
113

Some Useful Modula-3

Interfaces

Jim Horning, Bill Kalsow, Paul McJones, Greg Nelson

December 25, 1993

d i g i t a l
Systems Research Center

130 Lytton Avenue

Palo Alto, California 94301

Systems Research Center

The charter of SRC is to advance both the state of knowledge and the state of the
art in computer systems. From our establishment in 1984, we have performed
basic and applied research to support Digital's business objectives. Our current
work includes exploring distributed personal computing on multiple platforms,
networking, programming technology, system modelling and management tech-
niques, and selected applications.

Our strategy is to test the technical and practical value of our ideas by building
hardware and software prototypes and using them as daily tools. Interesting
systems are too complex to be evaluated solely in the abstract; extended use
allows us to investigate their properties in depth. This experience is useful in the
short term in re�ning our designs, and invaluable in the long term in advancing
our knowledge. Most of the major advances in information systems have come
through this strategy, including personal computing, distributed systems, and
the Internet.

We also perform complementary work of a more mathematical avor. Some of
it is in established �elds of theoretical computer science, such as the analysis of
algorithms, computational geometry, and logics of programming. Other work
explores new ground motivated by problems that arise in our systems research.

We have a strong commitment to communicating our results; exposing and test-
ing our ideas in the research and development communities leads to improved
understanding. Our research report series supplements publication in profes-
sional journals and conferences. We seek users for our prototype systems among
those with whom we have common interests, and we encourage collaboration
with university researchers.

Robert W. Taylor, Director

Some Useful Modula-3 Interfaces

Jim Horning, Bill Kalsow, Paul McJones, Greg Nelson

December 25, 1993

cDigital Equipment Corporation 1993

This work may not be copied or reproduced in whole or in part except in ac-
cordance with this provision. Permission to copy in whole or in part without
payment of fee is granted only to licensees under (and is subject to the terms and
conditions of) the Digital License Agreement for SRC Modula-3, as it appears,
for example, on the Internet at the URL http://www.research.digital.com/SRC/
m3sources/html/COPYRIGHT.html . All such whole or partial copies must in-
clude the following: a notice that such copying is by permission of the Systems
Research Center of Digital Equipment Corporation in Palo Alto, California; an
acknowledgment of the authors and individual contributors to the work; and all
applicable portions of this copyright notice. All rights reserved.

http://www.research.digital.com/SRC/m3sources/html/COPYRIGHT.html
http://www.research.digital.com/SRC/m3sources/html/COPYRIGHT.html

Authors' Abstract

This manual describes a collection of interfaces de�ning abstractions that SRC's
programmers have found useful over a number of years of experience with
Modula-3 and its precursors. We hope the interfaces will be useful as a \starter
kit" of abstractions, and as a model for designing and specifying abstractions
in Modula-3.

iii

Contents

Acknowledgments vii

1 Introduction 1

1.1 Naming conventions for types. : 1

1.2 Concurrency. : 2

1.3 Aliasing. : 2

1.4 Exception parameters for abstract types. : : : : : : : : : : : : : : 2

1.5 Standard generic instances. : 3

1.6 Sets and relations. : 4

2 Standard interfaces 5

2.1 Text : 5

2.2 Thread : 7

2.3 Word : 9

2.4 Real, LongReal, and Extended : : : : : : : : : : : : : : : : : : : 10

2.5 RealFloat, LongRealFloat, and ExtendedFloat : : : : : : : : : : 12

2.6 FloatMode : 15

2.7 Lex : 17

2.8 Fmt : 20

3 Data Structures 25

3.1 Sequence : 25

3.2 Atom : 27

3.3 List and ListSort : 28

3.4 Sx : 30

3.5 Table : 34

3.6 SortedTable : 37

3.7 Bundle : 38

4 Algorithms 40

4.1 ArraySort : 40

4.2 Random : 40

4.3 Fingerprint : 42

5 I/O Streams 47

5.1 IO : 47

5.2 Wr : 48

5.3 Rd : 51

5.4 TextWr and TextRd : 57

5.5 Stdio, FileWr, and FileRd : 58

v

6 Operating System 61

6.1 Time : 61
6.2 Date : 61
6.3 Tick : 63
6.4 OSError : 64
6.5 File : 64
6.6 Pipe : 66
6.7 Terminal : 68
6.8 RegularFile : 70
6.9 Pathname : 73
6.10 FS : 78
6.11 Process : 82
6.12 Params : 86
6.13 Env : 86

7 Runtime 88

7.1 WeakRef : 88
7.2 RTType : 91
7.3 RTAllocator : 93
7.4 RTCollector : 94
7.5 RTHeap : 96
7.6 RTTypeFP : 97

A Basic Data Types 98

References 99

Index 101

vi

vii

Acknowledgments

This manual builds on, and incorporates, the work of many people. We've
borrowed many ideas from the literature, as documented in the references. But
many other people have helped us design, implement, and re�ne the speci�c
interfaces published in this manual:

Lyle Ramshaw orchestrated a redesign of the Fmt and Lex interfaces and the
addition of the ToDecimal and FromDecimal procedures to the Float generic
interface. David Goldberg and Jorge Stol� consulted. Luca Cardelli designed
the �rst version of Lex (which he called Sift).

Atom, List, Sx, and Table are similar to Modula-2+ versions designed by
John Ellis. Jim Meehan collaborated on the design of Sx. Eric Muller and Jorge
Stol� explored the use of object types and generic interfaces for abstractions such
as tables.

Wr and Rd were designed by Mark R. Brown and Greg Nelson and closely
follow the design of the Modula-2+ streams package.

Pathname borrows from an earlier version written by Eric Muller.
Jim Horning and John Guttag wrote formal Larch speci�cations of File.T

and its subtypes, and in the process asked questions leading to substantial
improvements to the speci�cations in this manual.

Mick Jordan helped re�ne the operating-system interfaces and wrote the
�rst implementations of them.

WeakRef was greatly improved through long and spirited discussions involv-
ing Luca Cardelli, Dave Detlefs, John Ellis, John DeTreville, Mick Jordan,
Bill Kalsow, Mark Manasse, Ted Wobber, and Garret Swart. John DeTreville
provided the implementation.

John DeTreville collaborated on the design of RTCollector and the other
runtime interfaces.

Mary-Claire van Leunen encouraged us to begin.
Finally, this manual was greatly improved by the group of people who read

earlier drafts and participated in a running discussion on an electronic bulletin
board: Ed Balkovich, Andrew Birrell, Hans Boehm, Marc H. Brown, Mike
Burrows, Luca Cardelli, Michel Dagenais, Alan Demers, Dave Detlefs, Mike
Dixon, John DeTreville, Steve Freeman, Michel Gangnet, David Goldberg, Judy
Hall, Dave Hanson, Carl Hauser, Allan Heydon, Chuck Jerian, Butler Lampson,
Mark Manasse, Eric Muller, Hal Murray, David Nichols, Sharon Perl, Dave
Redell, Eric Roberts, Robert Sedgewick, Mike Spreitzer, Garret Swart, Samuel
Weber, and Ted Wobber.

1

1 Introduction

Modula-3 invites you to structure your program as a set of modules
interconnected via interfaces. Each interface typically corresponds to an
abstract data type. Some of these abstractions are particular to the program
at hand, but others are more general. This manual describes a collection of
interfaces de�ning abstractions that SRC's programmers have found useful over
a number of years of experience with Modula-3 and its precursors.

This manual concentrates on basic abstractions such as the standard
interfaces required or recommended by the Modula-3 language de�nition,
various data structures, portable operating-system functions, and control of
the Modula-3 runtime. For building distributed systems, see [2]. For building
user interfaces, see [11], [4], and [5].

1.1 Naming conventions for types.

We generally give the name T to the main type in an interface. For example,
the main type in the Date interface is Date.T.

Most object types have a method that is responsible for initializing the
object. By convention, this method is named init, and returns the object after
initializing it, so that the object can be initialized and used in an expression at
the same time: for example,

VAR s := NEW(Sequence.T).init();

If there are several di�erent ways to initialize the object, there will be
several methods. The most basic will be named init and the others will
receive descriptive names. For example, Sequence.T.init initializes an empty
sequence; Sequence.T.fromArray initializes a sequence from an array.

Many of our types are \abstract" in the sense that they de�ne the methods
of a type, but not their implementations. Various subtypes of the abstract type
de�ne di�erent methods corresponding to di�erent instances of the abstract
type. For example, the type Rd.T is a abstract reader (a stream of input
characters). Its subtype FileRd.T is a reader whose source is a �le; its subtype
TextRd.T is a reader whose source is a text string.

If you allocate an object of an abstract type and attempt to use it, you will
almost certainly get a checked runtime error, since its methods will be NIL.
Therefore, you must read the interfaces to �nd out which types are abstract
and which are concrete. The typical pattern is that an abstract type does not
have an init method, but each of its concrete instances does. This allows
di�erent subtypes to be initialized di�erently. For example, FileRd.T has an
init method that takes a �le; TextRd.T has an init method that takes a text;
and Rd.T has no init method at all.

2 1 INTRODUCTION

For some abstract types we choose to honor one of its subtypes as a \default
implementation". For example, we provide a hash table implementation as
the default for the abstract type Table.T. In this case we vary the naming
convention: instead of a separate interface HashTable de�ning the concrete
type HashTable.T as a subtype of Table.T, we declare the default concrete
type in the same interface with the abstract type and give it the name Default.
Thus Table.T and Table.Default are respectively the abstract table type and
its default implementation via hash tables. If you want to allocate a table you
must allocate a Table.Default, not a Table.T. On the other hand, if you are
de�ning a procedure that requires a table as a parameter, you probably want to
declare the parameter as a Table.T, not a Table.Default, to avoid excluding
other table implementations.

We use abstract types only when they seem advantageous. Thus the
type Sequence.T, which represents an extensible sequence, could have been
an abstract type, since di�erent implementations are easy to imagine. But
engineering considerations argue against multiple implementations, so we
declared Sequence.T as a concrete type.

1.2 Concurrency.

The speci�cation of a Modula-3 interface must explain how to use the interface
in a multithreaded program. When not otherwise speci�ed, each procedure
or method is atomic: it transforms an initial state to a �nal state with no
intermediate states that can be observed by other threads.

Alternatively, a data structure (the state of an entire interface, or of a
particular instance of an object type) can be speci�ed as unmonitored, in which
case the procedures and methods operating on it are not necessarily atomic.
In this case it is the client's responsibility to ensure that multiple threads are
not accessing the data structure at the same time|or more precisely, that this
happens only if all the concurrent accesses are read-only operations. Thus for
an unmonitored data structure, the speci�cation must state which procedures
or methods are read-only.

If all operations are read-only, there is no di�erence between monitored and
unmonitored data structures.

1.3 Aliasing.

The procedures and methods de�ned in this manual are not guaranteed to work
with aliased VAR parameters.

1.4 Exception parameters for abstract types.

It is often useful for an exception to include a parameter providing debugging
information of use to the programmer, especially when the exception signals

1.5 Standard generic instances. 3

abstraction failure. Di�erent implementations of an abstract type may wish
to supply di�erent debugging information. By convention, we use the type
AtomList.T for this purpose. The �rst element of the list is an error code; the
speci�cation of the subsequent elements is deferred to the subtypes. Portable
modules should treat the entire parameter as an opaque type.

An implementation module can minimize the probability of collision by
pre�xing its module name to each atom that it includes in the list.

1.5 Standard generic instances.

Several of the interfaces in this manual are generic. Unless otherwise
speci�ed, standard instances of these interfaces are provided for all meaningful
combinations of the formal imports ranging over Atom, Integer, Refany, and
Text.

For each interface that is likely to be used as a generic parameter, we de�ne
procedures Equal, Compare, and Hash.

The procedure Equal must compute an equivalence relation on the values of
the type; for example, Text.Equal(t, s) tests whether t and s represent the
same string. (This is di�erent from t = s, which tests whether t and s are the
same reference.)

If there is a natural total order on a type, then we de�ne a Compare procedure
to compute it, as follows:

PROCEDURE Compare(x, y: X): [-1..1];

Return

-1 if x R y and not Equal(x, y),

0 if Equal(x, y), and

1 if y R x and not Equal(x, y).

(Technically, Compare represents a total order on the equivalence classes
of the type with respect to Equal.) If there is no natural order, we de�ne a
Compare procedure that causes a checked runtime error. This allows you to
instantiate generic routines that require an order (such as sorting routines), but
requires you to pass a compare procedure as an explicit argument when calling
the generic routine.

