\n”);
I0.Put (“Connecting to bank server...”);
TRY
bank := NetObj.Import (BankName);
EXCEPT

I0.Put (“done.\n”’);
I0.Put (“Bank Teller Client Started...\n”);
I0.Put (“valid commands are: \n” &

“ account : set a current account for further ” &

“transactions\n” &

deposit : deposit into current account \n” &
withdraw: withdraw from the current account\n” &
balance : print balance for the current account\n” &
quit : quit bank teller client\n”);
I0.Put (“\n”);

113

DEVELOPMENT RECIPES

LOOP
TRY
cmd := Prompt(’ Command 7Y
IF Text.Equal (cmd, “account”)
THEN (* new account *)
WITH input = Scan.Int(Prompt(“account number”)) DO
IF input < FIRST(Bank.AcctNum) OR
input > LAST(Bank.AcctNum)
THEN
RAISE InvalidAccount;
END;
acct := bank.findAccount(input);
accthum := input;
END;
ELSIF Text.Equal(cmd, “deposit”)
THEN (* deposit *)
IF acct = NIL THEN RAISE InvalidAccount END;
WITH amount = Scan.Real(Prompt(“ amount”)) DO
acct.deposit(amount);
END;
ELSIF Text.Equal(cmd, “withdraw”)
THEN (* withdraw *)
IF acct = NIL THEN RAISE InvalidAccount END;
WITH amount = Scan.Real(Prompt(“ amount”)) DO
acct.withdraw(amount);
END;
ELSIF Text.Equal(cmd, “balance”)
THEN (* get balance *)
IF acct = NIL THEN RAISE InvalidAccount END;
I0.Put (“Balance 1is 7 &
Fmt.Real (acct.get_balance()) & “\n”);
ELSIF Text.Equal(cmd, “quit”)
THEN (* quit by raising the “Quit” exception. *)
RAISE Quit;
ELSE (* invalid command *)
I0.Put (“valid commands are: account, ” &
“deposit, withdraw, balance, and quit.\n”);
END;
EXCEPT
| Bank.BadAmount => IO.Put(“Can’t withdraw or ” &
“deposit negative amounts.\n”);
| Inva1idAccount => I0.Put (“Select an account ” &
“in the range [” &
Fmt.Int(FIRST(Bank.AcctNum)) & “..” &
Fmt.Int(LAST(Bank.AcctNum)) & “] “first. \n");
| FloatMode.Trap, Lex.Error => IO.Put (“Cannot ” &
“convert the number as specified.\n”);
| Bank.InsufficientFunds => IO.Put (“Insufficient ” &
“funds available to perform this transaction\n”);
END;
END;
EXCEPT

| NetObj.Error => _
I0.Put (“A network object error occured\n”);
| Thread.Alerted => I10.Put (“A thread was alerted\n”);
| T0.Error, Quit => I0.Put (“Goodbye.\n”);
END;
END NetObjC]ient.

114

DEVELOPMENT RECIPES

Finally, the makefile for a client:

import(“netobj”)

import(“netobj-interface”) % the common interface
implementation(“NetObjClient”)
program(“netobj-client”)

6.2 Client/Server Computing: Safe TCP/IP
Interfaces

Using CM3-IDE’s safe TCP/IP interfaces, it is easy to program multi-threaded TCP
clients and servers. Two examples, a Finger client and a simple HT'TP server illustrate
the use of the TCP interfaces. These same programs will work with Unix sockets or
the Windows Winsock libraries without requiring source changes.

6.2.1 A TCP/IP Client: Finger
Finger is a simple program which introduces TCP client services. It also shows you
how to bind TCP/IP connections to input and output streams.

MODULE Finger EXPORTS Main;

IMPORT TCP, IP, ConnRWw;

IMPORT IO, Params;

FROM Text IMPORT FindChar, Sub, Length;
IMPORT Thread; <* FATAL Thread.Alerted *>

Common Constants and Variables.

Port 79 is the internet standard for the finger socket port. Variables user, and host
are used by code in this module.

CONST
FingerPort = 79;
VAR
user = (1R 1] ;
host := “localhost”;

addr : IP.Address;
Command Line Parameters.

Exception ProbTem is used to flag problems with the parameters.

EXCEPTION
Problem;

Parse the user and host from arguments. Raise Prob’lem if they’re bad.

115

DEVELOPMENT RECIPES

PROCEDURE GetUserHost() RAISES {Problem} =
BEGIN
IF Params.Count # 2 THEN
I0.Put (“Syntax: finger user@host\n”);
RAISE Problem;

END

IF Params.Count = 2 THEN
user := Params.Get(1l)

END;

WITH at = FindChar(user, ‘@’) DO
IF at = -1 THEN

host := “localhost”;

ELSE
host := Sub (user, at+l, LAST(INTEGER));
user := Sub (user, 0, at);

END;

END;
END GetUserHost;

Main Implementation.

BEGIN
TRY
(* Get the values for user and host: *)
GetUserHost();
I0.Put (“(cChecking for ” & user &
“ finger information on host” & host & “)\n”);
(* Lookup host by name: *)
IF NOT IP.GetHostByName (host, addr) THEN
I0.Put (“could not find hostname ” &
host & “\n”);
RAISE Problem;
END;
(* Connect to the endpoint at port 79 of host.
Get a reader and a writer to that port. *)

VAR
endpoint := IP.Endpoint {addr, FingerPort};
service := TCP.Connect(endpoint);
rd := ConnRW.NewRd(service);
wr := ConnRW.Newwr(service);
BEGIN

(* send the user name to the writer; read the
whole response until EOF from the reader *)
I0.Put (user & “\n”, wr);
WHILE NOT IO.EOF (rd) DO
I0.Put (IO0.GetLine(rd) & “\n”)
END
END
(* Check for possible errors. *)
EXCEPT
| I0.Error, IP.Error =>
I0.Put (“Problem communicating with ” &
host & “...\n");
| Problem => (* Error has already been printed, do
nothing. *)
END
END Finger.

116

DEVELOPMENT RECIPES

6.2.2 A TCP/IP Server: HTTPD

The program HTTPD implements a simple HTTP server by using the portable
TCP/IP intetfaces. The basic outline of the program is simple: After getting a
connector, loop and do the following:

1.

2.

Use TCP.AcCcCept to get a new service.
Get a reader and a writer to the service via the CONNRW interface.
Use Lex .Match to ensure that the requests start with a “GET”.

The rest of the input from the reader until the end of the line is the path
requested by the web browser.

Given a path requested by a “GET”” message, look in the current directory of
your file system for the file in question. So, the URL
http://Tocalhost:80/welcome.html
maps to the following HTTP request to the server running on port 80 of the
machine “localhost™:
GET /welcome.html
which maps to the file weTcome . htm1 in your file system.

Open the file, and read its contents.

Write the contents to the writer that is hooked up to the network connection.
Flush the writer upon completion.

Make sure to close the reader, the writer, and the server connection at the
bottom of the loop.

Here is the implementation for HTTPD. Review the TCP and IP interfaces for more
information regarding the TCP/IP calls.

MODULE HTTPD EXPORTS Main;

IMPORT TCP, IP, ConnRWw;

IMPORT Rd, Wr, IO, Lex, FileRd, RdCopy;

IMPORT Thread, OSError, Text, Params, Process, Pathname;

Use http://hostname: 80/ to access this server:

CONST
HTTP_Port = 80;
PROCEDURE Error (wr: Wr.T; msg: TEXT)
RAISES {Thread.Alerted, wr.Failure} =
BEGIN
wr.PutText (wr, “400 ” & msg);
wr.Flush (wr);
END Error;

117

DEVELOPMENT RECIPES

Create an endpoint on the HTTP_POrt. Get a connector for the end point, and loop:
o Use TCP.Accept to wait for a new connection that can handle calls.
® (reate a reader and a writer to the connection.

® Took fora GET, and then a path for the request. Parse pathname and print it.
If there is a request for root, return a welcome string, otherwise find the file
residing in a subdirectory.

Of course, catch all the possible exceptions.

118

DEVELOPMENT RECIPES

VAR
endpoint := IP.Endpoint {IP.GetHostAddr(), HTTP_Port};
connector: TCP.Conhnector;
server: TCP.T;
rd: Rd.T; wr: Wr.T;
path: TEXT;
BEGIN
TRY
connector
LOOP
server := TCP.Accept(connector);
rd CconnRW.NewRd(server);
wr connRW.Newwr(server);
TRY
TRY
Lex.Match (rd, “GET ”);
path := Lex.Scan (rd);
I0.Put (“path=" & path & “\n”);
I0.Put (Rd.GetLine(rd) & “\n”);
IF Text.Equal (path, “/”) THEN
wr.PutText (wr,
“<H1l>Welcome to our web server!” &
“</H1>Try " &
“this 1ink” & “.\n");
ELSE

WITH rd = FileRd.Open (Text.Sub (path,
1, Text.Length(path))) DO

TCP.NewConnector(endpoint);

TRY
RdCopy.Towriter(rd,wr) ;
FINALLY
Rd.Close(rd);
END;
END
END;
wr.Flush (wr); (* so the browser can see
the results. *)
EXCEPT
| Lex.Error => Error (wr,
“only GET methods are supported\n”);
| OSError.E => Error (wr,
“File not found or no permission.\n”);
| Rd.EndofFile => Error (wr,
“Request terminated prematurely.\n”);
END;
FINALLY (* clean up on your way out. *)
Rd.Close (rd);
wr.Close (wr);
TCP.Close (server);
END;
END
EXCEPT
| Thread.Alerted => 1I0.Put (“Thread was alerted\n”);
| IP.Error => I0.Put (“IP error\n”);
| Rd.Failure, wr.Failure =>
I0.Put (“Rd/wr failure\n”);
END;
END HTTPD.

119

DEVELOPMENT RECIPES

6.3 Taking Persistent Snapshots of Objects:
Pickles

Pickles can be used to load and save the state of objects via I/O streams bound to disk
files, network connections, or in-memory data. To learn more about pickles, browse
the Picke interface.

This program uses pickles to snapshot a copy of its internal database to disk, and load
it later. The internal database is kept as a list of azoms. An atom is a unique
representation for a text string.

