arithmetic/src/algebra/chebyshev/ChebyPolynomialFast.ig


GENERIC INTERFACE ChebyPolynomialFast(R, P);
Arithmetic for Modula-3, see doc for details

FROM Arithmetic IMPORT Error;

CONST Brand = "Cheby" & P.Brand;

TYPE
  TBody = P.TBody;
  T = P.T;
  Ftn = PROCEDURE (x: R.T; ): R.T;

PROCEDURE Expand (func: Ftn;       (* differentiate polynomial *)
                  m   : CARDINAL;  (* order *)
  ): T;
find the minimum upper exponent that still guarants a good approximation if you abort the sum before the determined exponent the approximation error will get at most 'prec' higher
PROCEDURE FindUpperExp (x: T; prec: R.T := FLOAT(0.00001D0, R.T); ):
  CARDINAL;
the result of FindUpperExp can be passed to 'm'
PROCEDURE Abort (x: T;           (* abort the expansion *)
                 m: CARDINAL;    (* before the m-th term *)
  ): T;

PROCEDURE Eval (x : T;           (* evaluate this polynomial *)
                xi: R.T;         (* at this point *)
  ): R.T RAISES {Error};

PROCEDURE Derive (x: T;          (* differentiate polynomial *)
  ): T;

PROCEDURE Integrate (x: T;       (* integrate polynomial *)
  ): T;

END ChebyPolynomialFast.