The function Hash is a hash function mapping values of a type T to values
of type Word.T. This means that (1) it is time-invariant, (2) if t1 and t2 are
values of type T such that Equal(t1, t2), then Hash(t1) = Hash(t2), and
(3) its range is distributed uniformly throughout Word.T.

Note that it is not valid to use LOOPHOLE(r, INTEGER) as a hash function
for a reference r, since this is not time-invariant on implementations that use
copying garbage collectors.

4 1 INTRODUCTION

1.6 Sets and relations.

The speci�cations in this manual are written informally but precisely, using
basic mathematical concepts. For completeness, here are de�nitions of these
concepts.

A set is a collection of elements, without consideration of ordering or
duplication: two sets are equal if and only if they contain the same elements.

If X and Y are sets, a map m from X to Y uniquely determines for each x in X

an element y in Y; we write y = m(x). We refer to the set X as the domain of
m, or dom(m) for short, and the set Y as the range of m. A partial map from X to
Y is a map from some subset of X to Y.

If X is a set, a relation R on X is a set of ordered pairs (x, y) with x and y

elements of X. We write x R y if (x, y) is an element of R.
A relation R on X is reexive if x R x for every x in X; it is symmetric if x R y

implies that y R x for every x, y in X; it is transitive if x R y and y R z imply
x R z for every x, y, z in X; and it is an equivalence relation if it is reexive,
symmetric, and transitive.

A relation R on X is antisymmetric if for every x and y in X, x = y whenever
both x R y and y R x; R is a total order if it is reexive, antisymmetric,
transitive, and if, for every x and y in X, either x R y or y R x.

If x and y are elements of a set X that is totally ordered by a relation R,
we de�ne the interval [x..y] as the set of all z in X such that x R z and
z R y. Note that the notation doesn't mention R, which is usually clear from
the context (e.g., � for numbers). We say [x..y] is closed at its upper and
lower endpoints because it includes x and y. Half-open and open intervals
exclude one or both endpoints; notationally we substitute a parenthesis for the
corresponding bracket, for example [x..y) or (x..y).

A sequence s is a map whose domain is a set of consecutive integers. In
other words, if dom(s) is not empty, there are integers l and u, with l<=u, such
that dom(s) is [l..u]. We often write s[i] instead of s(i), to emphasize the
similarity to a Modula-3 array. If the range of s is Y, we refer to s as a sequence
of Y's. The length of a sequence s, or len(s), is the number of elements in
dom(s).

In the speci�cations, we often speak of assigning to an element of a sequence
or map, which is really a shorthand for replacing the sequence or map with a
suitable new one. That is, assigning m(i) := x is like assigning m := m', where
dom(m') is the union of dom(m) and {i}, where m'(i) = x, and where m'(j)

= m(j) for all j di�erent from i and in dom(m).
If s is a �nite sequence, and R is a total order on the range of s, then sorting s

means to reorder its elements so that for every pair of indexes i and j in dom(s),
s[i] R s[j] whenever i <= j. We say that a particular sorting algorithm is
stable if it preserves the original order of elements that are equivalent under R.

5

2 Standard interfaces

This section presents the interfaces required by every Modula-3 implementation.
The versions included here have some minor changes and additions to the
versions in [13].

Text provides operations on text strings.

Thread provides synchronization primitives for multiple threads of
control.

Word provides operations on unsigned words.

Real, LongReal, and ExtendedReal de�ne the properties of the
three oating-point types; for example, their bases and ranges.

RealFloat, LongRealFloat, and ExtendedFloat provide numerical
operations related to the oating-point representation; for example,
extracting the exponent of a number.

FloatMode provides operations for testing (and possibly setting) the
behavior of the implementation in response to numeric conditions;
for example, overow.

This section also presents two related interfaces provided by SRC Modula-3
and recommended to other implementers, but not required:

Lex provides for parsing numbers and other data from an input
stream.

Fmt provides for textual formatting of numbers and other data.

2.1 Text

A non-nil TEXT represents an immutable, zero-based sequence of characters. NIL
does not represent any sequence of characters, it will not be returned from any
procedure in this interface, and it is a checked runtime error to pass NIL to any
procedure in this interface.

INTERFACE Text;

IMPORT Word;

TYPE T = TEXT;

PROCEDURE Cat(t, u: T): T;

Return the concatenation of t and u.

PROCEDURE Equal(t, u: T): BOOLEAN;

Return TRUE if t and u have the same length and (case-sensitive) contents.

6 2 STANDARD INTERFACES

PROCEDURE GetChar(t: T; i: CARDINAL): CHAR;

Return character i of t. It is a checked runtime error if i >= Length(t).

PROCEDURE Length(t: T): CARDINAL;

Return the number of characters in t.

PROCEDURE Empty(t: T): BOOLEAN;

Equivalent to Length(t) = 0.

PROCEDURE Sub(t: T; start: CARDINAL;

length: CARDINAL := LAST(CARDINAL)): T;

Return a sub-sequence of t: empty if start >= Length(t) or length

= 0; otherwise the subsequence ranging from start to the minimum of

start+length-1 and Length(t)-1.

PROCEDURE SetChars(VAR a: ARRAY OF CHAR; t: T);

For each i from 0 to MIN(LAST(a), Length(t)-1), set a[i] to

GetChar(t, i).

PROCEDURE FromChar(ch: CHAR): T;

Return a text containing the single character ch.

PROCEDURE FromChars(READONLY a: ARRAY OF CHAR): T;

Return a text containing the characters of a.

PROCEDURE Hash(t: T): Word.T;

Return a hash function of the contents of t.

PROCEDURE Compare(t1, t2: T): [-1..1];

Return -1 if t1 occurs before t2, 0 if Equal(t1, t2), +1 if t1 occurs

after t2 in lexicographic order.

PROCEDURE FindChar(t: T; c: CHAR; start := 0): INTEGER;

If c = t[i] for some i in [start .. Length(t)-1], return the smallest

such i; otherwise, return -1.

PROCEDURE FindCharR(t: T; c: CHAR;

start := LAST(INTEGER)-5): INTEGER;

If c = t[i] for some i in [0 .. MIN(start, Length(t)-1)], return the

largest such i; otherwise, return -1.

END Text.

2.2 Thread 7

SRC Implementation Note. The default value for the start parameter of
FindCharR was chosen to avoid a bug in some C compilers.

2.2 Thread

A Thread.T is a handle on a thread. A Mutex is locked by some thread, or
unlocked. A Condition is a set of waiting threads. A newly-allocated Mutex is
unlocked; a newly-allocated Condition is empty. It is a checked runtime error
to pass the NIL Mutex, Condition, or T to any procedure in this interface.

The Thread interface is based on Hoare's monitors [7], as modi�ed in Mesa
[10] and simpli�ed in Modula-2+ [15]. For a tutorial on threads and a formal
speci�cation of the interface, see chapters 4 and 5 of [13].

INTERFACE Thread;

TYPE

T <: ROOT;

Mutex = MUTEX;

Condition <: ROOT;

TYPE Closure = OBJECT METHODS apply(): REFANY END;

PROCEDURE Fork(cl: Closure): T;

Return a handle on a newly created thread executing cl.apply().

PROCEDURE Join(t: T): REFANY;

Wait until t has terminated and return its result. It is a checked runtime

error to call this more than once for any t.

PROCEDURE Wait(m: Mutex; c: Condition);

The calling thread must have m locked. Atomically unlock m and wait on

c. Then relock m and returns.

PROCEDURE Acquire(m: Mutex);

Wait until m is unlocked and then lock it.

PROCEDURE Release(m: Mutex);

The calling thread must have m locked. Unlock m.

PROCEDURE Broadcast(c: Condition);

Make all threads waiting on c eligible to run.

PROCEDURE Signal(c: Condition);

8 2 STANDARD INTERFACES

One or more threads waiting on c become eligible to run.

PROCEDURE Pause(n: LONGREAL);

Wait for n seconds to elapse.

To wait until a speci�ed point in time in the future, say t, you can use the call

Pause(t - Time.Now())

PROCEDURE Self(): T;

Return the handle of the calling thread.

EXCEPTION Alerted;

Used to approximate asynchronous interrupts.

PROCEDURE Alert(t: T);

Mark t as an alerted thread.

PROCEDURE TestAlert(): BOOLEAN;

If the calling thread has been marked alerted, return TRUE and unmark it.

PROCEDURE AlertWait(m: Mutex; c: Condition) RAISES {Alerted};

Like Wait, but if the thread is marked alerted at the time of call or

sometime during the wait, lock m and raise Alerted.

PROCEDURE AlertJoin(t: T): REFANY RAISES {Alerted};

Like Join, but if the thread is marked alerted at the time of call or

sometime during the wait, raise Alerted.

PROCEDURE AlertPause(n: LONGREAL) RAISES {Alerted};

Like Pause, but if the thread is marked alerted at the time of the call or

sometime during the wait, raise Alerted.

CONSTANT AtomicSize = ...;

An implementation-dependent integer constant: the number of bits in a

memory-coherent block. If two components of a record or array fall in

di�erent blocks, they can be accessed concurrently by di�erent threads

without locking.

END Thread.

2.3 Word 9

2.3 Word

A Word.T w represents a sequence of Word.Size bits w0; : : : ; wWord.Size-1.
It also represents the unsigned number

P
i
wi � 2

i. Finally, it also represents
a signed INTEGER by some implementation-dependent encoding (for example,
two's complement). The built-in operations of the language deal with the signed
value; the operations in this interface deal with the unsigned value or with the
bit sequence.

INTERFACE Word;

TYPE T = INTEGER;

CONST Size: INTEGER = BITSIZE(T);

Here are the arithmetic operations on unsigned words:

PROCEDURE Plus(x, y: T): T; (* (x + y) MOD 2^Word.Size *)

PROCEDURE Times(x, y: T): T; (* (x * y) MOD 2^Word.Size *)

PROCEDURE Minus(x, y: T): T; (* (x - y) MOD 2^Word.Size *)

PROCEDURE Divide(x, y: T): T; (* x DIV y *)

PROCEDURE Mod(x, y: T): T; (* x MOD y *)

PROCEDURE LT(x, y: T): BOOLEAN; (* x < y *)

PROCEDURE LE(x, y: T): BOOLEAN; (* x <= y *)

PROCEDURE GT(x, y: T): BOOLEAN; (* x > y *)

PROCEDURE GE(x, y: T): BOOLEAN; (* x >= y *)

And here are the logical operations on bit sequences:

PROCEDURE And(x, y: T): T; (* Bitwise AND of x and y *)

PROCEDURE Or(x, y: T): T; (* Bitwise OR of x and y *)

PROCEDURE Xor(x, y: T): T; (* Bitwise XOR of x and y *)

PROCEDURE Not(x: T): T; (* Bitwise complement of x *)

And here are additional operations on bit sequences:

PROCEDURE Shift(x: T; n: INTEGER): T;

For all i such that both i and i - n are in the range [0..Word.Size -

1], bit i of the result equals bit i - n of x. The other bits of the result

are 0. Thus shifting by n > 0 is like multiplying by 2n.

Since Modula-3 has no exponentiation operator, Word.Shift(1, n) is the usual
way of writing 2n in a constant expression.

PROCEDURE LeftShift(x: T; n: [0..Size-1]): T;

Equivalent to Shift(x, n).

10 2 STANDARD INTERFACES

PROCEDURE RightShift(x: T; n: [0..Size-1]): T;

Equivalent to Shift(x, -n).

PROCEDURE Rotate(x: T; n: INTEGER): T;

Bit i of the result is bit ((i - n) MOD Word.Size) of x.

PROCEDURE LeftRotate(x: T; n: [0..Size-1]): T;

Equivalent to Rotate(x, n).

PROCEDURE RightRotate(x: T; n: [0..Size-1]): T;

Equivalent to Rotate(x, -n).

PROCEDURE Extract(x: T; i, n: CARDINAL): T;

Take n contiguous bits from x, with bit i as the least signi�cant bit, and

return them as the least signi�cant n bits of a word whose other bits are

0. A checked runtime error if n + i > Word.Size.

PROCEDURE Insert(x, y: T; i, n: CARDINAL): T;

Result of replaceing n bits of x, with bit i as the least signi�cant bit, by

the least signi�cant n bits of y. The other bits of x are unchanged. A

checked runtime error if n + i > Word.Size.

END Word.

2.4 Real, LongReal, and Extended

For de�nitions of the terms used in the oating-point interfaces, see the
ANSI/IEEE Standard 754-1985, IEEE Standard for Binary Floating-Point
Arithmetic.