MODULE PickleExample EXPORTS Main;
IMPORT Pickle, wr, Filewr, Rd, FileRd;
IMPORT Atom, AtomList;

IMPORT Action, AtomActionTbl;

IMPORT Process, I0; <* FATAL IO.Error *>

Import the P1ck’le interface to take snapshots of objects and turn the snapshots
back into live objects, Wr and F11eWr to write snapshots to files, and Rd, and
FiTeRd to read snapshots from files.

Import Atom and AtomL1 St interfaces. An AtOmM is unique representation of a
string, you can convert text to AtOm and then compare it with other Atoms without
using text operations.

Import the ACt10n interface, defined in this package, and AtomActionTbl1,a
table mapping atoms to actions.

Atom List Operations. COntains, Insert and Print are utility functions which
call AtomL1 St operations.

Insert an element into the list.

PROCEDURE Insert (VAR Tist: AtomList.T; atom: Atom.T) =
BEGIN
IF NOT AtomList.Member(list, atom) THEN
Tist := AtomList.Cons (atom, Tist);
END
END Insert;

Print out all elements of the list by iterating over its members.

PROCEDURE Print(x: AtomList.T) =
BEGIN
WHILE x # NIL DO
I0.Put (Atom.ToText (x.head) & “ ”);
X = X.tail;
END;
END Print;

120

DEVELOPMENT RECIPES

Command Operations. Definition of what commands should do. ACtions define
initial values for the action table.

TYPE
commands = {Show, Quit, Reset, Help, Load, Save};

Actions = ARRAY OF Action.T {

Action.T { “show”, Show},
Action.T { “quit”, Quit},
Action.T { “reset”, Reset},
Action.T { “help”, Help}
Action.T { “load”, Load}
Action.T { “save”, Save}l}};

Each procedure defines what each action should do. Note that ACt10nS includes
elements that happen to be procedures. Also that the proc field of Action. T is
defined to be a PROCEDURE (), so we can assign any of QUi t, Rest, He'llp, or
Show to fields of ACtions.

PROCEDURE Quit() BEGIN Process.Exit(0); END Quit;

PROCEDURE Reset() BEGIN input_set := NIL; END Reset;
PROCEDURE Show() =
BEGIN
Print(input_set);
I0.Put (“\n");
END Show;
PROCEDURE He1p() =
BEGIN
I0.Put(“Ccommands: show, reset, ” &
“help, quit, load, save.\n” &
“otherwise: insert into the 1list.\n”);
END Help;

Procedures Save and Load use pickles to save and load the database.

CONST DB = “db”;

PROCEDURE Save() =
VAR wr := IO.Openwrite(DB);
BEGIN
Pickle.write (wr, input_set);
wr.Close (wr);
END Save;

PROCEDURE Load() =
VAR rd := I0.OpenRead (DB);
BEGIN
input_set := Pickle.Read (rd);
Rd.Close (rd);
END Load;

121

DEVELOPMENT RECIPES

Main Program. The principal data in this program: command_tabTleisan
atom—>action table; input_set is an atom list, containing all the elements that will
be entered.

VAR
gommand_tab]e = NEW(AtomActionTb].Defau1t).init();
input_set : AtomList.T := NIL;

BEGIN

(* Initialize Commands. *))
FOR x := FIRST(Actions) TO LAST(Actions) DO

EVAL command_table.put(Atom.FromText (x.name), X);
END;

10.Put (“welcome to the atomic database.\n”);
I0.Put (“Try any of commands: show quit reset help.\n”);
I0.Put (“Any other string will be entered into ” &

“the database.\n\n”);

Loop, get the user response from the command line. If it’s a command, do it.
Otherwise insert the command line into the 1nput_set. If atomis in the
command_tabe then run the corresponding action. Otherwise, Insert the
atominto the input_set.

LOOP _
I0.Put (“persistent atom-db > ”);
IF I0.EOF () THEN EXIT END;

VAR
cmd := I0.GetLine();
atom := Atom.FromText(cmd);
action: Action.T;

BEGIN

IF command_table.get(atom, action)
THEN action.proc();

ELSE Insert(input_set, atom);

END;

END;
END;

END PickleExample.

6.4 Quick Comparison of Large Data: Fingerprints

You can use the Fingerprint interface to compare large amounts of data.
Fingerprints can also be used for efficient comparison of complex object graphs.

The program M3Compare takes two file names from the command line and reportts
whether the files are the same or different. The program does not crash due to
exceptions.

MODULE M3Compare EXPORTS Main;
IMPORT IO, Process, Fingerprint, Rd, Thread, Params;

122

DEVELOPMENT RECIPES

Use Fingerprint.FromText to get a fingerprint of each file, then compare the
finger prints.

PROCEDURE Compare (a, b: TEXT) =
VAR aa, bb: TEXT;

BEGIN
aa Inhale (a);
bb := Inhale (b);
IF (aa = NIL) OR (bb = NIL) THEN
(* already reported an error *)
ELSIF Fingerprint.FromText(aa) =
Fingerprint.FromText(bb)

THEN

I0.Put (“The files are the same.\n”);
ELSE

I0.Put (“The files are different.\n”);
END;

END Compare;
Read a file and return its contents as text.

PROCEDURE Inhale (file: TEXT): TEXT =
VAR rd: Rd.T; body: TEXT;
BEGIN
rd := IO0.OpenRead (file);
IF (rd = NIL) THEN
I0.Put (“\”” & file & “\” 1is not a file.\n”);
RETURN NIL;
END;
TRY
body := Rd.GetText (rd, LAST (CARDINAL));
Rd.Close (rd);
EXCEPT Rd.Failure, Thread.Alerted =>
I0.Put (“Unable to read \”” & file & “\”.\n");
RETURN NIL;
END;
RETURN body;
END Inhale;

BEGIN
IF Params.Count # 3 THEN
I0.Put (“syntax: m3compare <filel> <file2>\n”);
Process.Exit(2);
END;
Compare (Params.Get(1l), Params.Get(2));
END M3Compare.

123

DEVELOPMENT RECIPES

6.5 Portable Operating System Interfaces

Using the portable operating systems interfaces, you can write programs to get
information about operating system facilities such as the files, directories, processes,
paths, environment variables and command-line parameters. Following the interface
specifications, you can write programs that do not depend on idiosyncrasies of
different versions of Unix and Windows.

The program M3Sh, a simple command-line shell, operates like 2 normal DOS or
Unix command shell, providing you with simple commands. Of course, m3sh does
not depend on pre-processor macros.

MODULE M3sh EXPORTS Main;

M3sh is a simple shell utility which uses the safe, portable operating system interfaces.
By using the portable interfaces, this program works on both Unix and Win32
platforms.

IMPORT Pathname, FS, IO, OSError;

IMPORT Stdio, RegularFile, Pipe;

IMPORT Process, Thread, Env, Params;

IMPORT Filewr, FileRd, Rd, Lex, Wr, Text, Atom, AtomList;
IMPORT TextRd, TextSeq;

Shell Commands. Command designates a hame and an aCti0n procedure.

TYPE
Command = RECORD
name: TEXT;
action: PROCEDURE (cmd: TEXT;
READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E};
END (* RECORD *);

Commands is an array of pre-defined Command designations for built-in shell
commands. To allow aliasing of actions, multiple names may correspond to the same
action.

CONST
commands = ARRAY OF Command {
Command {“exit”, exit},
Command {:quit", exit},

command {“bye”, exit},
command {“cd”, chdir},
command {“chdir”, chdir},
Command {“dir”, dir},
Command {“1s”, dir},
command {“pwd”, pwd},
command {“directory”, dir},
Command {“type”, type},
command {“cat”, type},
Command {“exec”, exec},

124

DEVELOPMENT RECIPES

command {“bg”, background},
command {“help”, help}};

Execute the shell command cmd with arguments args:

PROCEDURE Shellcommand(cmd: TEXT;
READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E} =

Check to see if cmd is a built-in. If cmd is not a built-in, then try to execute it.

BEGIN
FOR i := FIRST(Commands) TO LAST(Commands) DO
IF Text.Equal (cmd, Commands[i].name) THEN
RETURN Commands[i].action (cmd, args);
END;
END;
RETURN Execute (cmd, args);
END ShellCommand;

125

DEVELOPMENT RECIPES

Run an external command, returning the result as a text string. See the Process
interface for more information.

PROCEDURE Execute(cmd: TEXT;
READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E} =
VAR hrchild, hwchild, hrself, hwself: Pipe.T;
VAR result: TEXT := “";
BEGIN
WITH full = FindExecutable(cmd) DO
IF full # NIL THEN cmd := full; END;
END;

Pipe.openChr

hrchild, hw := hwself);
Pipe.openChr

hrself, hw := hwcChild);

TRY
WITH p = Process.Create (cmd, args, stdin := hrchild,
stdout := hwcChild, stderr := NIL) DO
TRY
TRY hrchild.close(); hwChild.close()
EXCEPT OSError.E => (* skip *)
END;
(* Here is the actual writing and reading,
conveniently performed using I/0 streams. *)
WITH wr = NEW(Filewr.T).init(hwself),
rd = NEW(FileRd.T).initChrself) DO
TRY Wr.Close(wr)
EXCEPT Wr.Failure, Thread.Alerted => (*SKIP*)
END;
result := Rd.GetText(rd, LAST(INTEGER));
TRY Rd.Close(rd)
EXCEPT Rd.Failure, Thread.Alerted => (*SKIP*)
END
END;
FINALLY EVAL Process.wait(p);
END
END
EXCEPT
| Rd.Failure, Thread.Alerted => Error (“exec failed”);
END;

RETURN result;
END EXxecute;

Check the number of arguments and raise OSError. E if the wrong number of
arguments are being passed.

PROCEDURE ArgCount(READONLY args: ARRAY OF TEXT;
Jo: CARDINAL;
hi: CARDINAL := LAST(INTEGER)
) RAISES {OSError.E} =
BEGIN
IF NUMBER(args) < lo THEN Error (“Too few args”);

ELSIF NUMBER(args) > hi THEN Error (“Too many args”);
END;

END ArgCount;

126

DEVELOPMENT RECIPES

Given a string, procedure Error raises OSError. E with that string as a parameter.