The interfaces Real, LongReal, and Extended de�ne constant attributes of the
three built-in oating-point types:

INTERFACE Real; TYPE T = REAL;

CONST

Base: INTEGER = ...;

Precision: INTEGER = ...;

MaxFinite: T = ...;

MinPos: T = ...;

MinPosNormal: T = ...;

MaxExpDigits: INTEGER = ...;

MaxSignifDigits: INTEGER = ...;

END Real.

2.4 Real, LongReal, and Extended 11

INTERFACE LongReal; TYPE T = LONGREAL;

CONST

Base: INTEGER = ...;

Precision: INTEGER = ...;

MaxFinite: T = ...;

MinPos: T = ...;

MinPosNormal: T = ...;

MaxExpDigits: INTEGER = ...;

MaxSignifDigits: INTEGER = ...;

END LongReal.

INTERFACE Extended; TYPE T = EXTENDED;

CONST

Base: INTEGER = ...;

Precision: INTEGER = ...;

MaxFinite: T = ...;

MinPos: T = ...;

MinPosNormal: T = ...;

MaxExpDigits: INTEGER = ...;

MaxSignifDigits: INTEGER = ...;

END Extended.

The speci�cation is the same for all three interfaces:

Base is the base of the oating-point representation for T.

Precision is the number of base-Base digits of precision for T.

MaxFinite is the maximum �nite value in T. For non-IEEE imple-
mentations, this is the same as LAST(T).

MinPos is the minimum positive value in T.

MinPosNormal is the minimum positive normal value in T; it
di�ers from MinPos only for implementations (like IEEE) with
denormalized numbers.

MaxExpDigits is the smallest integer with the property that every
�nite number of type T can be written in base-10 scienti�c notation
using an exponent with at most MaxExpDigits.

MaxSignifDigits is the smallest integer with the property that
for every point x along the number line, the two oating-decimal
numbers with MaxSignifDigits closest to x are closer to each other
than are the two closest numbers of type T.

Typically,

MaxExpDigits = CEILING(LOG_10(LOG_10(MaxFinite)))

MaxSignifDigits = CEILING(LOG_10(BasePrecision)) + 1.

12 2 STANDARD INTERFACES

2.5 RealFloat, LongRealFloat, and ExtendedFloat

The interfaces RealFloat, LongRealFloat, and ExtendedFloat de�ne opera-
tions that depend on the oating-point representation. Each one is an instance
of a generic interface Float:

INTERFACE RealFloat = Float(Real) END RealFloat.

INTERFACE LongFloat = Float(LongReal) END LongFloat.

INTERFACE ExtendedFloat = Float(Extended) END ExtendedFloat.

The generic interface Float provides access to the oating-point operations
required or recommended by the IEEE oating-point standard. Consult the
standard to resolve any �ne points in the speci�cation of the procedures. Non-
IEEE implementations that have values similar to NaNs and in�nities should
explain how those values behave in an implementation guide. (NaN is an IEEE
term whose informal meaning is \not a number".)

GENERIC INTERFACE Float(R);

IMPORT FloatMode;

TYPE T = R.T;

PROCEDURE Scalb(x: T; n: INTEGER): T RAISES {FloatMode.Trap};

Return x � 2n.

PROCEDURE Logb(x: T): T RAISES {FloatMode.Trap};

Return the exponent of x. More precisely, return the unique integer n such

that the ratio ABS(x) / Base
n is in the half-open interval [1..Base),

unless x is denormalized, in which case return the minimum exponent

value for T.

PROCEDURE ILogb(x: T): INTEGER;

Like Logb, but returns an integer, never raises an exception, and always

returns the n such that ABS(x) / Base
n is in the half-open interval

[1..Base), even for denormalized numbers. Special cases: it returns

FIRST(INTEGER) when x = 0.0, LAST(INTEGER) when x is plus or minus

in�nity, and zero when x is NaN.

PROCEDURE NextAfter(x, y: T): T RAISES {FloatMode.Trap};

Return the next representable neighbor of x in the direction towards y. If

x = y, return x.

PROCEDURE CopySign(x, y: T): T;

Return x with the sign of y.

2.5 RealFloat, LongRealFloat, and ExtendedFloat 13

PROCEDURE Finite(x: T): BOOLEAN;

Return TRUE if x is strictly between minus in�nity and plus in�nity. This

always returns TRUE on non-IEEE implementations.

PROCEDURE IsNaN(x: T): BOOLEAN;

Return FALSE if x represents a numerical (possibly in�nite) value, and

TRUE if x does not represent a numerical value. For example, on IEEE

implementations, returns TRUE if x is a NaN, FALSE otherwise.

PROCEDURE Sign(x: T): [0..1];

Return the sign bit x. For non-IEEE implementations, this is the same as

ORD(x >= 0); for IEEE implementations, Sign(-0) = 1 and Sign(+0)

= 0.

PROCEDURE Differs(x, y: T): BOOLEAN;

Return (x < y OR y < x). Thus, for IEEE implementations,

Differs(NaN,x) is always FALSE; for non-IEEE implementations,

Differs(x,y) is the same as x # y.

PROCEDURE Unordered(x, y: T): BOOLEAN;

Return NOT (x <= y OR y <= x). Thus, for IEEE implementations,

Unordered(NaN, x) is always TRUE; for non-IEEE implementations,

Unordered(x, y) is always FALSE.

PROCEDURE Sqrt(x: T): T RAISES {FloatMode.Trap};

Return the square root of T. This must be correctly rounded if

FloatMode.IEEE is TRUE.

TYPE IEEEClass =

{SignalingNaN, QuietNaN, Infinity, Normal, Denormal, Zero};

PROCEDURE Class(x: T): IEEEClass;

Return the IEEE number class containing x. On non-IEEE systems, the

result will be Normal or Zero.

PROCEDURE FromDecimal(

sign: [0..1];

READONLY digits: ARRAY OF [0..9];

exp: INTEGER): T RAISES {FloatMode.Trap};

Convert from oating-decimal to type T.

Let F denote the nonnegative, oating-decimal number

14 2 STANDARD INTERFACES

digits[0] . digits[1] ... digits[LAST(digits)] * 10^exp

= sum(i, digits[i] * 10^(exp - i))

The result of FromDecimal is the number (-1)^sign * F, rounded to a value
of type T.

The procedure FromDecimal is a oating-point operation, just like + and
*, in the sense that it rounds its ideal result correctly, observing the current
rounding mode, and it sets ags and raises traps by the usual rules. On IEEE
implementations, it returns minus zero when F is su�ciently small and sign=1.

TYPE DecimalApprox = RECORD

class: IEEEClass;

sign: [0..1];

len: [1..R.MaxSignifDigits];

digits: ARRAY[0..R.MaxSignifDigits-1] OF [0..9];

exp: INTEGER;

errorSign: [-1..1]

END;

PROCEDURE ToDecimal(x: T): DecimalApprox;

Convert from type T to oating-decimal.

Let D denote ToDecimal(x). Then, D.class = Class(x) and D.sign =

Sign(x). The other �elds are de�ned only when D.class is either Normal

or Denormal. In those cases, the values D.len, D.digits[0] through
D.digits[D.len-1], and D.exp encode a oating-decimal number F with the
property that (-1)^D.sign * F approximates x in a sense discussed below. The
encoding is such that

F = digits[0] . digits[1] ... digits[len - 1] * 10^exp

= sum(i, digits[i] * 10^(exp - i))

and

ABS(x) = F * (1 + errorSign * epsilon)

where epsilon is small and positive. In particular, D.errorSign is +1, 0, or -1
according as ABS(x) is larger than, equal to, or smaller than F.

The current rounding mode determines the sense in which the oating-
decimal number (-1)^sign * F approximates x, but in a slightly subtle way.
De�ne the opposite of a directed rounding mode by reversing the direction, as
follows:

Opp(TowardPlusInfinity) := TowardMinusInfinity

Opp(TowardMinusInfinity) := TowardPlusInfinity

Opp(TowardZero) := AwayFromZero

2.6 FloatMode 15

Note that AwayFromZero isn't actually a rounding mode, but it is clear what it
would mean if it were. For all other rounding modes M, we de�ne Opp(M) = M. If
the current rounding mode is M, the call ToDecimal(x) returns a oating-decimal
number that FromDecimal would convert, under rounding mode Opp(M), back
to x. Among all such numbers, the returned value has as few digits as possible.
This implies that both D.digits[0] and D.digits[D.len-1] are nonzero. If
there is a tie for having the fewest digits, the tying number closest to x wins.
If there is also a tie for being closest to x, it must be a two-way tie and the
number whose last digit is even wins.

Unlike FromDecimal, ToDecimal never sets a FloatMode.Flag and never
raises FloatMode.Trap.

The idea of converting to decimal by retaining just as many digits as are
necessary to convert back to binary exactly was popularized by Guy L. Steele
Jr. and Jon L White [17]. David M. Gay pointed out the importance, in this
context, of demanding that the conversion to binary handle mid-point cases by
a known rule [6]. For example, in IEEE double precision, the oating-decimal
number 1e23 is precisely halfway between two adjacent oating-binary numbers.
If conversion to binary were allowed to go either way in such a mid-point case,
conversion to decimal would have to avoid producing the simple number 1e23,
producing instead either 1.0000000000000001e23 or 9.999999999999999e22.
We believe the idea of combining the Steele/White style of automatic precision
control with directed rounding by using opposite rounding modes, as above, is
new with Lyle Ramshaw.

END Float.

2.6 FloatMode

The interface FloatMode allows you to test the behavior of rounding and of
numerical exceptions. On some implementations it also allows you to change
the behavior, on a per-thread basis.

INTERFACE FloatMode;

CONST IEEE: BOOLEAN = ...;

TRUE for fully compliant IEEE implementations.

EXCEPTION Failure;

Raised by attempts to set modes that are not supported by the

implementation.

TYPE RoundingMode =

{NearestElseEven, TowardMinusInfinity, TowardPlusInfinity,

16 2 STANDARD INTERFACES

TowardZero, NearestElseAwayFromZero, IBM370, Other};

Rounding modes. The �rst four are the IEEE modes. A VAX always does

NearestElseAwayFromZero.

CONST RoundDefault: RoundingMode = ...;

Implementation-dependent: the default mode for rounding arithmetic

operations, used by a newly forked thread. This also speci�es the

behavior of the ROUND operation in half-way cases.

PROCEDURE SetRounding(md: RoundingMode) RAISES {Failure};

Change the rounding mode for the calling thread to md, or raise the

exception if this cannot be done. This a�ects the implicit rounding

in oating-point operations; it does not a�ect the ROUND operation.

Generally this can be done only on IEEE implementations and only if md

is an IEEE mode.

PROCEDURE GetRounding(): RoundingMode;

Return the rounding mode for the calling thread.

TYPE Flag = {Invalid, Inexact, Overflow, Underflow,

DivByZero, IntOverflow, IntDivByZero};

Associated with each thread is a set of boolean status ags recording whether
the condition represented by the ag has occurred in the thread since the ag
was last reset. The meaning of the �rst �ve ags is de�ned precisely in the
IEEE oating point standard; roughly they mean:

Invalid = invalid argument to an operation.

Inexact = an operation produced an inexact result.

Overflow = a oating-point operation produced a result whose
absolute value is too large to be represented.

Underflow = a oating-point operation produced a result whose
absolute value is too small to be represented.

DivByZero = oating-point division by zero.

The meaning of the last two ags is:

IntOverflow = an integer operation produced a result outside the
representable range.

IntDivByZero = integer DIV or MOD by zero.

2.7 Lex 17

CONST NoFlags = SET OF Flag {};

PROCEDURE GetFlags(): SET OF Flag;

Return the set of ags for the current thread.

PROCEDURE SetFlags(s: SET OF Flag)

: SET OF Flag RAISES {Failure};

Set the ags for the current thread to s, and return their previous values.

PROCEDURE ClearFlag(f: Flag);

Turn o� the ag f for the current thread.

EXCEPTION Trap(Flag);

TYPE Behavior = {Trap, SetFlag, Ignore};

The behavior of an operation that causes one of the ag conditions is either:

Ignore = return some result and do nothing.

SetFlag = return some result and set the condition ag. For
IEEE implementations, the result of the operation is de�ned by the
standard.

Trap = possibly set the condition ag; in any case raise the Trap

exception with the appropriate ag as the argument.

PROCEDURE SetBehavior(f: Flag; b: Behavior) RAISES {Failure};

Set the behavior of the current thread for the ag f to be b, or raise

Failure if this cannot be done.

PROCEDURE GetBehavior(f: Flag): Behavior;

Return the behavior of the current thread for the ag f.

END FloatMode.

2.7 Lex

The Lex interface provides procedures for reading strings, booleans, integers,
and oating-point numbers from an input stream.

INTERFACE Lex;

IMPORT FloatMode, Rd, Word;

EXCEPTION Error;

18 2 STANDARD INTERFACES

CONST

Blanks = SET OF CHAR{

' ', '\t', '\n', '\r', '\013' (* vertical tab *), '\f'};

NonBlanks = SET OF CHAR{'!' .. '~'};

Each of the procedures in this interface reads a speci�ed pre�x of the characters
in the reader passed to the procedure, and leaves the reader positioned
immediately after that pre�x, perhaps at end-of-�le. Each procedure may call
Rd.UngetChar after its �nal call on Rd.GetChar.

PROCEDURE Scan(

rd: Rd.T; READONLY cs: SET OF CHAR := NonBlanks): TEXT

RAISES {Rd.Failure};

Read the longest pre�x of rd composed of characters in cs and return

that pre�x as a TEXT.

PROCEDURE Skip(

rd: Rd.T; READONLY cs: SET OF CHAR := Blanks)

RAISES {Rd.Failure};

Read the longest pre�x of rd composed of characters in cs and discard it.

Whenever a speci�cation of one of the procedures mentions skipping blanks,
this is equivalent to performing the call Skip(rd, Blanks).

PROCEDURE Match(rd: Rd.T; t: TEXT)

RAISES {Rd.Failure, Error};

Read the longest pre�x of rd that is also a pre�x of t. Raise Error if that

pre�x is not, in fact, equal to all of t.

PROCEDURE Bool(rd: Rd.T): BOOLEAN RAISES {Rd.Failure, Error};

Read a boolean from rd and return its value.

Bool skips blanks, then reads the longest pre�x of rd that is a pre�x of a
Boolean in the following grammar:

Boolean = "F" "A" "L" "S" "E" | "T" "R" "U" "E".

The case of letters in a Boolean is not signi�cant. If the pre�x read from rd is
an entire Boolean, Bool returns that boolean; else it raises Error.

PROCEDURE Int(rd: Rd.T; defaultBase: [2..16] := 10)

: INTEGER RAISES {Rd.Failure, Error, FloatMode.Trap};

PROCEDURE Unsigned(rd: Rd.T; defaultBase: [2..16] := 16)

: Word.T RAISES {Rd.Failure, Error, FloatMode.Trap};

Read a number from rd and return its value.

2.7 Lex 19

Each procedure skips blanks, then reads the longest pre�x of rd that is a pre�x
of a Number as de�ned by the grammar below. If defaultBase exceeds 10, then
the procedure scans for a BigBaseNum; otherwise it scans for a SmallBaseNum.
The e�ect of this rule is that the letters 'a' through 'f' and 'A' through
'F' stop the scan unless either the defaultBase or the explicitly provided base
exceeds 10. Unsigned omits the scan for a Sign.

Number = [Sign] (SmallBaseNum | BigBaseNum).

SmallBaseNum = DecVal | BasedInt.

BigBaseNum = HexVal | BasedInt.

BasedInt = SmallBase "_" DecVal | BigBase "_" HexVal.

DecVal = Digit {Digit}.

HexVal = HexDigit {HexDigit}.

Sign = "+" | "-".

SmallBase = "2" | "3" | ... | "10".

BigBase = "11" | "12" | ... | "16".

Digit = "0" | "1" | ... | "9".

HexDigit = Digit | "A" | "B" | "C" | "D" | "E" | "F"

| "a" | "b" | "c" | "d" | "e" | "f".

If the pre�x read from rd is an entire Number (as described above), the
corresponding number is returned; else Error is raised.

If an explicit base is given with an underscore, it is interpreted in decimal.
In this case, the digits in DecVal or HexVal are interpreted in the explicit base,
else they are interpreted in the defaultBase.

Both procedures may raise FloatMode.Trap(IntOverflow). They raise
Error if some digit in the value part is not a legal digit in the chosen base.

PROCEDURE Real(rd: Rd.T): REAL

RAISES {Rd.Failure, Error, FloatMode.Trap};

PROCEDURE LongReal(rd: Rd.T): LONGREAL

RAISES {Rd.Failure, Error, FloatMode.Trap};

PROCEDURE Extended(rd: Rd.T): EXTENDED

RAISES {Rd.Failure, Error, FloatMode.Trap};

Read a real number from rd and return its value.

Each procedure skips blanks, then reads the longest pre�x of rd that is a pre�x
of a oating-decimal number Float in the grammar:

Float = [Sign] FloVal [Exp].

FloVal = {Digit} (Digit | Digit "." | "." Digit) {Digit}.

Exp = Marker [Sign] Digit {Digit}.

Marker = ("E" | "e" | "D" | "d" | "X" | "x").

where Sign and Digit are as de�ned above. If the pre�x read from rd is an entire
Float, that Float is converted to a REAL, LONGREAL, or EXTENDED using the

20 2 STANDARD INTERFACES

routine FromDecimal in the appropriate instance of the Float generic interface;
else Error is raised. Note that the exponent of Float can be introduced with
any of the six characters 'e', 'E', 'd', 'D', 'x', or 'X', independent of the
target type of the conversion.

On IEEE implementations, the syntax for Float is extended as follows:

Float = [Sign] FloVal [Exp] | [Sign] IEEEVal.

IEEEVal = "I" "N" "F" "I" "N" "I" "T" "Y" | "I" "N" F"

| "N" "A" "N".

The case of letters in an IEEEVal is not signi�cant. The FloatMode.Trap

exception may be raised with any of the arguments Overflow, Underflow, or
Inexact.

END Lex.

2.8 Fmt

The Fmt interface provides procedures for formatting numbers and other data
as text.

INTERFACE Fmt;

IMPORT Word, Real AS R, LongReal AS LR, Extended AS ER;

PROCEDURE Bool(b: BOOLEAN): TEXT;

Format b as "TRUE" or "FALSE".

PROCEDURE Char(c: CHAR): TEXT;

Return a text containing the character c.

TYPE Base = [2..16];

PROCEDURE Int(n: INTEGER; base: Base := 10): TEXT;

PROCEDURE Unsigned(n: Word.T; base: Base := 16): TEXT;

Format the signed or unsigned number n in the speci�ed base.

The value returned by Int or Unsigned never contains upper-case letters, and
it never starts with an explicit base and underscore. For example, to render an
unsigned number N in hexadecimal as a legal Modula-3 literal, you must write
something like:

"16_" & Fmt.Unsigned(N, 16)

TYPE Style = {Sci, Fix, Auto};

PROCEDURE Real(

2.8 Fmt 21

x: REAL;

style := Style.Auto;

prec: CARDINAL := R.MaxSignifDigits - 1;

literal := FALSE)

: TEXT;

PROCEDURE LongReal(

x: LONGREAL;

style := Style.Auto;

prec: CARDINAL := LR.MaxSignifDigits - 1;

literal := FALSE)

: TEXT;

PROCEDURE Extended(

x: EXTENDED;

style := Style.Auto;

prec: CARDINAL := ER.MaxSignifDigits - 1;

literal := FALSE)

: TEXT;

Format the oating-point number x.

Overview. Style.Sci gives scienti�c notation with �elds padded to �xed
widths, suitable for making a table. The parameter prec speci�es the number
of digits after the decimal point|that is, the relative precision.

Style.Fix gives �xed point, with prec once again specifying the number of
digits after the decimal point|in this case, the absolute precision. The results
of Style.Fix have varying widths, but they will form a table if they are right-
aligned (using Fmt.Pad) in a su�ciently wide �eld.

Style.Auto is not intended for tables. It gives scienti�c notation with at
most prec digits after the decimal point for numbers that are very big or very
small. There may be fewer than prec digits after the decimal point because
trailing zeros are suppressed. For numbers that are neither too big nor too
small, it formats the same signi�cant digits|at most prec+1 of them|in �xed
point, for greater legibility.

All styles omit the decimal point unless it is followed by at least one digit.

Setting literal to TRUE alters all styles as necessary to make the result a
legal Modula-3 literal of the appropriate type.

Accuracy. As discussed in the Float interface, the call ToDecimal(x)

converts x to a oating-decimal number with automatic precision control [17, 6]:
Just enough digits are retained to distinguish x from other values of type
T, which implies that at most T.MaxSignifDigits are retained. The Real,
LongReal, and Extended procedures format those digits as an appropriate string
of characters. If the precision requested by prec is higher than the automatic
precision provided by ToDecimal(x), they append trailing zeros. If the precision

22 2 STANDARD INTERFACES

requested by prec is lower, they round ToDecimal(x) as necessary, obeying the
current rounding mode. Because they exploit the errorSign �eld of the record
ToDecimal(x) in doing this rounding, they get the same result that rounding x
itself would give.

As a consequence, setting prec higher than T.MaxSignifDigits-1 in
Style.Sci isn't very useful: The trailing digits of all of the resulting numbers
will be zero. Setting prec higher than T.MaxSignifDigits-1 in Style.Auto

actually has no e�ect at all, since trailing zeros are suppressed.

Details. We restrict ourselves at �rst to those cases where Class(x) is either
Normal or Denormal.

In those cases, Style.Sci returns: a minus sign or blank, the leading nonzero
digit of x, a decimal point, prec more digits of x, a character 'e', a minus sign
or plus sign, and T.MaxExpDigits of exponent (with leading zeros as necessary).
When prec is zero, the decimal point is omitted.

Style.Fix returns: a minus sign if necessary, one or more digits, a decimal
point, and prec more digits|never any blanks. When prec is zero, the decimal
point is omitted.

Style.Auto �rst formats x as in Style.Sci, using scienti�c notation with
prec digits after the decimal point. Call this intermediate result R.

If the exponent of R is at least 6 in magnitude, Style.Auto leaves R in
scienti�c notation, but condenses it by omitting all blanks, plus signs, trailing
zero digits, and leading zeros in the exponent. If this leaves no digits after the
decimal point, the decimal point itself is omitted.

If the exponent of R is at most 5 in magnitude, Style.Auto reformats the
digits of R in �xed point, �rst deleting any trailing zeros and then adding leading
or trailing zeros as necessary to bridge the gap from the digits of R to the unit's
place.

For example:

Fmt.Real(1.287e6, Style.Auto, prec := 2) = "1.29e6"

Fmt.Real(1.297e6, Style.Auto, prec := 2) = "1.3e6"

Fmt.Real(1.297e5, Style.Auto, prec := 2) = "130000"

Fmt.Real(1.297e-5, Style.Auto, prec := 2) = "0.000013"

Fmt.Real(1.297e-6, Style.Auto, prec := 2) = "1.3e-6"

Fmt.Real(9.997e5, Style.Auto, prec := 2) = "1e6"

Fmt.Real(9.997e-6, Style.Auto, prec := 2) = "0.00001"

Style.Sci handles zero by replacing the entire exponent �eld by blanks, for
example: " 0.00 ". Style.Fix renders zero with all digits zero; for
example, "0.00". Style.Auto renders zero as "0". On IEEE implementations,
the value minus zero is rendered as a negative number.

Also on IEEE implementations, Style.Sci formats in�nities or NaN's with
a minus sign or blank, the string "Infinity" or "NaN", and enough trailing

2.8 Fmt 23

blanks to get the correct overall width. Style.Fix and Style.Auto omit the
blanks. In Style.Sci, if "Infinity" doesn't �t, "Inf" is used instead.

Setting literal to TRUE alters things as follows: Numbers that are rendered
without a decimal point when literal is FALSE have a decimal point and one
trailing zero appended to their digits. For the routines Fmt.LongReal and
Fmt.Extended, an exponent �eld of d0 or x0 is appended to numbers in �xed
point and 'd' or 'x' is used, rather than 'e', to introduce the exponents
of numbers in scienti�c notation. On IEEE implementations, the string
"Infinity" is replaced by "1.0/0.0", "1.0d0/0.0d0", or "1.0x0/0.0x0" as
appropriate, and "NaN" is similarly replaced by a representation of the quotient
0/0. (Unfortunately, these quotient strings are so long that they may ruin the
formatting of Style.Sci tables when prec is small and literal is TRUE.)

TYPE Align = {Left, Right};

PROCEDURE Pad(

text: TEXT;

length: CARDINAL;

padChar: CHAR := ' ';

align: Align := Align.Right): TEXT;

If Text.Length(text) >= length, then text is returned unchanged.

Otherwise, text is padded with padChar until it has the given length.