PROCEDURE Error (name: TEXT) RAISES {OSError.E} =

VAR
err := AtomList.List2(Atom.FromText(name),
Atom.FromText(“m3sh error”));
BEGIN
RAISE OSError.E(err);
END Error;

Built-in Commands. This section includes all the built-in shell commands, such as
dirorcd.

PROCEDURE pwd(<*UNUSED*>cmd: TEXT;
READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E} =
BEGIN
ArgCount(args, 0, 0);
RETURN Process.GetWorkingDirectory();
END pwd;

PROCEDURE dir(<*UNUSED*>cmd: TEXT;
READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E} =
VAR
dir: pPathname.T := “.”;
result: TEXT := “”;

name: TEXT;
iter: FS.Iterator;
BEGIN
ArgcCount(args, 1o := 0, hi := 1);

y
IF NUMBER(args) > 0 THEN dir args[0] END;
IF NOT IsDirectory (dir) THEN
Error (dir & “ is not a directory”);

END;

I0.Put (“Directory Tisting for ” &
FS.GetAbsolutePathname(dir) & “\n”);
iter := FS.Iterate (dir);
WHILE iter.next (nhame) DO
result := result & “ ” & name & “\n”;
END;
iter.close();
RETURN result;
END dir;

PROCEDURE chdir(<*UNUSED*>cmd: TEXT;
READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E} =
BEGIN
ArgCount(args, 1, 1);
IF NOT IsDirectory (args[0]) THEN
Error (args[0] & “ is not a directory\n”);

END;
Process.SetworkingDirectory(args[0]);
RETURN NIL;

END chdir;

127

DEVELOPMENT RECIPES

Display the contents of a file or directory. If arg [0] is a file, return its contents. If
arg[0] is a directory, prints its directory listing.

PROCEDURE type(cmd: TEXT;
READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E} =
VAR rd: Rd.T;
BEGIN
ArgCount(args, 1, 1);
IF IsDirectory (args[0]) THEN
Error (args[0] & “ is a directory\n”);
ELSE
TRY
rd := FileRd.Open(args[0]);
TRY RETURN Rd.GetText(rd, LAST(INTEGER));
FINALLY Rd.Close(rd);
END;
EXCEPT
| Rd.Failure, Thread.Alerted =>
Error (“type could not read a file\n”);
END;
END;
<* ASSERT FALSE *>
END type;

PROCEDURE exit(<*UNUSED*>cmd: TEXT;
READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E} =

BEGIN

ArgCount(args, 0, 0);

I0.Put (“Goodbye!\n”);

Process.Exit(0);

<* ASSERT FALSE *>
END exit;

PROCEDURE exec(<*UNUSED*>cmd: TEXT;
READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E} =

BEGIN

ArgCount(args, 1);

I0.Put (“The command 1is ” & args[0] & “\n”);

RETURN Execute (args[0],

SUBARRAY (args,1l, NUMBER(args)-1));

END execC;

PROCEDURE he1p(<*UNUSED*>cmd: TEXT;
READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E} =
BEGIN
ArgCount (args, 0, 0);
RETURN HelpfulInfo();
END help;

128

DEVELOPMENT RECIPES

Using Threads for the Background Command.

PROCEDURE background(<*UNUSED*>cmd: TEXT;
READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E} =
VAR background_closure: BgClosure;
BEGIN
ArgCount(args, 1);
background_closure := NEW(BgClosure, cmd := args[0],
args := NEW(REF ARRAY OF TEXT, NUMBER(aI"gS)—l));
background_closure.argsA :=
SUBARRAY(args, 1, NUMBER(args)-1);
EVAL Thread.Fork (background_closure);
RETURN NIL;
END background;

(* Closure for the background thread. *)
TYPE
BgClosure = Thread.Closure OBJECT
cmd: TEXT;
args: REF ARRAY OF TEXT;
OVERRIDES
apply := BackgroundApply;
END;

(* work of the background thread. *)
PROCEDURE BackgroundApply (cl1: BgClosure): REFANY =
BEGIN
TRY
RETURN Execute (cl.cmd, cl.argsA);
EXCEPT OSError.E => (* ignore background errors *)
END;
RETURN NIL;
END BackgroundApply;

PATH Navigation. Win32 and Unix use the PATH variable to define a list of
directories to search for executables. Here we search for executables using the PATH as
our guide.

Finds an executable program found by searching the directories contained in the PATH
environment variable. PATH variable is looked up using the ENV interface. To look up
the separator for PATH, we need to find out what sort of system we are running. To
do so, we check to see if Pathname uses / or \. (See also SearchpPath.)

PROCEDURE FindExecutable (file: TEXT): TEXT =

VAR path := Env.Get (“PATH”);

CONST UnixExts = ARRAY OF TEXT { NIL };

CONST WinExts = ARRAY OF TEXT {NIL,“exe”,“com”,“cmd”,“bat”};
VAR on_unix: BOOLEAN :=

Text.Equal(Pathname.Join(*”,“” ,NIL),“/”);
BEGIN
IF on_unix
THEN RETURN SearchpPath (file, path, ‘:’, UnixExts);
ELSE RETURN Searchpath (file, path, ‘;’, wWinExts);
END;

END FindExecutable;

129

DEVELOPMENT RECIPES

Return TRUE if the name corresponds to a file.

PROCEDURE IsFile (file: TEXT): BOOLEAN =
BEGIN
TRY
WITH stat = FS.Status (file) DO
RETURN stat.type = RegularFile.FileType;
END
EXCEPT
| OSError.E => RETURN FALSE;
END
END IsFile;

Return TRUE if the name corresponds to a directory.

PROCEDURE IsDirectory (file: TEXT): BOOLEAN =
BEGIN
TRY
WITH stat = FS.Status (file) DO
RETURN stat.type = FS.DirectoryFileType;
END
EXCEPT
| OSError.E => RETURN FALSE;
END
END IsDirectory;

130

DEVELOPMENT RECIPES

Search the items passed in as part of path for the file.

PROCEDURE SearchPath (file, path: TEXT;
sep: CHAR;
READONLY exts: ARRAY OF TEXT
): TEXT =
VAR
dir, fn: TEXT;
sO, s1, len: INTEGER;
no_ext: BOOLEAN;
BEGIN
IF IsFile (file) THEN RETURN file; END;
no_ext := Text.Equal (file, Pathname.Base (file));

(* First try the file without Tooking at the path. *)
IF no_ext THEN

FOR i := FIRST (exts) TO LAST (exts) DO
fn := Pathname.Join (NIL, file, exts[i]);
IF IsFile (fn) THEN RETURN fn; END;
END;
END;

IF path = NIL THEN RETURN NIL; END;
IF Pathname.Absolute (file) THEN RETURN NIL; END;

(* Try the search path *)
Ten := Text.Length (path); sO0 := 0;
WHILE (sO < len) DO
sl := Text.FindChar (path, sep, s0);
IF (sl < 0) THEN sl := len; END;
IF (sO < sl1) THEN
dir := Text.sub (path, s0, sl - s0);
IF no_ext THEN
FOR i := FIRST (exts) TO LAST (exts) DO
fn := Pathname.Join (dir, file, exts[i]);
IF IsFile (fn) THEN RETURN fn; END;
END;
ELSE
fn := Pathname.Join (dir, file, NIL);
IF IsFile (fn) THEN RETURN fn; END;
END;
END;
sO := sl + 1;
END;

(* searchpPath failed. *)
RETURN NIL;
END SearchPath;

131

DEVELOPMENT RECIPES

The main program and utility procedures.

PROCEDURE HelpfulInfo(): TEXT =
CONST
Msg = “m3sh: a simple portable shell for POSIX and” &
“Win32 written in Modula-3\n" &
“syntax: m3sh [-prompt string | -help]l\n” &

“commands:”;
VAR
result := Msg;
BEGIN
FOR i := FIRST(Commands) TO LAST(Commands) DO
result := result & “ “ & Commands[i].name;
END;

RETURN result & “\n”;
END HelpfuliInfo;

VAR
prompt: TEXT := “m3sh”;

Echo the prompt. Get a command. If the command is not null, then execute it, and
print its results on the screen.

PROCEDURE ProcessCommand()
RAISES {OSError.E, Rd.EndOfFile} =
VAR
cmdname: TEXT; (* name of the command *)
cmdargs: REF ARRAY OF TEXT; (* arguments of the command *)
result: TEXT;
BEGIN
I0.Put(prompt & “> 7);
GetCommand(cmdname, cmdargs);
IF cmdname = NIL THEN RETURN END;
result := ShellCommand (cmdname, cmdargsA);
IF result # NIL THEN IO.Put (result & “\n”) END;
END ProcessCommand;

132

DEVELOPMENT RECIPES

Read a command line; affect variables name and args. Set name and args to NIL
if there is no input in this line. Raise Rd . ENdOTF11e if the end of file is reached.

PROCEDURE GetCommand (VAR name: TEXT;
VAR args: REF ARRAY OF TEXT
) RAISES {Rd.EndofFile} =

VAR
cmd = NEW(TextSeq.T).init(Q);
rd: Rd.T;
BEGIN
name := NIL; args := NIL;
TRY
(* Read a Tine and map it to the reader “rd”. *)
rd := TextRd.New(Rd.GetLine(stdio.stdin));
(* Tokenize the 1line into a sequence of strings. *)
TRY WHILE NOT Rd.EOF(rd) DO
Lex.Skip(rd);
cmd.addhi(Lex.Scan(rd)); END;
EXCEPT Rd.Failure => (* do nothing *)
END;
(* Turn the sequence into a (command, arguments) pair. *)
IF cmd.size() = 0 THEN RETURN END;
name := cmd.get(0);
args := NEW(REF ARRAY OF TEXT, cmd.size()-1);
FOR i := FIRST(argsA) TO LAST(argsA) DO
args[i] := cmd.get(i+1);
END;
EXCEPT
| Rd.Failure, Thread.Alerted =>
I0.Put (“Problems in reading from input\n”);
END;

END GetCommand;
Print arguments to an OSError . E. Used by the main shell loop to print out errors.

PROCEDURE PrintError (al: AtomList.T) =
BEGIN
WHILE al # NIL DO
I0.Put (Atom.ToText(al.head) & “. ”);
al := al.tail;
END;
I0.Put (“\n”);
END PrintError;

133

DEVELOPMENT RECIPES

Check the command-line parameters.