The text goes to the right or left, according to align.

PROCEDURE F(fmt: TEXT; t1, t2, t3, t4, t5: TEXT := NIL)

: TEXT;

Uses fmt as a format string. The result is a copy of fmt in which all

format speci�ers have been replaced, in order, by the text arguments t1,

t2, etc.

A format speci�er contains a �eld width, alignment and one of two padding

characters. The procedure F evaluates the speci�er and replaces it by the
corresponding text argument padded as it would be by a call to Pad with the
speci�ed �eld width, padding character and alignment.

The syntax of a format speci�er is:

%[-]{0-9}s

that is, a percent character followed by an optional minus sign, an optional
number and a compulsory terminating s.

If the minus sign is present the alignment is Align.Left, otherwise it is
Align.Right. The alignment corresponds to the align argument to Pad.

The number speci�es the �eld width (this corresponds to the length

argument to Pad). If the number is omitted it defaults to zero.

24 2 STANDARD INTERFACES

If the number is present and starts with the digit 0 the padding character is
'0'; otherwise it is the space character. The padding character corresponds to
the padChar argument to Pad.

It is a checked runtime error if fmt is NIL or the number of format speci�ers
in fmt is not equal to the number of non-nil arguments to F.

Non-nil arguments to F must precede any NIL arguments; it is a checked
runtime error if they do not.

If t1 to t5 are all NIL and fmt contains no format speci�ers, the result is
fmt.

Examples:

F("%s %s\n", "Hello", "World") returns "Hello World\n".

F("%s", Int(3)) returns "3"

F("%2s", Int(3)) returns " 3"

F("%-2s", Int(3)) returns "3 "

F("%02s", Int(3)) returns "03"

F("%-02s", Int(3)) returns "30"

F("%s", "%s") returns "%s"

F("%s% tax", Int(3)) returns "3% tax"

The following examples are legal but pointless:

F("%-s", Int(3)) returns "3"

F("%0s", Int(3)) returns "3"

F("%-0s", Int(3)) returns "3"

PROCEDURE FN(fmt: TEXT; READONLY texts: ARRAY OF TEXT)

: TEXT;

Similar to F but accepts an array of text arguments. It is a checked

runtime error if the number of format speci�ers in fmt is not equal to

NUMBER(texts) or if any element of texts is NIL. If NUMBER(texts) = 0

and fmt contains no format speci�ers the result is fmt.

Example:

FN("%s %s %s %s %s %s %s",

ARRAY OF TEXT{"Too", "many", "arguments",

"for", "F", "to", "handle"})

returns "Too many arguments for F to handle".

END Fmt.

25

3 Data Structures

3.1 Sequence

Sequence is a generic interface de�ning extensible sequences. Elements can be
added or removed at either end of a sequence; they can also be accessed or
updated at speci�ed indexes. The expected cost of every method of a sequence
is constant.

GENERIC INTERFACE Sequence(Elem);

Where Elem.T is a type that is not an open array type.

TYPE

T <: Public;

Public = OBJECT METHODS

init(sizeHint: CARDINAL := 5): T;

fromArray(READONLY a: ARRAY OF Elem.T): T;

addhi(READONLY x: Elem.T);

addlo(READONLY x: Elem.T);

remhi(): Elem.T;

remlo(): Elem.T;

put(i: CARDINAL; READONLY x: Elem.T);

size(): CARDINAL;

gethi(): Elem.T;

getlo(): Elem.T;

get(i: CARDINAL): Elem.T

END;

A Sequence(Elem).T (or just a sequence) represents an extensible sequence of
Elem.Ts.

The �rst group of methods have side e�ects on the sequence. The call

s.init(sizeHint)

initializes s to be the empty sequence. Furthermore init assumes that at least
sizeHint elements will be added to the sequence; these operations may be
executed more e�ciently than if sizeHint was defaulted. The call

s.fromArray(a)

initializes s to be the sequence with elements a[0], ..., a[LAST(a)]. The
call

s.addhi(x)

appends x to the end of s. Thus it does not change the index of any existing
element. The call

26 3 DATA STRUCTURES

s.addlo(x)

appends x to the front of s. Thus it increases the index of all existing elements
by one. The call

s.remhi()

removes and returns the last element of s. Thus it does not change the index
of any of s's other elements. If s is empty, s.remhi() causes a checked runtime
error. The call

s.remlo()

removes and returns the �rst element of s. Thus it decreases the index of all
other elements of s by one. If s is empty, s.remlo() causes a checked runtime
error. The call

s.put(i, x)

replaces element i of s with x. Element 0 is the �rst element. It is a checked
runtime error unless i is less than s.size().

The second group of methods have no side e�ect on the sequence. The call

s.size()

returns the number of elements in s. The call

s.get(i)

returns element i of s. It is a checked runtime error unless i is less than
s.size(). The call

s.gethi()

returns the last element of s; that is, it is equivalent to s.get(s.size()-1).
The call

s.getlo()

returns the �rst element of s; that is, it is equivalent to s.get(0).

PROCEDURE Cat(s, t: T): T;

Return a sequence whose elements are the concatenation of s and t.

PROCEDURE Sub(s: T; start: CARDINAL;

length: CARDINAL := LAST(CARDINAL)): T;

Return a sub-sequence of s: empty if start >= t.size() or length

= 0; otherwise the subsequence ranging from start to the minimum of

start+length-1 and s.size()-1.

Cat and Sub create new sequences; they have no side-e�ects.

3.2 Atom 27

Sequences are unmonitored: a client accessing a sequence from multiple
threads must ensure that if two operations are active concurrently, then neither
of them has side e�ects on the sequence.

END Sequence.

The standard instances are named AtomSeq, IntSeq, RefSeq, and TextSeq.

3.2 Atom

An Atom.T is a unique representative for a set of equal texts (like a Lisp atomic
symbol)

INTERFACE Atom;

TYPE T <: REFANY;

PROCEDURE FromText(t: TEXT): T;

Return the unique atom a such that for any text u, if Text.Equal(u, t),

then FromText(u) = a.

PROCEDURE ToText(a: T): TEXT;

Return a text t such that FromText(t) = a.

PROCEDURE Equal(a1, a2: T): BOOLEAN;

Return a1 = a2.

PROCEDURE Hash(a: T): INTEGER;

Return a hash code for a by taking the image of ToText(a) under some

�xed hash function.

PROCEDURE Compare(a1, a2: T): [-1..1];

Cause a checked runtime error.

END Atom.

Compare causes a checked runtime error because there is no default order on
atoms.

28 3 DATA STRUCTURES

3.3 List and ListSort

The generic interface List provides operations on linked lists of arbitrary
element types.

GENERIC INTERFACE List(Elem);

Where Elem.T is not an open array type and Elem contains

PROCEDURE Equal(k1, k2: Elem.T): BOOLEAN;

Equal may be declared with a parameter mode of either VALUE or

READONLY, but not VAR.

TYPE T = OBJECT head: Elem.T; tail: T END;

A List.T represents a linked list of items of type Elem.T.

None of the operations of this interface modify the head �eld of an existing list
element. Operations that may modify the tail �eld of existing list elements
are called destructive. By convention, their names end in D.

PROCEDURE Cons(READONLY head: Elem.T; tail: T): T;

Equivalent to NEW(T, head := head, tail := tail).

PROCEDURE List1(READONLY e1: Elem.T): T;

Return a list containing the single element e1.

PROCEDURE List2(READONLY e1, e2: Elem.T): T;

Return a list containing the element sequence e1, e2.

PROCEDURE List3(READONLY e1, e2, e3: Elem.T): T;

Return a list containing the element sequence e1, e2, e3.

PROCEDURE FromArray(READONLY e: ARRAY OF Elem.T): T;

Return a list containing the elements of e in order.

PROCEDURE Length(l: T): CARDINAL;

Return the number of elements of l.

PROCEDURE Nth(l: T; n: CARDINAL): Elem.T;

Return element n of list l. Element 0 is l.head, element 1 is l.tail.head,

etc. Cause a checked runtime error if n >= Length(l).

PROCEDURE Member(l: T; READONLY e: Elem.T): BOOLEAN;

3.3 List and ListSort 29

Return TRUE if some element of l is equal to e, else return FALSE. The

comparison is performed by Elem.Equal.

PROCEDURE Append(l1: T; l2: T): T;

PROCEDURE AppendD(l1: T; l2: T): T;

Append two lists together, returning the new list. Append does this by

making a copy of the cells of l1; AppendD modi�es the tail �eld in the

last cell of l1.

PROCEDURE Reverse(l: T): T;

PROCEDURE ReverseD(l: T): T;

Return a list containing the elements of l in reverse order. Reverse copies

the cells; ReverseD modi�es the tail �elds of the existing cells.

END List.

The standard instances are named AtomList, IntList, RefList, and
TextList.

The generic interface ListSort extends the generic interface List with sorting
operations.

GENERIC INTERFACE ListSort(Elem, ElemList);

Where Elem.T is not an open array type, Elem contains

PROCEDURE Compare(e1, e2: Elem.T): [-1..1];

and ElemList equals List(Elem). Compare must be a total order. It

may be declared with any parameter mode, but must have no visible

side-e�ects.

TYPE T = ElemList.T;

PROCEDURE Sort(l: T; c := Elem.Compare): T;

PROCEDURE SortD(l: T; c := Elem.Compare): T;

Sort a list in ascending order using c to compare pairs of elements of l.

The implementation is time- and cons-e�cient but not guaranteed to be stable.
Sort copies the cells; SortD modi�es the tail �elds of the existing cells.

END ListSort.

The standard instances are named AtomListSort, IntListSort, RefList-
Sort, and TextListSort. AtomListSort and RefListSort are useful only if
you supply a non-default comparison procedure.

30 3 DATA STRUCTURES

3.4 Sx

An Sx.T is a symbolic expression represented as a recursive linked list structure,
as in Lisp. This interface provides routines for reading and printing symbolic
expressions, as well as some convenience procedures for manipulating them. The
syntax of an Sx.T is as follows:

Sx = Char | Text | Int | Real | Longreal | Extended

| Atom | Boolean | "(" List ")".

List = {Sx}.

A Char is a Modula-3 character literal; the corresponding Sx.T is of type
REF CHAR.

A Text is a Modula-3 text literal. The corresponding Sx.T is a TEXT.
An Int is a Modula-3 integer literal, possibly preceded by a plus sign (+) or

minus sign (-). The corresponding Sx.T is of type REF INTEGER.
A Real, Longreal, or Extended is a oating-decimal number parsed using

the grammar for Float speci�ed in the Lex interface. The corresponding Sx.T

is of type REF REAL, REF LONGREAL or REF EXTENDED, depending on whether
the letter introducing the exponent is 'e', 'd', or 'x'. If there is no exponent,
the result will be of type REF REAL.

An Atom is either (1) a Modula-3 identi�er, or (2) a non-empty sequence of
characters from the set

! # $ % & * + - . / : < = > ? @ [] ^ _ { } ~

or (3) a sequence of characters and escape sequences surrounded by vertical
bars (|s). The escape sequences are the same as those allowed in Modula-3 text
literals, with the addition of \| to allow an atom to contain |. In all three
cases, the corresponding Sx.T is an Atom.T.

For example, the following are valid atoms:

A1

+=

|1\||

A Boolean is either TRUE or FALSE; the corresponding Sx.T is of type Atom.T;
in other words, this is not a distinct type.

The Sx.T corresponding to a List is a RefList.T containing the items of
the list in order.

The tokens of an Sx.T can be separated by arbitrary sequences of blanks,
tabs, newlines, carriage returns, form feeds, and vertical tabs, which are ignored.
(These are the same whitespace characters that are ignored between tokens of
a Modula-3 program.) They can also be separated by comments, which begin
with a semicolon and end with newline.

3.4 Sx 31

The syntax of tokens can be extended with the SetReadMacro procedure.

INTERFACE Sx;

IMPORT Atom, Rd, RefList, Thread, Wr;

TYPE T = REFANY;

EXCEPTION

ReadError(TEXT);

PrintError(TEXT);

PROCEDURE FromChar(c: CHAR): REF CHAR;

Return a Char with value c.

PROCEDURE FromInt(i: INTEGER): REF INTEGER;

Return an Int with value i.

PROCEDURE FromReal(r: REAL): REF REAL;

Return a Real with value r.

PROCEDURE FromLongReal(r: LONGREAL): REF LONGREAL;

Return a Longreal with value r.

PROCEDURE FromExtended(r: EXTENDED): REF EXTENDED;

Return an Extended with value r.

PROCEDURE FromBool(b: BOOLEAN): Atom.T;

Return a Boolean. If b is TRUE, return Sx.True. Otherwise, return

Sx.False.

The From... procedures do not necessarily perform an allocation: if the
same value is passed to two calls, the same reference may be returned. As
a consequence, clients should not modify the referent of a reference returned by
any of these procedures.

Each REF CHAR, REF INTEGER, REF REAL, REF LONGREAL, REF EXTENDED,
TEXT, or Atom.T, no matter how constructed, is an Sx.T.

VAR (*CONST*) True, False: Atom.T;

True = Atom.FromText("TRUE"), False = Atom.FromText("FALSE").

PROCEDURE Read(rd: Rd.T; syntax: Syntax := NIL): T

RAISES {ReadError, Rd.EndOfFile, Thread.Alerted};

Read and return a symbolic expression from rd, ignoring whitespace and

comments. If syntax is NIL, use the syntax described above; otherwise

use any read macros that have been registered in syntax.

32 3 DATA STRUCTURES

PROCEDURE ReadDelimitedList(

rd: Rd.T; delim : CHAR; syntax: Syntax := NIL): RefList.T

RAISES {ReadError, Thread.Alerted};

Repeatedly read symbolic expressions from rd, ignoring whitespace and

comments, until the next character is delim; consume the delimiter and

return the list of symbolic expressions that were read. Raise ReadError

if there is a syntax error, including unexpected end of �le.

PROCEDURE Print(

wr: Wr.T;

sx: T;

maxDepth: CARDINAL := LAST(CARDINAL);

maxLength: CARDINAL := LAST(CARDINAL))

RAISES {PrintError, Wr.Failure, Thread.Alerted};

Print the symbolic expression sx on the writer wr, assuming the standard

syntax.

Each sublist will contain no more than maxLength elements; extra elements
are replaced by an ellipsis (three dots). Any sublist nested at a depth greater
than maxDepth is also replaced by an ellipsis. Print inserts | around atoms if
necessary to ensure that they are readable. Print does not insert line-breaks
or indentation to produce a human-readable (\pretty-printed") format for large
symbolic expressions.

Print will raise PrintError if it tries to print something that is not
\printable" (as de�ned below). If a list contains an unprintable element that
is beyond the limits established by maxDepth and maxLength, PrintError may
or may not be raised.

An object is said to be \printable" if it satis�es the following hypothetical
predicate:

PROCEDURE Printable(x: REFANY): BOOLEAN =

BEGIN

TYPECASE x OF

| NULL, REF CHAR, TEXT, REF INTEGER, REF REAL,

REF LONGREAL, REF EXTENDED, Atom.T =>

RETURN TRUE

| RefList.T (list) => RETURN Printable(list.head) AND

Printable(list.tail)

ELSE

RETURN FALSE

END

END Printable;

3.4 Sx 33

Read(rd,NIL) is guaranteed to return a printable value unless it raises an
exception. Assuming the defaults for syntax, maxDepth, and maxLength, and
assuming no exceptions are raised, Read and Print are \inverses".

TYPE Syntax <: REFANY;

A Syntax is a partial map from characters to read macros.

PROCEDURE CopySyntax(s: Syntax := NIL): Syntax;

Allocate and return a new syntax table whose contents are the same as

s or, if s = NIL, the same as the standard syntax table. The standard

syntax table has no read macros.

PROCEDURE SetReadMacro(s: Syntax; ch: CHAR; m: ReadMacro);

Set s[ch] := m. It is a checked runtime error if s = NIL, if ch is a

whitespace character, or if ch = ';'. It is allowed for m to be NIL; this

has the e�ect of removing the mapping, if any, from ch to a readmacro.

TYPE ReadMacro = OBJECT METHODS

read(rd: Rd.T; s: Syntax): RefList.T

RAISES {ReadError, Thread.Alerted}

END;

If you pass a Syntax s to Read or ReadDelimitedList, then the reading
algorithm is modi�ed as follows. After skipping whitespace and comments, and
before reading a token, the next character in the input stream is consumed
and examined. If s de�nes a read macro for this character, then this
read macro is called with the same arguments that were passed to Read or
ReadDelimitedList. The resulting list is spliced into the current list being
built. In particular, if the macro returns NIL, then everything it read is ignored;
if the macro returns a single-element list, then that single element is inserted
into the list being built. ReadError is raised if the macro returns a non-list or

if it returns a multi-element list in a context where no list is being built, such
as at the top level of Read.

For example, the following program fragment constructs a syntax table that
extends the standard syntax in two ways. First, additional comments are
supported by ignoring all characters between { and }. Second, an expression of
the form [e1 ... en] is turned into the list (ARRAY e1 ... en):

VAR syn := CopySyntax(); BEGIN

SetReadMacro(syn, '{',

NEW(ReadMacro, read := ReadComment));

SetReadMacro(syn, '[',

NEW(ReadMacro, read := ReadArray));

...

34 3 DATA STRUCTURES

PROCEDURE ReadComment(

self: ReadMacro; rd: Rd.T; <* UNUSED *> s: Syntax)

: RefList.T =

BEGIN

WHILE NOT Rd.EOF() AND Rd.GetChar(rd) # '}' DO

(* SKIP *)

END;

RETURN NIL

END ReadComment;

VAR (*CONST*) arrayAtm := Atom.FromText("ARRAY");

PROCEDURE ReadArray(self: ReadMacro; rd: Rd.T; s: Syntax)

: RefList.T =

VAR elements := ReadDelimitedList(rd, ']', s);

BEGIN

RETURN RefList.List1(RefList.Cons(arrayAtm, elements))

END ReadArray;

The call to RefList.List1 in ReadArray is important. If it were omitted, then
the text

(a b [c d])

would be read as

(a b ARRAY c d)

instead of the intended

(a b (ARRAY c d)).

END Sx.

3.5 Table

Table is a generic interface de�ning partial maps that support update and
iteration.

GENERIC INTERFACE Table(Key, Value);

Where Key.T and Value.T are types that are not open array types and

Key contains

PROCEDURE Equal(k1, k2: Key.T): BOOLEAN;

PROCEDURE Hash(k: Key.T): Word.T;

3.5 Table 35

Equal must be an equivalence relation and Hash must respect

that equivalence relation, in other words, if Equal(k1, k2), then

Hash(k1)=Hash(k2).

Hash and Equal may be declared with a parameter mode of either

VALUE or READONLY, but not VAR.

IMPORT Word;

TYPE

T = OBJECT METHODS

get(READONLY k: Key.T; VAR v: Value.T): BOOLEAN;

put(READONLY k: Key.T; READONLY v: Value.T): BOOLEAN;

delete(READONLY k: Key.T; VAR v: Value.T): BOOLEAN;

size(): CARDINAL;

iterate(): Iterator

END;

Iterator = OBJECT METHODS

next(VAR k: Key.T; VAR v: Value.T): BOOLEAN

END;

Default <: T OBJECT METHODS

init(sizeHint: CARDINAL := 0): Default;

keyEqual(READONLY k1, k2: Key.T): BOOLEAN;

keyHash(READONLY k: Key.T): Word.T

END;

END Table.

A Table(Key, Value).T, or table, is a partial map from Key.Ts to Value.Ts.
Actually, it turns out to be useful for a table to treat two di�erent keys as if
they are the same whenever they are equivalent according to some speci�ed
equivalence relation. For example, if you are creating a table with a Key.T of
TEXT, you are likely to want Text.Equal as the equivalence relation.

Formally, a table tbl has the components:

canon(tbl) a map on elements of Key.T
map(tbl) a map from elements of Key.T to elements of Value.T

canon(tbl) represents an equivalence relation: canon(tbl)(k) is the canonical
representative of all the keys that are equivalent to k. The domain of map(tbl)
includes only canonical representatives, that is, elements in the range of
canon(tbl). The equivalence relation underlying canon(tbl) must be time-
invariant. For example, it can't depend on the values of particular references
since some garbage collectors move REF values.

The methods of an object tbl of type Table.T have the following
speci�cations:

The call tbl.get(k, v) sets v to map(tbl)(canon(tbl)(k)) and returns
TRUE if canon(tbl)(k) is in dom(map(tbl)). Otherwise, it returns FALSE

without changing v.

36 3 DATA STRUCTURES

The call tbl.put(k, v) changes map(tbl)(canon(tbl)(k)) to v and
returns TRUE if canon(k) is in dom(map(tbl)). Otherwise, it sets the value
of map(tbl)(canon(tbl)(k)) to v, and returns FALSE.

The call tbl.delete(k, v) sets v to map(tbl)(canon(tbl)(k)), removes
(canon(tbl)(k), v) from map(tbl), and returns TRUE if canon(tbl)(k) is in
dom(map(tbl)). Otherwise, it returns FALSE without changing v.

The call tbl.size() returns the size of dom(map(tbl)), that is, the number
of entries in tbl.

The call tbl.iterate() returns an iterator, which is an object that can be
used to iterate over the key-value pairs in tbl. See the de�nition of the type
Iterator below.

If i is the result of the call tbl.iterate(), then the call it.next(k, v)

selects an entry from tbl that has not already been returned by i, sets k and
v to its key and value, and returns TRUE. If no entries remain, the call returns
FALSE without setting k or v. It is a checked runtime error to call next after it
has returned FALSE. The client must ensure that while an iterator is in use, the
parent table is not modi�ed.

The type Default is an implementation of T using chained hashing. The
methods speci�c to an object dflt of type Default have the following
speci�cations:

The call dflt.init(sizeHint) returns dflt after initializing it to a table
with an empty map(dflt). If sizeHint is greater than 0, init assumes that
put will subsequently be called with at least sizeHint di�erent keys; these calls
on put may execute somewhat faster than if sizeHint was 0. The init method
has side-e�ects on the table.

The call dflt.keyEqual(k1, k2) returns Key.Equal(k1, k2) and the call
dflt.keyHash(k) returns Key.Hash(k). The other methods call keyEqual
and keyHash whenever they need to consult the table's equivalence relation.
This means a subtype of Default can determine the equivalence relation
by overriding keyEqual and keyHash, providing keyEqual implements an
equivalence relation and keyHash respects that relation.

For e�ciency, tables and their iterators are not monitored, so a client
accessing a table from multiple threads must ensure that if two operations are
active concurrently, then neither of them has side e�ects on the same table or
iterator. The T.put, T.delete, and Default.init methods are the only ones
with side e�ects on the table. An iterator's next method has side-e�ects on the
iterator.

The standard instances are named xyTbl, for all combinations of x and y in
the set Atom, Int, Ref, Text. The instances with x = Ref are useful only if
you de�ne a subtype overriding the keyHash and keyEqual methods.

3.6 SortedTable 37

3.6 SortedTable

SortedTable is a generic interface de�ning partial maps over a totally ordered
domain.

GENERIC INTERFACE SortedTable(Key, Tbl);

Where Key.T is not an open array type, Tbl is a generic instance

Table(Key, Value) (for some Value de�ning a type T that is not an

open array type), and Key contains

PROCEDURE Compare(k1, k2: Key.T): [-1..1];

Compare must be a total order.

Compare may be declared with a parameter mode of either VALUE or

READONLY, but not VAR.

TYPE

T = Tbl.T OBJECT METHODS

iterateOrdered(up: BOOLEAN := TRUE): Iterator

END;

Iterator = Tbl.Iterator OBJECT METHODS

seek(READONLY key: Key.T)

END;

Default <: T OBJECT METHODS

init(): Default;

keyCompare(READONLY k1, k2: Key.T): [-1..1]

END;

END SortedTable.

A SortedTable(Key, Table(Key, Value)).T, or sorted table, is a Table(Key,
Value).T together with a total (linear) order on the keys of the table. Formally,
a sorted table tbl has the additional component:

le(tbl) a total order on the values of Key.T

The total order le(tbl) must be time-invariant.

The methods have the following speci�cations:

The call tbl.iterateOrdered(up) returns an iterator, which is an object
that can be used to iterate over all the key-value pairs in tbl, ordered by key.
The order is increasing if up is TRUE, decreasing otherwise.

If i is the result of the call tbl.iterateOrdered(up), then the call
i.next(k, v) sets k and v to the key and value of the next pair and returns
TRUE. If no entries remain, the call returns FALSE without setting k or v. It is
a checked runtime error to call next or seek after next has returned FALSE.
The client must ensure that while an iterator is in use, the parent table is not
modi�ed.

38 3 DATA STRUCTURES

The call i.seek(k) skips past zero or more key-value pairs (either forward
or backward) so that a subsequent call of next returns the �rst pair with key
greater than or equal to k if i is in increasing order or with key less than or
equal to k if i is in decreasing order.