PROCEDURE ProcessParams() =
BEGIN
CASE Params.Count OF
| 1 => RETURN;
| 2 => IF Text.Equal(Params.Get(1l), “-help”) THEN
I0.Put (Helpfulinfo());

RETURN
END;
| 3 => IF Text.Equal(Params.Get(1l), “-prompt”) THEN
prompt := Params.Get(2);
RETURN
END;
ELSE (* skip *)

END;
I0.Put (“Incorrect or bad number of parameters.” &
“ Try -help to get more info.\n”);
Process.Exit(10);
END ProcessParams;

The main loop.

BEGIN
ProcessParams();
LOOP
TRY
ProcessCommand() ;
EXCEPT
| OSError.E (e) => PrintError(e);
| Rd.EndofFile => EXIT;
END;
END;
END M3sh.

Further Information. To learn more about operating system interfaces see CM3-IDE
Interface Index on page 143, or interface definition for:

® Process interface for process management

Thread interface for creating threads or “lightweight processes”

® FSinterface for access to files and directoties

e Pathname interface for manipulating pathnames in a portable fashion
® EnV interface for environment vatiables

e Params interface for command-line parameters

® OSError interface for handling operating system errors

134

DEVELOPMENT RECIPES

6.6 Dynamic Web Applications: the Web Server
Toolkit

The web server toolkit defines a framework for building dynamic web servers. The
program WebContact illustrates a simple web-based application of a dynamic
contact database.

MODULE WebContact EXPORTS Main;

IMPORT HTTPApp, HTTPControl, HTTPControlvalue, App;
IMPORT Text, TextTextTbl;

FROM IO IMPORT Put;

Create two fields for names and e-mail addresses. Each is displayed on an automatically
generated form, and the call-back procedures are run when the form is submitted.

VAR _
name, email: TEXT := “7;

Define a text control, name_value, and its Get and Set, and Default
operations.

VAR
name_value := NEW(HTTPControlvalue.Textvalue,
Teader := “Name: ”",
id := “name”, set := SetName,
get := GetName,
setDefault := Default);

PROCEDURE SetName (<*UNUSED*>self: HTTPControlvalue.Textvalue;
val: TEXT;
<*UNUSED*>Tog: App.Log) =
BEGIN
name := val;
IF NOT db.get(name, email) THEN
email := “7;
END;
END SetName;

PROCEDURE GetName(<*UNUSED*>self: HTTPControlvalue.Textvalue
): TEXT =
BEGIN
RETURN name;
END GetName;

135

DEVELOPMENT RECIPES

Define another text control email_value, and its Get, Set, and Default
operations.

VAR
email_value := NEW(HTTPControlvalue.Textvalue,
Teader := “ Email:",
id := “email”, set := SetEmail,
get := GetEmail,
setDefault := Default);

PROCEDURE GetEmail (self: HTTPControlvalue.Textvalue
v TEXT =
BEGIN
RETURN email;
END GetEmail;

PROCEDURE SetEmail (self: HTTPControlvalue.Textvalue;
val: TEXT;
Tog : App.Log) =
BEGIN
IF Text.Empty (val) THEN
IF db.get(name, email) THEN
email := “7;
END;
ELSE
EVAL db.put(name, val);
END;
END SetEmail;

PROCEDURE Default (<*UNUSED*>x: HTTPControlvalue.Textvalue;
<*UNUSED*>Tog: App.Log) =

BEGIN

END Default;

The variable root defines the root of the HTTP server. db is a text-to-text table for
mapping names to email addresses.

VAR
root : HTTPControl.StaticForm := HTTPControl.RootForm();
db := NEW(TextTextTbl.Default).init(Q;

BEGIN

Initialize root default options.

root.hassubmitButton := TRUE;
root.title := “Contact Database”;

Add a title.

root.addvalue (NEW(HTTPControlvalue.Messagevalue).init(
“\n” & “<H2>Contact Database</H2>"));

136

DEVELOPMENT RECIPES

Add the two text fields.

root.addvalue(name_value);
root.addvalue(email_value);

Serve at port 80. If there is a problem, report it.

TRY

HTTPApp.Serve(80);
EXCEPT

App.Error => Put (“A problem occured\n”);
END;

END WebContact.

6.7 Interacting with C Programs

Most real programs need to interact with an existing body of code. Since CM3-IDE
has provisions for describing unsafe operations, binding programs written using CM3-
IDE with C is straightforward. In this section, we will describe two programs that call
C code on Unix or Win32 platforms, and a Modula-3 program that is called from C.

6.7.1 Calling C: A Unix Example
In this example, we create an interface for accessing the getcwd function from
Modula-3.

We then wrap a safe interface around the unsafe layer that calls C. 'This example only
works on Unix, but a similar example can be written for Win32 as you will see later. Of
course, if we were to only use Modula-3 facilities, the code could easily be ported.

The basic steps in writing this program are:

1. First, read the Unix man page on “getcwd” to get some information about
its parameter, and what it does.

2. Interface UT1b contains the <* EXTERNAL*> Modula-3 signature for the
“getcwd” function in our project. If we are to call this from client code, we’d
have to make that unsafe, and have to deal with C data structures, which is

probably not a good idea. So, in the next step, we build a safe wrapper around
the C call.

3. Create an interface and an implementation “L1b”. This will be the Modula-3
wrapper for UT1b. The idea here is to create a function, GetCWD () which
returns 2 TEXT containing your current working directory. L1b . 13 should
be pretty straightforward. All you do is declare the signature of the function.

137

DEVELOPMENT RECIPES

4. Lib.m3 is more subtle. What we need to do is allocate some space for the C
buffer, and then pass it to “getcwd”, finally copy the contents of the
getcwd buffer back into a TEXT and return it.

We can either use Cstd1ib.malTloc for allocating the right buffer, and
Cstdl1ib. free to dispose it after copying the buffer into a TEXT via
M3toC.CopyStoT.

5. Create a safe main module and call Lib.GetCWD () from it.

The good news is that most of the time, we can program in the safe mode, where the
language takes care of things like garbage collection. This eliminates the need for
separating safe and unsafe code.

Safe interface. Interface L1b provides a safe Ge tCWD interface. This means its
implementation must have to deal with bridging from unsafe operations to safe
operations.

INTERFACE Lib;
PROCEDURE GetCwbp(): TEXT;
END Lib.

Unsafe implementation of a safe interface. The implementation of L1b interface
includes the body of Ge tCWD, which calls ma110C to allocate a string, sends it to
getcwd, and converts the result to TEXT while handing memory management.

UNSAFE MODULE Lib;

IMPORT Ulib, M3toC;

FROM Ctypes IMPORT char_star;
FROM Cstdlib IMPORT malloc, free;

PROCEDURE GetCWD(): TEXT =
CONST size = 64;
VAR c_str := malloc (size);
BEGIN
EVAL Ulib.getcwd(c_str,size);
WITH result = M3toC.CopyStoT(c_str) DO
free(c_str);
RETURN result;
END;
END GetCwD;

BEGIN
END Lib.

138

DEVELOPMENT RECIPES

Unsafe interface to Unix libraries. Interface U117 b defines an external function
getcwd.

INTERFACE Ulib; _
FROM Ctypes IMPORT char_star, int;

<*EXTERNAL*>
PROCEDURE getcwd(result: char_star;
size: int
): char_star;

END Ulib.

The main module. The main body of the code is simple, because L1b takes care of

bridging the safety gap.

MODULE Ca'l'l'ingc EXPORTS Main;
IMPORT IO, Lib;
BEGIN

I0.Put (Lib.Getcwn() & “\n”);
END cCallingC.

Makefile. The makefile is quite ordinary.

import(“1ibm3”)
interface(“Ulib”)
module(“Lib”)
implementation (“CallingC”)
program (“m3pwd”)

6.7.2 Calling C: A Win32 Example

In this example, we create an interface for accessing the M@SsageBOX function from
the Win32 APL To do so, we importt the interface WinUser which defines the
signature of the MeSsageBOXA call. We then call WinUser.MessageBox from
the main module, OK.

This example only works on Win32, since M@SSageBoOX is a Win32 call. Since this
call is not available on other platforms your program is not portable. Of course, if you
were to only use the portable interfaces available in Modula-3, you would not have any
portability problems.

Winuser defines basic Win32 API user-level calls. M3t0C defines mappings from
Modula-3 to C strings.

139

DEVELOPMENT RECIPES

OK.m3.

UNSAFE MODULE OK EXPORTS Main;
IMPORT WinuUser, M3toC;
IMPORT Params;

VAR
message: TEXT := “7;
BEGIN
FOR i := 1 TO Params.Count-1 DO
message := message & Params.Get(i) & “ ”;
END;

EVAL WinUser.MessageBox (NIL,
M3toC.TtoS(message),
M3toC.TtoS(“A CM3-IDE Example”),

END OK.

Here is the portion of the Winuser interface where MessageBOX is defined:

INTERFACE WinuUser;

PROCEDURE MessageBoxA (hwnd: HWND;
TpText : LPCSTR;
TpCaption: LPCSTR;
uType : UINT
): int;

CONST MessageBox = MessageBoOxA;

END WinUser.

6.7.3 Calling Modula-3 from C

This example demonstrates how to call Modula-3 procedures from C. The C
procedure in the example takes a single parameter which itself is a parameter-less
procedure that returns an integer. Have the C function call the passed the procedure
add one to the result and return the new value. The makefile will assume that the C
code is in a file named Cstuff.c.

bl

INTERFACE Cstuff;

TYPE
IntProc = PROCEDURE (): INTEGER;

<*EXTERNAL*>
PROCEDURE add_one (p: IntProc): INTEGER;
(* Returns “1 + p(Q”. *

<*EXTERNAL*> .
PROCEDURE add_one_again (): INTEGER;
(* Returns “1 + m3_proc()”. *)

<*EXTERNAL*>
VAR m3_proc: IntProc;

END Cstuff.