The type Default is an implementation of T using randomized heap-ordered
binary trees or \treaps" (see [1]). In this implementation, seeking forward
(relative to the iterator's order) is more e�cient than seeking backward. If
a forward seek skips over d key-value pairs, the expected time for the seek is
O(log d). The time for a backward seek is O(log(table.size())), no matter
how far back it skips.

The call dflt.init() returns dflt after initializing it to an empty table.

The call dflt.keyCompare(k1, k2) returns Key.Compare(k1, k2). The
other methods call keyCompare whenever they need to consult le(tbl). This
means a subtype of Default can determine le(tbl) by overriding keyCompare,
providing keyCompare implements a total order.

For e�ciency, sorted tables and their iterators are not monitored, so a client
accessing a table from multiple threads must ensure that if two operations are
active concurrently, then neither of them has side e�ects on the same table or
iterator. The T.put, T.delete, and Default.init methods are the only ones
with side e�ects on the table. An iterator's next method has side-e�ects on the
iterator.

The standard instances are named SortedxyTbl, for all combinations of x
and y in the set Atom, Int, Ref, Text. The instances with x = Atom and x =

Ref are useful only if you de�ne a subtype overriding the keyCompare method.

3.7 Bundle

A Bundle.T, or bundle, is a collection of named byte string values, where the
names and values are represented as TEXTs. The usefulness of bundles stems
from the existence of a program called m3bundle. This program accepts an
arbitrary set of �les and produces the source code of a Modula-3 procedure
that, when compiled and executed, returns a bundle containing the contents of
the original �les.

INTERFACE Bundle;

TYPE T <: REFANY;

PROCEDURE Get(b: T; nm: TEXT): TEXT;

If an element of b has the name nm, return its value. Otherwise, return

NIL.

END Bundle.

3.7 Bundle 39

To call Bundle.Get, you need a value of type Bundle.T. Given a collection of
�les, the program m3bundle generates the source code of an interface (.i3 �le)
and a module (.m3 �le) implementing that interface. The interface contains a
single procedure returning a bundle.

If you want to build a bundle with elements named e1, ..., en corre-
sponding to values currently in �les with pathnames p1, ..., pN, you invoke
m3bundle as follows:

m3bundle -name Foo [-element e1 p1]...

m3bundle then produces an interface Foo.i3 with this format:

INTERFACE Foo;

IMPORT Bundle;

PROCEDURE Get(): Bundle.T;

END Foo.

The call Foo.Get() returns a bundle b such that the call Bundle.Get(b, nm)

returns the contents of �le pi at the time m3bundle was invoked if nm equals
one of the ei passed to m3bundle. Otherwise, Bundle.Get(b, nm) returns NIL.

For more information about m3bundle, consult its man page or other system-
speci�c documentation.

40 4 ALGORITHMS

4 Algorithms

4.1 ArraySort

GENERIC INTERFACE ArraySort(Elem);

Where Elem.T is a type that is not an open array type and Elem contains

PROCEDURE Compare(a, b: Elem.T): [-1 .. 1];

Compare must de�ne a total order. Any parameter mode may be used.

PROCEDURE Sort(VAR a: ARRAY OF Elem.T; cmp := Elem.Compare);

Sort the elements of a using the order de�ned by cmp.

END ArraySort.

Sort(a, cmp) permutes the elements of a such that:

FIRST(a) <= i < j <= LAST(a)

implies

cmp(a[i], a[j]) <= 0.

The algorithm used is QuickSort:

� It is not stable.

� On average, it requires O(N ln N) comparison and assignment operations.
In the worst case it may require O(N*N) operations.

For an expanded description of QuickSort, see [16].

The standard instances are named IntArraySort and TextArraySort.
(There are no instances for Atom.T or REFANY since these types don't have
a standard total order.)

4.2 Random

A Random.T (or just a generator) is a pseudo-random number generator.

INTERFACE Random;

TYPE

T = OBJECT METHODS

integer(min := FIRST(INTEGER);

max := LAST(INTEGER)): INTEGER;

4.2 Random 41

real(min := 0.0e+0; max := 1.0e+0): REAL;

longreal(min := 0.0d+0; max := 1.0d+0): LONGREAL;

extended(min := 0.0x+0; max := 1.0x+0): EXTENDED;

boolean(): BOOLEAN

END;

Default <: T OBJECT METHODS

init(fixed := FALSE): Default

END;

END Random.

Individual generators are unmonitored, and all the operations have side e�ects.

The methods provided by a generator rand are:

The call rand.integer(a, b) returns a uniformly distributed INTEGER in
the closed interval [a..b].

The call rand.real(a, b) returns a uniformly distributed REAL in the half-
open interval [a..b).

The call longreal and extended are like real, but return values of the
speci�ed types.

The call rand.boolean() returns a random BOOLEAN value.

It is a checked runtime error if min > max on any call.

NEW(Default).init() creates and initializes a generator (see below for
implementation details). If fixed is TRUE, a predetermined sequence is used.
If fixed is FALSE, init chooses a random seed in such a way that di�erent
sequences result even if init is called many times in close proximity.

Example. A good pseudo-random permutation of an array a can be generated
as follows:

WITH rand = NEW(Random.Default).init() DO

FOR i := FIRST(a) TO LAST(a) - 1 DO

WITH j = rand.integer(i, LAST(a)) DO

Exchange a[i] and a[j]

END

END

END

SRC Modula-3 implementation details. The object returned by a call
of New(Default).init uses an additive generator based on Knuth's Algorithm
3.2.2A (see [9]).

42 4 ALGORITHMS

4.3 Fingerprint

A Fingerprint.T is a 64-bit checksum. This interface provides procedures that
can be used to �ngerprint text strings or more general data structures, such as
graphs.

The interface is based on the original idea of M. O. Rabin [14], as re�ned by
Andrei Broder [3].

INTERFACE Fingerprint;

TYPE T = RECORD

byte: ARRAY [0..7] OF BITS 8 FOR [0..255]

END;

PROCEDURE FromText(txt: TEXT): T;

Return the �ngerprint of txt.

PROCEDURE Combine(READONLY fp1, fp2: T): T;

Return the �ngerprint of the ordered pair (fp1, fp2).

CONST Zero = T{ARRAY [0..7] OF BITS 8 FOR [0..255] {0, ..}};

VAR (*CONST*) OfEmpty: T;

The �ngerprint of the empty text.

The following procedure, FromChars, provides two additional features. First, it
takes an array of characters instead of a TEXT, which can save on allocations.
Second, it can be used to compute the �ngerprint of a sequence incrementally,
a bu�er at a time, since it accepts the checksum of the previous text together
with a new bu�er full of text and computes the checksum of the whole text.

PROCEDURE FromChars

(READONLY buff: ARRAY OF CHAR; READONLY fp: T): T;

Return the �ngerprint of t & Text.FromChars(buff), where t is the

text whose �ngerprint is fp.

The last two procedures in the interface allow you to use �ngerprints as the key
type in a generic table.

PROCEDURE Equal(READONLY fp1, fp2: T): BOOLEAN;

Return fp1 = fp2.

PROCEDURE Hash(READONLY fp: T): INTEGER;

Return a hash code for fp.

END Fingerprint.

4.3 Fingerprint 43

The probabilistic guarantee. The �ngerprint module produces a provably
secure checksum. To explain exactly what this means requires a few de�nitions.

De�ne a nest to be a text string or an ordered pair of two nests. The
�ngerprint FP(x) of a nest x is de�ned as follows:

FP(x) = FromText(x) if x is a text
FP(x) = Combine(FP(y), FP(z)) if x is a pair (y, z).

Two nests x and y collide if x # y but FP(x) = FP(y). (Two texts are equal if
they are Text.Equal, and two pairs are equal if their corresponding components
are equal. We assume that nests are �nite and non-circular.)

A nest x is a subnest of y if it occurs anywhere in y; that is, if it equals y or
if y is an ordered pair and x is a subnest of one of y's components.

De�ne the length of a nest to be the sum of the lengths of all the distinct
texts that occur anywhere inside it, and the size of a nest to be the number of
distinct subnests that it has. For example, the length of the nest

(("a", "b"), ("a", "b"))

is two, since the only texts that occur inside it are a and b, whose lengths sum
to two. The size of the nest is four, since its distinct subnests are itself, the pair
(a, b), and the texts a and b.

The �ngerprint module contains a magic number that was chosen on 12
December 1986 by ipping a quarter 128 times in Andrei Broder's o�ce at SRC.
The checksum produced by the package is a function of this magic number.

The probabilistic guarantee for the �ngerprint algorithm is that for any nest
S, even one produced by an adversary who knows everything about the algorithm
except the magic number, the probability that the 1986 coin-ipping produced
a magic number such that some pair of subnests of S collide is at most

(length(S) * size(S)) / 2^62.

From this basic guarantee you can compute an upper bound on the probability
of a collision in your application. For example, if two texts t1 and t2 collide,
then the nest (t1, t2) contains two colliding subnests. The odds against this
are at least 2^62 to N * 3, where N is the total length of the two texts. For
example, if the total length is a million characters, the collision probability is
at most

(10^6 * 3) / 2^62

This is less than one in a trillion.
Similarly, given a thousand texts each of length a thousand, considering the

linear list of all of them as a nest and applying the guarantee, we conclude that
the probability that some pair collide is at most

(10^6 * 2 * 10^3) / 2^62

which is less than one in 2^31, or less than one in 10^9.

44 4 ALGORITHMS

Of course these are probabilities with respect to a random coin-ipping that
has already happened and is therefore not random anymore. If you were present
in Andrei's o�ce, or if you look at the magic number in the implementation,
you can easily construct a small nest that contains a collision. The probabilistic
guarantee is valid only if the structure you are �ngerprinting is independent
of the coin-ipping event. For example, it would not really be a good idea to
�ngerprint the text of the module Fingerprint.m3, since that text contains
the magic number as a constant, and therefore the probabilistic guarantee says
nothing about the quality of its �ngerprint.

Example applications. Fingerprints are useful in many aspects of computer
systems. For example, to determine if two long �les stored on di�erent computer
systems are identical, it is not necessary to transfer the entire �le from one
system to another: it su�ces to �ngerprint the �les and transfer and compare
the �ngerprints. (Assuming that the probabilistic guarantee is good enough for
your application.)

Fingerprints are also a key technology for achieving type safety in distributed
programming. Within a single address space, the compiler and linker can ensure
that the value of every variable is consistent with its type. In a distributed
computation, where values in one program are reduced to bit sequences and
sent over the network to become values of variables in another program, the
compiler cannot perform this check: whatever the compiler does, a programmer
could erroneously change the type in one of the programs and recompile and
execute it. Some kind of runtime check is required when the value is transferred.
The simplest check is to send the type of the value along with the value itself,
and then to check the type when the value is received. But types can be quite
complicated in modern programming languages, and it would be ine�cient
to communicate types by sending a full description of their structure over
the wire. Fingerprints provide the answer: the sending program computes a
�ngerprint of the type, and the receiving program compares the �ngerprint
with the �ngerprint of the receiving variable. Fingerprints play essentially the
same role in making persistent storage typesafe. The SRC Modula-3 runtime
provides an interface for converting between typecodes and type �ngerprints,
for exactly this purpose.

Fingerprinting general data structures. The Combine function makes it
convenient to �ngerprint many data structures. For example, consider a directed
acyclic graph (DAG) in which each node nd has a text label lbl(nd) and
deg(nd) neighbor nodes nd[1], ..., nd[deg(nd)]. Such a graph represents an
expression in which a node nd of degree zero represents a constant value named
by lbl(nd), and a node nd of degree greater than zero represents an expression
with root operator lbl(nd) and arguments nd[1], ..., nd[deg(nd)].

One way to �nd common subexpressions is to compute a �ngerprint F(nd)

4.3 Fingerprint 45

for every node nd by the following rule:

PROCEDURE F(nd): T =

VAR res := FromText(lbl(nd)); BEGIN

FOR i := 1 TO deg(nd) DO

res := Combine(res, F(nd[i]))

END;

RETURN res

END F;

(If the DAG is not a tree, the program as written will recompute the �ngerprint
of nodes with multiple parents, possibly many times. To avoid this, you can
easily modify the program to record the �ngerprint in the node, so that the
total computation time is proportional to the size of the graph.)