140

DEVELOPMENT RECIPES

MODULE CcallsM3 EXPORTS Main;
IMPORT IO, Cstuff;
VAR

X: INTEGER := 33;

i: INTEGER;

PROCEDURE Foo (): INTEGER =
BEGIN

INC (X);

RETURN X;
END Fo0oO;

BEGIN
I0.Put (“calling add_one.\n”);
i := Cstuff.add_one (Fo0o0);
I0.Put (“add_one) => ");
I0.PutIint (i);
I0.Put (“\n”);
I0.Put (“calling add_one_again.\n”);
Cstuff.m3_proc := Foo;
i := Cstuff.add_one_again Q;
I0.Put (“add_one_again () => ”);
I0.PutIint (i);
I0.Put (“\n”);

END Ccallsm3.

CStuff. c calls (and is called by) the Modula-3 code.

#include <stdio.h>
typedef int (*PROC)();
int add_one (p)

PROC p;

int i;

printf(g“in add_one, p = 0x%x\n”, p);
i=pO;

printf (* p() => %d\n”, 1i);

return i+1;

}

PROC m3_proc;
int add_one_again QO

{
int i;
printf (“in add_one_again, m3_proc = 0x%x\n”, m3_proc);
i = m3_proc);
printf (“ m3_proc (O => %d\n”, 1i);
) return i+1;

Makefile. The call C_source compiles a C program with your C compiler. See the
Operations Guide for cm3 at /help/cm3/cm3.htm] or the cm3. cfg file in
your installation for more information.

import (“T1ibm3”)

c_source (“Cstuff”)
interface (“Cstuff”)
implementation (“Ccallsm3”)
program (“ccallsm3”)

141

DEVELOPMENT RECIPES

6.8 Summary

This chapter described a handful of complete programs to illustrate the use of
advanced programming facilities in CM3-IDE. You can find the sources for the

programs in this chapter in the ¥ Examples section of your CM3-IDE environment.

Robust Distributed Applications. Network Objects can be used to build robust
distributed applications. See the NetOb7J interface for more information (See page
108).

Client/Server Computing. Using the safe TCP/IP interfaces, you can build multi-
threaded client/setver applications that use the socket interfaces. TCP/IP interfaces
abstract away the differences between Unix sockets and Winsock implementations. See
the TCP, IP, and CONNRW interfaces for more information (See page 115).

Data Manipulation. Using the P1 k'l € interface, you can take snapshot of complex
object graphs, and later load them into memory. The Fingerprint interface
allows you to compare large data structures efficiently. The IO, Rd, Wr, Lex, Scan,
and FMT interfaces help you read and write from I/O streams (See page 120).

Portable Operating System Interfaces. CM3-IDE provides interfaces for accessing
operating system services in a platform-neutral manner. See the Process interface
for managing processes, Fi1e, FS, FileWr, FiTleRd for filesystem access,
Thread for creating new threads and concurrency control, Params for command-
line parameters, ENV for environment variables, and Time for the system clock. Using

these interfaces, you can write portable programs that access various operating system
facilities (See page 124).

Dynamic Web Applications. You can build dynamic web applications using the web
toolkit. Read the HTTPApP interface as a start (See page 135).

Accessing Legacy C code. Binding unsafe portions of your program to C code is
straightforward, but tedious. To aid portability and robustness of your application, you
should avoid using legacy C code as much as possible (See page 137).

142

CM3-1IDE INTERFACE INDEX

Read this chapter
to learn about the
most-frequently-
used interfaces in
CM3-IDE.

7. CM3-IDE Interface
Index

CM3-IDE includes many interfaces. Finding the right one for a particular task is not
always easy. This index provides an overview of some of the most frequently used
interfaces available in CM3-IDE.

Data types, Data Structures, and Algorithms on page 144 outlines:

Basic Data Types
Collections, Lists, Tables, Sets
Linked Lists, Sorted Linked Lists

Property lists .
Sequences °
Priority queues °

Standard Libraries on page 148 describes:

Sets
Tables, Sorted tables
Sorting Lists, Tables, and Arrays.

Math, Geometry, Statistics, Random numbers

Floating point

Environment, Command line parameters
1/O streams, Reading and Writing, Files
Formatting, I/O Conversion

Threads.

Systems Development on page 150 outlines:

Distributed and Client/Setver Development

Databases and Persistence
Operating System, Files, Processes, Time
Interoperability with C

Low-level Run-time Interfaces.

Miscellaneous on page 153 describes:

Main interface, Weak References, Performance Tuning, Configuration.

143

The on-line CM3-IDE
interface index
includes hypertext
references to CM3-IDE
interfaces. You can
find it at:
Ihelp/interfaces.html

The list of all available
interfaces in your
CM3-IDE distribution

is available at:
/interface

To locate a particular
interface within CM3-

IDE, find
/interface/name

for example:
/interface/Text

CM3-IDE INTERFACE INDEX

7.1 Data Types, Data Structures, and Algorithms

7.1.1 Basic Data Types
The following table maps basic data types to the corresponding interfaces:

Data Type Interface

INTEGER | Integer, Int32
BOOLEAN | Boolean

CHAR Char

REFANY Refany

REAL RealType, Real
LONGREAL | LongrealType, LongReal
EXTENDED | Extended

TEXT Text

Interfaces for built-in types are used mainly as arguments for instantiating generic
collections.

Text Strings. Strings are represented as values of type TEXT. Text strings are
immutable; they are automatically garbage collected.

The TEXT type is used extensively throughout Modula-3 libraries. The TeXt interface
defines the basic operations on this type. Operations to convert between other
encodings of text strings are available in the T@XtConV interface. The internal
representation of text strings is exposed by Te@XtF. You should avoid using the

TextF interface whenever possible.

AsCII Characters. ASCII includes constant definitions for the character codes of
non-printable characters, such as ASCIT . NL for new-line. It classifies characters into
groups, like digits or punctuation; each group is represented as a set of characters.
Finally, it provides mapping tables that translate lower-case letters into upper-case and
vice versa.

Machine Words and Bit Manipulation. WOId allows bit manipulation on machine
words; Swap is useful for writing code that must deal explicitly with byte ordering
and/or word length issues.

Atoms. While not built-in types, atoms are handy for efficient comparison of text
strings. The Atom interface describes the set of operations available for atoms.

144

CM3-IDE INTERFACE INDEX

Symbolic Expressions. The SX interface provides symbolic expressions represented
as a recursive linked list structure, similar to Lisp systems. SX includes routines for
reading and printing symbolic expressions, as well as some convenience procedures for
manipulating them.

See also Formatting, /0 Conversion on page 149 for interfaces that produce or parse
text representations of the built-in types.

7.1.2 Collections, Lists, Tables, Sets

CM3-IDE libraries contain interfaces supporting the following data structures: linked
lists, sorted linked lists, Lisp-like property lists, tables, sorted tables, sequences, priority
queues, and sets.

Many of these data structures are available as generic interfaces. They can be
instantiated with whatever types you need. For most of the generic data structures, the
libraries already include instances for text strings, integers, atoms, and arbitrary
references. Many of the generics are packaged with makefile commands that make it
simply a matter of writing a line in your makefile to instantiate them.

7.1.3 Linked Lists

A generic implementation of singly-linked lists is available in the L1St interface, and
implementation. There are predefined instances for atoms, integers, references, and
text strings, as well as makefile commands to create custom lists.

7.1.4 Sorted Linked Lists

Lists may be sorted by using the generic L1StS0Ort interface and implementation.
Like the L1 St interfaces, there are predefined instances for atoms, integers,
references, and text strings.

7.1.5 Property lists

Property lists, simple linked lists of (name, value) pairs are available from the
Property interface. The related interfaces, PropertyV, MProperty,
PropertyF, and MPropertyF provide more features.

145

CM3-IDE INTERFACE INDEX

Tables
A flexible and highly-reusable generic Tab'l e interface provides efficient mappings
from values of one type to values of another. Like the list interfaces, the table interfaces
are provided with predefined instances for the full cross product of the four basic

types:

From \ To

integers

references

texts

PonCIl AtomAtomTb1 | AtomIntTb1 | AtomRefTb1 | AtomTextTbl
oSl IntAtomTb1 | IntIntTb1 | IntRefTb1l | IntTextTbl
Sl RefAtomTb1l | RefIntTbl |RefRefThl | RefTextTbl

texts TextAtomTb1 | TextIntTb1 | TextRefTb1 | TextTextTbl

Predefined makefile commands are available to create custom tables.

7.1.6 Sorted tables
Sorted tables are like tables with the addition of operations to iterate through the
elements of the table in a sorted order. The generic SOrtedTab'l e interface and
implementation are available. Like the other table interfaces, the sorted table interfaces
are provided with predefined instances for the full cross product of the four basic

types:

From \ To

integers

references

texts

Atoms Sorted- Sorted- Sorted- Sorted-
AtomAtomTb1 | AtomIntTb1 | AtomRefTb1 | AtomTextTb]l
inteoers Sorted- Sorted- Sorted- Sorted-
g IntAtomTb1 | IntIntTbl | IntRefTbl | IntTextTbl
references Sorted- Sorted- Sorted- Sorted-
RefAtomTb1 | RefIntTb1 | RefRefTb1l |RefTextTbl
Sorted- Sorted- Sorted- Sorted-
TextAtomTb1 | TextIntTb1 | TextRefTb1 | TextTextTbl

Predefined makefile commands are available to create custom sorted tables.

7.1.7 Sequences

The Sequence interface and implementation provide generic extensible arrays.
Elements can be added or removed from either end or directly indexed.

146

CM3-IDE INTERFACE INDEX

The SequenceRep interface exposes the full details of the underlying representation
of sequences. For maximum portability and implementation independence, programs
should avoid using SequenceRrep.

Predefined instances for atoms, integers, references, and text strings are available, so
are the makefile commands to create custom sequences.

7.1.8 Priority queues

Priority queues, or sequences that keep their elements sorted, are available in the
generic PQueue interface and implementation. The standard predefined instances for
atoms, integers, references, and text strings are available.

When it is necessaty to access the underlying implementation, the PQUeueRep
interface defines the full details. For maximum portability and implementation
independence, programs should avoid using this interface. Predefined instances for
atoms, integers, references, and text strings are available, as well as makefile commands
to create custom priority queues.

719 Sets

Sets are collections of values without duplicates. A generic S€t interface and
implementation are available. Sets are implemented using two implementation
strategies: SetDeT uses a hash-table, and SetL1i st uses a list representation for the

set.

generic integer reference
Set IntSet TextSet RefSet AtomSet
SISl IntSetDef | TextSetDef AtomSetDef

APl IntSetList | TextSetList | RefSetList | AtomSetList

Predefined makefile commands are available to create custom sets.

See also Atoms on page 144 for an overview of the AtOm interface, which provides a
unique value for all equal text strings.

7.1.10 Sorting Lists, Tables, and Arrays
Sorted generic lists, tables, and arrays allow iteration in a sorted order.

SortedLists. The generic interface L1StSOrt, implemented by generic module
ListSort extends the L1 St interface. As usual, there are instantiations
AtomListSort, IntListSort, RefListSort, and TextListSort.

SortedTables. The interface SOrtedTabe allows you to iterate through tables in a
sorted order.

147

CM3-IDE INTERFACE INDEX

SortedArrays. ArraySort works similarly, but for arrays; it is instantiated as
IntArraySort and TextArraysSort.

7.2 Standard Libraries

7.2.1 Math, Geometry, Statistics, Random numbers

Modula-3 provides a rich set of interfaces for mathematical and statistical
programming, The Math interface provides access to the C math libraries. Many
geometric abstractions are also available: AX1S, Interval, Point, Rect,
Transform, Path, Region, PolyRegion, Trapezoid.

The generic interface SQIrt defines a square root operation, instantiated as
Realsqrt and LongSqrt for REAL and LONGREALs. The interface Stat
defines a set of tools for collecting elementary statistics of a sequence of real quantities.
The interface Random and RandomPerm provide random permutations of
numbers. RandomRea includes machine specific algorithms for generating random
floating-point values.

7.2.2 Floating point
Real, LongReal, and Extended are interfaces corresponding to the built-in
floating-point types; their representations are in Rea’1Rep and LongRea’lRep.

The interface F1oatMode allows you to test the behavior of rounding and of
numerical exceptions. On some platforms it also allows you to change the behavior, on
a per-thread basis.

The interface FloatExtras, RealFloatExtras, and LongFloatExtras
contain miscellaneous functions useful for floating point arithmetic. The generic
interface F1oat and its instantiations RealFloat, LongFloat, and
ExtendedFloat provide interfaces to floating-point arithmetic.

IEEESpecial defines variables for the IEEE floating-point values =infinity,
+infinity, and NaN (not a number) for each of the three floating-point types.

7.2.3 Environment, Command line parameters
The EnV and Params interfaces provide access to the environment vatiables and
command-line parameters given to a process when it is started.

See also the Process interface in Processes, Pipes, O/S Errors on page 152.

7.2.4 1/0 streams, Reading and Writing, Files
1/0O Streams allow you to read and write to disk, network, another thread, another
process, etc.

Basic Input and Output. IO interface is a simple high-level I/O interface. Stdio
declares the standard input, output, and error streams.

148

CM3-IDE INTERFACE INDEX

Input and Output Streams. Rd is the interface for input streams, known as readers.
RdCTass allows you to create new kinds of readers. UnsafeRd is an internal
interface, providing non-setialized access to readers.

Wr is the safe interface to output streams, or writers. WrC1ass can be used to
implement new streams. Unsafewr allows unserialized access to a writet.

File Streams. Fi1eRd and FileWr read from and write to files.

Text Streams. TeXtRd and TeXtWr read from and write to TEXT strings. They
are designed for applying string procedures to streams or stream operations on strings.

Empty Streams. NU11Rd and NulTWr represent empty streams.

Message Streams. MSgRd and MSQWr present message stream abstractions. A
message is a sequence of bytes terminated by an end of message marker.

Stream and File Utilities. TempFi1es creates temporary files which get deleted
automatically upon termination of the process. RACOPY copies from readers to writers
efficiently. AUTOF Tushwr flushes the output in the background. RAUt1 1S adds a
few utilities for manipulating readers.

7.2.5 Formatting, /O Conversion

Most formatting interfaces in CM3-IDE work with strings, readers, and writers. Fmt
formats basic data types to strings. SCaN converts strings into basic data types.
FmtTime returns a string denoting the current date and time. FmtBuUT is similar to
Fmt interface, with the exception that it uses character buffers instead of TEXT
strings. FMEBUTF exposes its representation.

LeX provides lexical operations for reading tokens and basic datatypes, and matching
or skipping blanks from a reader. FOrmatter performs pretty-printing, the printing
of structured objects with appropriate line breaks and indentation.

Convert converts binary and ASCII representation of basic values. CCoOnvert
provides lower-level access to the conversion functions in C.

7.2.6 Threads

CM3-IDE provides language-level support for multi-threaded applications. CM3-
IDE’s runtime and standard libraries on all platforms are multi-threaded. The Thread
interface describes the portable interface for creating new threads (also called light-
weight processes.) Interfaces Scheduler, ThreadF, and ThreadContext

provide access to the internal representation of threads and some control over the
thread scheduler.

149

CM3-IDE INTERFACE INDEX

7.3 Systems Development

7.3.1 Distributed and Client/Server Development

Network Objects. CM3-IDE’s Network Objects system allows an object to be
handed to another process in such away that the process receiving the object can
operate on it as if it were local. The holder of a remote object can freely invoke
operations on that object just as if it had created that object locally. Further, it can pass
the object to other processes.

NetObj is the basic interface for defining network objects. A few makefile
commands help you integrate network objects within your programs. The
NetObjNot1if1ier interface notifies a server if its clients die. StUbL1b contains
procedures to be used by stub code for invoking remote object methods and servicing
remote invocations.

The current implementation of Network Objects is built on top of TCP.
TCPNetObj implements network objects on top of TCP/IP. Network Objects are
designed to make adaptation to specialized network protocols easy.

Network Streams. Network Streams provide a set of high-level abstractions for
sending and receiving messages across the network. CONNRW creates reader and writer
streams from a connection; CONNMSGRW creates message streams from a connection.

TCP / IP Socket Interfaces. Using the TCP/IP interfaces, you can write safe, multi-
threaded clients and servers for client/server computing. The same programs work
whether you use Unix sockets or Windows winsock. The interface TP defines the
addresses used for communicating with the internet protocol family. TCP provides
bidirectional byte streams between two programs, implemented using internet
protocols. TCPSpecial is a utility interface.

7.3.2 Databases and Persistence

Databases, Persistent Storage. CM3-IDE includes a number of facilities for saving
data in persistent forms: Relational Databases, Pickles, Simple Snapshot Persistence,
Stable Objects, and Bundles.

Relational Database Interface. The DB interface provides setialized access to
relational databases. DB allows multiple connections within one application and each
may be used concurrently by multiple threads. An implementation based on
Microsoft’s ODBC is available for both Windows and Unix; a sample implementation
for Postgres’95 on Unix is also included. You can modify the backend of the interface
to suit any relational database.

Pickles: ObjectTranscription (or “Serialization”). The Pick]e interface provides
operations for reading and writing arbitrary values as streams of bytes. Writing a value
as a pickle and then reading it back produces a value equivalent to the original value. In

150

CM3-IDE INTERFACE INDEX

other words, pickles preserve value, shape and sharing. You can write pickles for values
that have cyclic references (such as doubly-linked lists), or that are arbitrary graph
structures.

Two implementations of the P1 ke interface are available. P1ckTe2 is an
implementation geared toward heterogeneous platforms; it works across platforms,
reconciling machine word encoding, little-endian, big-endian, size differences.

PickTe is a more efficient implementation for homogeneous setups. Pickles are used
by Network Objects for transferring objects across processes.

SmallDB: Simple Snapshot Persistence. Smal1DB stores objects in a file in a
recoverable fashion. If a crash occurs while the objects are being written to disk, their
state can be restored from the latest consistent snapshot the next time they are used.
For binary snapshots, use the combination of Sma’l 1DB and Pick1e.

Stable Objects. Stable Objects extends the lightweight object storage provided by
Picklesand Smal1DB to allow for recoverable storage of objects through logging
and check-pointing. Updates to objects are logged to stable storage automatically.
When the state of an object is restored from disk, the restoration process checks to see
if a crash occutred before the entire state of the object was written to disk. If so, the
state of the object is recovered from the log of modifications to the object.

The generic interface Stable defines a subtype of a given object type that is just like
that object type, but stable. Makefile operations are provided to create stable versions
arbitrary object types. LOgManager manages readers and writers for the log and
checkpoint files used by stable objects. Stab1eRep defines the representation of
stable objects. LOg provides debugging operations for the log. Stab1eLog contains
procedures for reading and writing logs for stable objects.

Logs are written on readers and writers. Stab1eError defines the various error
scenarios and corresponding exceptions.

Bundles. Bundles package up arbitrary files at compile-time so that their contents can
be retrieved by a program at run-time without accessing the file system. The interface
BundTe allows runtime access to the stored data.

You can bundle files with your program by using operations defined in the bundle
makefile templates. Bund1eRep exposes the representation of bundles.

7.3.3 Operating System, Files, Processes, Time

CM3-IDE provides a set of high-level, portable interfaces to the underlying OS
facilities such as files, processes, directories, terminals, and keyboards. The interfaces to
these operating system functions are identical whether you are running on Windows or
Unix.

151

CM3-IDE INTERFACE INDEX

See also Microsoft Windows on page 152 and Unix on page 153 for lower-level, non-
portable interfaces to operating system services.

File-system Interfaces. F1 1€ defines a source and/or sink of bytes. File handles
provide an operating-system independent way to petform raw I/O. For buffered I/O,
use the Fi1eRd and FileWr interfaces instead.

Pathname defines procedures for manipulating pathnames in a portable fashion. The
FS interface provides access to persistent storage (files) and naming (directories).

RegularFile defines regular file handles which provide access to persistent
extensible sequences of bytes—usually disks. A Terminal handle is a file handle that
provides access to a duplex communication channel usually connected to a user
terminal.

Processes, Pipes, O/S Errors. The ProCess interface manages operating-system
processes (e.g,, creating processes, awaiting their exit). A P1pe is a file handle that can
be used to communicate between a parent and a child process or two sibling processes.

OSError defines an exception raised by a number of operating system interfaces.

Time, Date, Ticks. T1me defines a moment in time, reckoned as a number of
seconds since some epoch or starting point. Date defines a moment in time,
expressed according to the standard (Gregorian) calendar, as observed in some time
zone. T1CK defines a value of a clock with sub-second resolution, typically one sixtieth
of a second or smaller.

Timestamps, Capabilities, Fingerprints. Timestamps provided by the TimeStamp
interface are totally ordered in a relation that approximates the real time when the value
was generated. If two timestamps are generated in the same process then the ordering
of the timestamps is consistent with the order that TimeStamp . New was called. The
interface Capabi 11ty defines unique global identifiers that are extremely difficult
for an adversary to guess. The Fingerprint interface allows efficient comparison
of large strings, and more general data structures such as graphs. MachineID returns
a unique number for the machine running the Modula-3 program.

Platform-Specific Interfaces. Not all programs are portable. CM3-IDE allows access
to lower-level interfaces available from the host operating system. Most of these
interfaces are unsafe.

Microsoft Windows. The Windows distribution of CM3-IDE includes interfaces for
accessing many of the calls from the Win32 APL: WinBaseTypes, WinDef,
WinError,WinNT, WinBase, WinCon, WinGDI, WinNetwk, WinReg,
winuser,winver, NB30, CDErr, CommD1g, winSock.

152

CM3-IDE INTERFACE INDEX

Intermediate interfaces provide access to middle layers of Modula-3 libraries on Win32
are also available: Filewin32, Timewin32,0SWin32, TCPWin32,
OSErrorwin32.

Unix. The Unix distribution of CM3-IDE includes interfaces for accessing many of
the calls from common Unix APIs: Udir, Uipc, Uprocess,Usignal, Uugid,
Uerror, Umman, Upwd, Usocket, Uuio, Uexec, Umsg, Uresource,
Ustat, Uutmp, Ugrp, Unetdb, Usem Utime, Uin, Unix, Ushm Utypes.

Intermediate interfaces provide access to middle layers of Modula-3 libraries on Unix
are also available: FilePosix, TimePosiXx, OSPosix, TCPPPOSiX,
OSErrorpPosix.

7.3.4 Interoperability with C

Several standard C libraties ate available from CM3-IDE. Cerrno, Cstddef,
Cstdlib, Ctypes, Cstdarg, Csetjmp, Cstdio, and Cstring are Modula-
3 interfaces for C standard libraries. M3tOC converts between C strings and Modula-3
TEXT types.

7.3.5 Low-level Run-time Interfaces
Several interfaces provide low-level access to the run-time.

Allocator RTAllocator, RTAllocStats

RTHeap, RTHepDep, RTHeapInfo, RTHeapMap,

M . RTHeapRep, RTHeapDebug, RTHeapStats,
anagement | prHeapEvent
Lerizage RTCollector, RTCollectorsSRC
Collector
Type RTTipe, RTType, RTMapOp, RTTypeFP,

Management | RTTypeMap, RTUti1s, RTTypeSRC

Code and RTLinker, RTProcedureSRC, RTModule,
Execution RTProcedure, RTException

System RTParams, RTArgs, RTProcess, RTStack,
Interface RTMachine

Low-level RTHooks, RTO, RTSignal

Miscellaneous | RTIO, RTPacking, RTMisc

74 Miscellaneous

Main interface. The Ma1in interface is the entry point for executable programs. All
programs must include a module that exports this interface.

153

CM3-IDE INTERFACE INDEX

Weak References. Using the WeakReT interface, you can register cleanup
procedures to be run when the garbage collector is about to collect an object.

Performance Tuning. ETimer keeps track of elapsed time. It can be used for
performance measurements. Pe rfTool and LowPerfTooT control access to
performance monitoring tools.

Configuration. The M3ConT1 g interface exports the configuration constants defined
when the system was built.

Where to Go Next?

There are many more Modula-3 interfaces than described in this index. You may
continue learning about Modula-3 interfaces by browsing the list of interfaces available
in your CM3-IDE system.

154

FURTHER INFORMATION CI I

Read this chapter
to learn where to
find further
information about
modula-3.

8. Further Information

This chapter contains list of pointers to other information available about CM3-IDE
and Modula-3. Much of the material cited in this chapter is included in your CM3-IDE
distribution, whether in print, or on-line.

For continuously up-to-date information, see:

® Critical Mass Modula-3 Home Page, http://modula3.clegosoft.com/cm3/

® Modula-3 Resource Page, http://modula3.org/

® Modula-3 Internet Newsgroup: comp.lang.modula3

® Modula-3 Home Page, http://www.cs.arizona.edu/~collberg/Research/Modula-

3 /modula-3 /html/home.html

e HP Labs (formerly Digital Equipment Corporation Systems Research Center

[DEC SRC]), archive of Technical Reports,
http:/ /www.hpl.hp.com/techreports/ Compag-DEC/?jumpid=reg. R1002 USEN#stc

Books on page 156 lists some of the introductory and advanced books on Modula-3.

Technical Documentation on page 157 includes references to a number of technical
information sources. Much technical documentation is available as part of your CM3-
IDE distribution.

If you are new to Modula-3, you may consider reading articles referenced in
Introductory Programming Articles on page 158.

Systems Built Using Modula-3 on page 160 includes references to some of the
systems written in Modula-3.

Parallel Programming on page 161 cites references to articles written about parallel
programming in Modula-3.

Garbage Collection on page 161 describes the local and distributed memory
management algorithms used in CM3-IDE.

Comparisons to Other Languages on page 162 may be useful if you would like to
find out about similarities and differences between Modula-3 and other languages.

155

FURTHER INFORMATION

8.1 Books

8.1.1 System Programming with Modula-3
Greg Nelson (editor), Prentice Hall Series in Innovative Technology
ISBN 0-13-590464-1, L.C. QA76.66.887, 1991.

This book is the definitive language reference. It includes the language reference
manual and papers on the I/O libraty, threads, and the Trestle window system. On the
newsgroups and in informal discussion it is often referred to as “SPwM3”’.

Here is the table of contents:
¢ Introduction
® [Language Definition
® Standard Interfaces
® An Introduction to Programming with Threads
® Thread Synchronization: A Formal Specification
® 1/O Streams: Abstract Types, Real Programs
® Trestle Window System Tutorial
® How the Language Got its Spots

8.1.2 Modula-3
Samuel P. Harbison
ISBN 0-13-596396-6, Prentice Hall, 1992.

A complete Modula-3 textbook covering the full language, with examples and
exercises. Includes a style manual and a user’s guide for SRC Modula-3. The first
edition of the book contains many typos. A list of errata is available on-line for
anonymous FTP (in TeX, compressed PostScript, or DVI format) from
gatekeepet.dec.com in the directory pub/DEC/Modula-3/errata/.

8.1.3 Algorithms in Modula-3

Robert Sedgewick

Addison-Wesley

ISBN 0-201-53351-0, L.C. QA76.73.M63543, 1993.

Sedgewick’s classic text on algorithms, with examples in Modula-3.

156

FURTHER INFORMATION

8.1.4 Programming with Modula-3:
An Introduction to Programming with Style
Laszlo Boeszoermenyi and Carsten Weich
577 pages
Springer-Verlag
ISBN 3-540-57912-5 (English version)
ISBN 3-540-57911-7 (German version), 1995.

This book is an introductory programming text that uses Modula-3 for its examples.
To quote the authors, “The main concern of the book is to give a clean and
comprehensive introduction to programming for beginners of a computer science
study. We start with more traditional programming concepts and move toward
advanced topics such as object-oriented programming, parallel & concurrent
programming, exception handling, and persistent data techniques. The book also
presents a large number of complete examples written in Modula-3.”

8.2 Technical Documentation

Several technical reports describe various aspects of CM3-IDE. Most of these reports
are available on-line in the Technical Notes section of your CM3-IDE environment.

8.2.1 Reactor White Paper
Critical Mass, Inc. August 15, 1996.
http:/ /www.cmass.com/reactor

Reactor combines an innovative application development system with a rich and
robust distributed infrastructure. This report outlines the features and benefits of
Reactor’s high-productivity, distributed application development system.

8.2.2 Some Useful Modula-3 Interfaces

Jim Horning, Bill Kalsow, Paul McJones, Greg Nelson
Systems Research Center, Digital Equipment Corporation
Report #133, December 1993, 103 pages.

This manual describes a collection of interfaces defining abstractions that Modula-3
programmers have found useful over a number of years of experience with Modula-3
and its precursors. We hope the interfaces will be useful as a “starter kit” of
abstractions, and as a model for designing and specitying abstractions in Modula-3.

157

FURTHER INFORMATION

8.2.3 Network Objects

Andrew Bitrell, Greg Nelson, Susan Owicki, Edward Wobber
Systems Research Center, Digital Equipment Corporation
Report #115, February 1994.

This report describes the design and implementation of a Modula-3 network objects
system, which allows you to write programs that communicate over a network, while
hiding the messy details of network programming. Network objects provide
functionality similar to remote procedure call (RPC), but they are more general and
easier to use. The system is implemented in Modula-3.

8.2.4 Trestle Reference Manual

Mark S. Manasse and Greg Nelson

Systems Research Center, Digital Equipment Corporation
Report #69, December, 1991.

This report is the working definition of the Trestle toolkit for doing graphics in
Modula-3.

8.2.5 VBTkit Reference Manual: A toolkit for Trestle
Marc H. Brown and James R. Meehan (editors)
Systems Research Center, Digital Equipment Corporation

This report is the working definition of the VBTkit toolkit. VBTKit is a collection of
widgets for building graphical user interfaces in Modula-3. See the FormsVBT
Reference Manual below, which describes a system for easily composing these widgets.

This document is available on-line as part of the CM3-IDE distribution.

8.2.6 Oblig-3D Tutorial and Reference Manual
Marc Najork

Systems Research Center, Digital Equipment Corporation
Report #129, December 1994, 110 pages.

This report describes Oblig-3D, an interpreted language based on the Anim3D library
for building 3D animations quickly and easily.
8.3 Introductory Programming Articles

8.3.1 Modula-3 Reference and Tutorial
Stephen Schaub

An on-line reference and tutorial, available in Tutorials section of your CM3-IDE
Environment.

This tutorial is available on-line from the Modula-3 Home Page.

158

FURTHER INFORMATION

8.3.2 Net Balance: A Network Objects Example
Farshad Nayeri, March1996

The sources of a simple client and server that use network objects.
A gzipped tar archive of the sources and web page is also available.
This example program is available on-line from the Modula-3 Home Page.

8.3.3 Building Distributed OO Applications: Modula-3 Objects at Work
Michel R. Dagenais
Draft, March 1995.

A draft of a book describing the latest object-oriented techniques for developing large
interactive distributed applications. The focus is on the Modula-3 libraries and
Network Objects, but the first two chapters give an introduction to object-oriented
programming in general, and the object methodologies in particular.

8.3.4 Partial Revelation and Modula-3
Steve Freeman
Dr. Dobb’s Journal, 20(10):36-42, October 1995.

This article describes how Modula-3’s partial revelations promote encapsulation and
code reuse. The article is one of five on “object-oriented programming” contained in
the same issue (the other four languages are C++, Ada 95, S, and Cobol’97).

8.3.5 Initialization of Object Types
Greg Nelson
Threads: A Modula-3 Newsletter, Issue 1, Fall 1995.

This article describes the rationale for the way object types are initialized in Modula-3.
Modula-3 doesn’t have type constructors, but you can specify default values for object
fields in the type definition. The article also describes the init method convention.

8.3.6 Trestle Tutorial

Mark S. Manasse and Greg Nelson

Systems Research Center, Digital Equipment Corporation
Report #69, May 1992, 70 pages.

This report is a tutorial introduction to programming with Trestle, a Modula-3 window
system toolkit implemented over the X Window System and Microsoft Windows. It
assumes that you have some experience as a user of window systems, but no previous
experience programming with X or Win32.

This article is available on-line as part of the CM3-IDE package.

159

FURTHER INFORMATION

8.3.7 Trestle by Example
Ryan Stansifer, October 1994.

An on-line introduction to the Trestle window system.

'This tutorial is available in CM3-IDE environment at /tutorial /ui/tutorial. html.

8.4 Systems Built Using Modula-3

8.4.1 The Juno-2 Constraint-Based Drawing Editor
Allan Heydon and Greg Nelson
Systems Research Center, Digital Equipment Corporation
Report #131a, December 1994.

This report describes Juno-2, a constraint-based drawing editor implemented in
Modula-3. For more information, see the Juno-2 Home Page at
http:/ /www.research.digital.com/SRC/juno-2/.

8.4.2 Zeus: A System for Algorithm Animation and Multi-View Editing
Marc H. Brown

Systems Research Center, Digital Equipment Corporation

Report #129, February 1992.

8.4.3 Wiriting an Operating System with Modula-3

Emin Giin Sirer, Stefan Savage, Przemyslaw Pardyak, Greg P. DeFouw, and Brian
Bershad

November 1995.

http:/ /www.cs.washington.edu:80/research/projects/spin/www/papers/ WCS/m3os.

ps

Describes the experiences of the SPIN group at the University of Washington using
Modula-3 to build a high-performance extensible operating system. Debunks some of
the myths surrounding Modula-3 by arguing that the SRC reference implementation
introduces some inefficiencies that are not imposed by the Modula-3 language itself.

8.4.4 The Whole Program Optimizer
Amer Diwan
Threads: A Modula-3 Newsletter, Issue 1, Fall 1995.

This article motivates and describes an optimizer for Modula-3 programs based on
whole-program analysis. On benchmark programs, up to 50% of method invocations
can be converted to direct calls.

160

FURTHER INFORMATION

8.5 Parallel Programming

8.5.1 An Introduction to Programming with Threads
Andrew D. Birrell

Systems Research Center, Digital Equipment Corporation
Report #35, January 1989.

This paper provides an introduction to writing concurrent programs with threads. A
threads facility allows you to write programs with multiple simultaneous points of
execution, synchronizing through shared memory. The paper describes the basic
thread and synchronization primitives, then for each primitive provides a tutorial on
how to use it. The tutorial sections provide advice on the best ways to use the
primitives, give warnings about what can go wrong and offer hints about how to avoid
these pitfalls. The paper is aimed at experienced programmers who want to acquire
practical expertise in writing concurrent programs.

A must-read for anyone programming a concurrent system, this paper is included in
the Technical Notes section of the CM3-IDE distribution.

8.5.2 Synchronization Primitives for a Multiprocessor: A Formal
Specification

A. D. Birrell,]. V. Guttag, J.]. Horning, R. Levin

Systems Research Center, Digital Equipment Corporation

Report #20, August, 1987, 21 pages.

Formal specifications of operating system interfaces can be a useful part of their
documentation. This document illustrates this by documenting the thread
synchronization primitives available in Modula-3.

8.6 Garbage Collection

8.6.1 Compacting Garbage Collection with Ambiguous Roots
Joel . Bartlett

Western Research Laboratory, Digital Equipment Corporation

Report #88/2, February 1988.

This report describes one of the algorithms used as the basis for CM3-IDE’s garbage
collector.

161

FURTHER INFORMATION

8.6.2 Distributed Garbage Collection for Network Objects

Andrew Bitrell, David Evers, Greg Nelson, Susan Owicki, Edward Wobber
Systems Research Center, Digital Equipment Corporation

Report #116, December 1993.

This report describes a fault-tolerant and efficient garbage collection algorithm for
distributed systems. It is the algorithm used to garbage collect Network Objects.

8.6.3 Portable, Mostly-Concurrent, Mostly-Copying Garbage Collection for
Multi-Processors

Antony L. Hosking

Department of Computer Science

Purdue University

West Lafayette, IN 47907, USA

hosking(@cs.purdue.edu

The paper describes the mostly-concurrent collector implemented in CM3, which
permits application threads to run concurrently with garbage collection even on
multiprocessors.

8.7 Comparisons to Other Languages

8.7.1 A Comparison of Modula-3 and Oberon-2

Laszlo Boeszoermenyi

Compares Modula-3 and Oberon-2, two successors to Modula-2.
Structured Programming, Springer-Verlag, 1993. Pgs 15-22.

8.7.2 A Comparison of Object-Oriented Programming in Four Modern
Languages

Robert Henderson and Benjamin Zorn

Technical Report CU-CS-641-93

Department of Computer Science, University of Colorado, 1993

The paper evaluates Oberon, Modula-3, Sather, and Self in the context of object-
oriented programming. While each of these programming languages provide support
for classes with inheritance, dynamic dispatch, code reuse, and information hiding,
they do so in very different ways and with varying levels of efficiency and simplicity. A
single application was coded in each language and the experience gained forms the
foundation on which the subjective critique is based. By comparing the actual run-
times of the various implementations it is also possible to present an objective analysis
of the efficiency of the languages. Furthermore, by coding the application using both
explicit dynamic dispatch and static method binding; it is possible to evaluate the cost
of dynamic dispatch in each language. The application was also coded in C++, thereby
providing a well-known baseline against which the execution times can be compared.

162

FURTHER INFORMATION

8.8 Summary

Modula-3, the core of CM3-IDE, has been in extensive use for over a decade, and
many of these experiences have been recorded in various articles, books, technical
documents and network postings.

Many of these documents are distributed in Technical Notes or Tutorial sections of
your CM3-IDE distribution.

Systems Programming with Modula-3. The definitive book on Modula-3 is Systems
Programming with Modula-3, often abbreviated as SPwM3. The language reference
section from this book is included as part of CM3-IDE.

Some Useful Interfaces. Also included in your CM3-IDE distribution, describes
many of the standard Modula-3 interfaces.

Network Objects. To find out about the operation of Modula-3 Network Object
system, see the Network Objects manual.

Language Reference. Included as part of your CM3-IDE distribution, the Ianguage
Reference provides precise information about the semantics of Modula-3 programs.

Other Information Sources. There are many other sources of information on the
Internet:

® Critical Mass Modula-3 Home Page, http://modula3.clegosoft.com/cm3/
® Modula-3 Resource Page, http://modula3.org/
® Modula-3 page on Wikipedia, http://en.wikipedia.org/wiki/Modula-3

® Modula-3 Internet Newsgroup: post to comp.lang.modula3.

If you have found a useful publication or information source which is not listed in this
chapter, please inform us at m3-support@elego.de.

163

FURTHER INFORMATION

This page left blank
intentionally.

164

Index

[\ (} Index 2, 2
Index 1, 1 Index 1, 1 N
Index 1, 1 Index 1, 1 Index 1, 1
Index 1, 1 Index 1, 1 Index 1, 1
Index 2, 2 Index 1, 1 Index 1, 1
Index 3, 3 Index 1, 1 Index 2, 2
Index 1, 1 Index 1, 1 Index 1, 1
Index 1, 1 Index 1, 1
H Index 1, 1
B Index 1, 1
Index 1, 1 Index 1, 1 R
Index 1, 1 Index 1, 1 Index 1, 1
Index 1, 1 Index 1, 1 Index 1, 1
Index 2, 2 Index 2, 2
~ Index 1, 1 S
(4 Index 1, 1 Index 1, 1
Index 1, 1 Index 1, 1 Index 1, 1
Index 1, 1 Index 1, 1 Index 1, 1
Index 1, 1 Index 1, 1 Index 2, 2
Index 2, 2 Index 1, 1 Index 1, 1
Index 1, 1 - Index 1, 1
Index 1, 1 I& Index 1, 1
Index 1, 1 Index 1, 1 T
D I‘ Index 1, 1
Index 1, 1 Index 1, 1 Index 1, 1
Index 1, 1 Index 2, 2 Index 1, 1
Index 1, 1 Index 1, 1 Index 1, 1
Index 1, 1 Index 1, 1 Index 2, 2
Index 2, 2 7
E Index 1, 1 W
Index 1, 1 Index 1, 1 Index 1, 1
Index 1, 1 Index 1, 1 Index 1, 1
Index 1, 1 Index 1, 1 Index 1, 1
Index 2, 2 Index 1, 1 Index 2, 2
Index 1, 1) Index 1, 1
Index 1, 1 M Index 1, 1
Index 1, 1 Index 1, 1 Index 1, 1
Index 1, 1 Index ,
Index 1, 1

165

166