The procedure F has the property that with high probability, two nodes have
the same �ngerprint if and only if they represent common subexpressions. This
is a consequence of the probabilistic guarantee together with the observation
that f(a1, ..., an) and g(b1, ..., bm) are common subexpressions if and
only if the nests

(... ((f, a1), a2), ... an)

(... ((g, b1), b2), ... bm)

are equal.

Other data structures, such as cyclic graphs, can be �ngerprinted with more
elaborate strategies based on the same idea. When designing �ngerprinting
algorithms for other data structures, it is important to remember that Combine
is neither commutative nor associative.

Pitfalls. The original �ngerprint interface o�ered at SRC did not include the
procedure Combine. The Vesta con�guration management project built a system
that cached intermediate results for large software builds. Abstractly, this is a
special case of the common subexpression problem mentioned previously, and
the project used �ngerprints as keys in the cache. It is instructive to learn what
happened.

You might think that a simple way to solve the common subexpression
problem without Combine would be to �ngerprint the texts that result from
printing the expressions represented by the nodes of the DAG. But if the DAG
is not a tree, this is a serious error, since the length of the strings produced
by printing a DAG can grow geometrically with its size, and therefore the
probabilistic guarantee becomes useless even for quite small DAGs.

Avoiding this error, the Vesta group computed the �ngerprint of a node by
concatenating the node's label with the �ngerprints of its children|treating
these �ngerprints as 8-byte texts| and �ngerprinted the resulting text. With
this strategy, the number of texts �ngerprinted is proportional to the number

46 4 ALGORITHMS

of nodes of the DAG, and the total length of these texts is proportional to the
number of edges of the DAG. Thus the method appears e�cient and sound.

Alas, the method is not sound. Recall that the probabilistic guarantee
is valid only if the strings being �ngerprinted are independent of the magic
number. But �ngerprints themselves are dependent on the magic number, so
the probabalistic guarantee is invalid whenever �ngerprints are �ngerprinted.
The Vesta group was soon debugging an unexpected collision.

The moral is simple: the procedure Combine is a convenience, but it is also
much more than a convenience. It should be the only way that you ever generate
a �ngerprint from another �ngerprint. In particular, never treat a �ngerprint
as text to be passed to FromText.

47

5 I/O Streams

The interfaces Wr and Rd provide object-oriented output and input streams,
called writers and readers. These were invented by Stoy and Strachey in 1972
[18]. The versions presented here are slight modi�cations of the versions in
the �rst Modula-3 book [13]. We also present related interfaces for obtaining
writers and readers connected to texts or �les (TextWr, TextRd, FileWr, and
FileRd), for accessing standard streams (Stdio), and for performing I/O in
simple programs (IO). The interfaces FileWr and FileRd supersede the interface
FileStream in [13].

5.1 IO

The IO interface provides textual input and output for simple programs. For
more detailed control, use the interfaces Rd, Wr, Stdio, FileRd, FileWr, Fmt,
and Lex.

The input procedures take arguments of type Rd.T that specify which input
stream to use. If this argument is defaulted, standard input (Stdio.stdin) is
used. Similarly, if an argument of type Wr.T to an output procedure is defaulted,
Stdio.stdout is used.

INTERFACE IO;

IMPORT Rd, Wr;

PROCEDURE Put(txt: TEXT; wr: Wr.T := NIL);

Output txt to wr and ush wr.

PROCEDURE PutInt(n: INTEGER; wr: Wr.T := NIL);

Output Fmt.Int(n) to wr and ush wr.

PROCEDURE PutReal(r: REAL; wr: Wr.T := NIL);

Output Fmt.Real(r) to wr and ush wr.

PROCEDURE EOF(rd: Rd.T := NIL): BOOLEAN;

Return TRUE i� rd is at end-of-�le.

EXCEPTION Error;

The exception Error is raised whenever a Get procedure encounters syntacti-
cally invalid input, including unexpected end-of-�le.

PROCEDURE GetLine(rd: Rd.T := NIL): TEXT RAISES {Error};

Read a line of text from rd and return it.

48 5 I/O STREAMS

A line of text is either zero or more characters terminated by a line break, or one
or more characters terminated by an end-of-�le. In the former case, GetLine
consumes the line break but does not include it in the returned value. A line
break is either "\n" or "\r\n".

PROCEDURE GetChar(rd: Rd.T := NIL): CHAR RAISES {Error};

Read the next character from rd and return it.

PROCEDURE GetInt(rd: Rd.T := NIL): INTEGER RAISES {Error};

Read a decimal numeral from rd using Lex.Int and return its value.

PROCEDURE GetReal(rd: Rd.T := NIL): REAL RAISES {Error};

Read a real number from rd using Lex.Real and return its value.

PROCEDURE OpenRead(f: TEXT): Rd.T;

Open the �le name f for reading and return a reader on its contents. If

the �le doesn't exist or is not readable, return NIL.

PROCEDURE OpenWrite(f: TEXT): Wr.T;

Open the �le named f for writing and return a writer on its contents. If

the �le does not exist it will be created. If the process does not have the

authority to modify or create the �le, return NIL.

END IO.

5.2 Wr

A Wr.T (or \writer") is a character output stream. The basic operation on a
writer is PutChar, which extends a writer's character sequence by one character.
Some writers (called \seekable writers") also allow overwriting in the middle of
the sequence. For example, writers to random access �les are seekable, but
writers to terminals and sequential �les are not.

Writers can be (and usually are) bu�ered. This means that operations on
the writer don't immediately a�ect the underlying target of the writer, but are
saved up and performed later. For example, a writer to a disk �le is not likely
to update the disk after each character.

Abstractly, a writer wr consists of:

len(wr) a non-negative integer
c(wr) a character sequence of length len(wr)

cur(wr) an integer in the range [0..len(wr)]
target(wr) a character sequence

5.2 Wr 49

closed(wr) a boolean
seekable(wr) a boolean
buffered(wr) a boolean

These values are generally not directly represented in the data �elds of a writer
object, but in principle they determine the state of the writer.

The sequence c(wr) is zero-based: c(wr)[i] is valid for i from 0 through
len(wr)-1. The value of cur(wr) is the index of the character in c(wr) that
will be replaced or appended by the next call to PutChar. If wr is not seekable,
then cur(wr) is always equal to len(wr), since in this case all writing happens
at the end.

The di�erence between c(wr) and target(wr) reects the bu�ering: if wr is
not bu�ered, then target(wr) is updated to equal c(wr) after every operation;
if wr is bu�ered, then updates to target(wr) can be delayed. For example, in
a writer to a �le, target(wr) is the actual sequence of characters on the disk;
in a writer to a terminal, target(wr) is the sequence of characters that have
actually been transmitted. (This sequence may not exist in any data structure,
but it still exists abstractly.)

If wr is bu�ered, then the assignment target(wr) := c(wr) can happen
asynchronously at any time, although the procedures in this interface are atomic
with respect to such assignments.

Every writer is a monitor; that is, it contains an internal lock that is acquired
and held for each operation in this interface, so that concurrent operations will
appear atomic. For faster, unmonitored access, see the UnsafeWr interface.

If you are implementing a long-lived writer class, such as a pipe or TCP
stream, the index of the writer may eventually overow, causing the program
to crash with a bounds fault. We recommend that you provide an operation to
reset the writer index, which the client can call periodically.

It is useful to specify the e�ect of several of the procedures in this interface
in terms of the action PutC(wr, ch), which outputs the character ch to the
writer wr:

PutC(wr, ch) =

IF closed(wr) THEN Cause checked runtime error END;

IF cur(wr) = len(wr) THEN

Extend c(wr) by one character, incrementing len(wr)

END;

c(wr)[cur(wr)] := ch;

INC(cur(wr));

PutC is used only in specifying the interface; it is not a real procedure.

INTERFACE Wr;

IMPORT AtomList;

FROM Thread IMPORT Alerted;

50 5 I/O STREAMS

TYPE T <: ROOT;

EXCEPTION Failure(AtomList.T);

Since there are many classes of writers, there are many ways that a writer
can break|for example, the network can go down, the disk can �ll up, etc.
All problems of this sort are reported by raising the exception Failure. The
documentation of each writer class should specify what failures the class can
raise and how they are encoded in the argument to Failure.

Illegal operations (for example, writing to a closed writer) cause checked
runtime errors.

VAR (*CONST*) EOL: TEXT;

End of line.

On POSIX, EOL is "\n"; on Win32, EOL is "\r\n".

PROCEDURE PutChar(wr: T; ch: CHAR) RAISES {Failure, Alerted};

Output ch to wr. More precisely, this is equivalent to:

PutC(wr, ch); IF NOT buffered(wr) THEN Flush(wr) END

Many operations on a writer can wait inde�nitely. For example, PutChar can
wait if the user has suspended output to his terminal. These waits can be
alertable, so each procedure that might wait includes Thread.Alerted in its
raises clause.

PROCEDURE PutText(wr: T; t: TEXT) RAISES {Failure, Alerted};

Output t to wr. More precisely, this is equivalent to:

FOR i := 0 TO Text.Length(t) - 1 DO

PutC(wr, Text.GetChar(t, i))

END;

IF NOT buffered(wr) THEN Flush(wr) END

except that, like all operations in this interface, it is atomic with respect to
other operations in the interface. (It would be wrong to write PutChar instead
of PutC, since PutChar always ushes if the writer is unbu�ered.)

PROCEDURE PutString(wr: T; READONLY a: ARRAY OF CHAR)

RAISES {Failure, Alerted};

Output a to wr. More precisely, other than the fact that this is atomic, it

is equivalent to:

FOR i := FIRST(a) TO LAST(a) DO PutC(wr, a[i]) END;

IF NOT buffered(wr) THEN Flush(wr) END

5.3 Rd 51

PROCEDURE Seek(wr: T; n: CARDINAL) RAISES {Failure, Alerted};

Set the current position of wr to n. This is an error if wr is closed. More

precisely, this is equivalent to:

IF wr.closed OR NOT seekable(wr) THEN

Cause checked runtime error
END;

cur(wr) := MIN(n, len(wr))

PROCEDURE Flush(wr: T) RAISES {Failure, Alerted};

Perform all bu�ered operations. That is, set target(wr) := c(wr). It is

a checked runtime error if wr is closed.

PROCEDURE Close(wr: T) RAISES {Failure, Alerted};

Flush wr, release any resources associated with wr, and set closed(wr) :=

TRUE. The documentation for a procedure that creates a writer should specify
what resources are released when the writer is closed. This leaves closed(wr)
equal to TRUE even if it raises an exception, and is a no-op if wr is closed.

PROCEDURE Length(wr: T): CARDINAL RAISES {Failure, Alerted};

PROCEDURE Index(wr: T): CARDINAL RAISES {};

PROCEDURE Seekable(wr: T): BOOLEAN RAISES {};

PROCEDURE Closed(wr: T): BOOLEAN RAISES {};

PROCEDURE Buffered(wr: T): BOOLEAN RAISES {};

These procedures return len(wr), cur(wr), seekable(wr), closed(wr),

and buffered(wr), respectively. Length and Index cause a checked

runtime error if wr is closed; the other three procedures do not.

END Wr.

5.3 Rd

An Rd.T (or \reader") is a character input stream. The basic operation on a
reader is GetChar, which returns the source character at the \current position"
and advances the current position by one. Some readers are \seekable", which
means that they also allow setting the current position anywhere in the source.
For example, readers from random access �les are seekable; readers from
terminals and sequential �les are not.

Some readers are \intermittent", which means that the source of the reader
trickles in rather than being available to the implementation all at once. For
example, the input stream from an interactive terminal is intermittent. An
intermittent reader is never seekable.

52 5 I/O STREAMS

Abstractly, a reader rd consists of

len(rd) the number of source characters
src(rd) a sequence of length len(rd)+1

cur(rd) an integer in the range [0..len(rd)]
avail(rd) an integer in the range [cur(rd)..len(rd)+1]
closed(rd) a boolean

seekable(rd) a boolean
intermittent(rd) a boolean

These values are not necessarily directly represented in the data �elds of a reader
object. In particular, for an intermittent reader, len(rd) may be unknown to
the implementation. But in principle the values determine the state of the
reader.

The sequence src(rd) is zero-based: src(rd)[i] is valid for i from 0 to
len(rd). The �rst len(rd) elements of src are the characters that are the
source of the reader. The �nal element is a special value eof used to represent
end-of-�le. The value eof is not a character.

The value of cur(rd) is the index in src(rd) of the next character to
be returned by GetChar, unless cur(rd) = len(rd), in which case a call to
GetChar will raise the exception EndOfFile.

The value of avail(rd) is important for intermittent readers: the elements
whose indexes in src(rd) are in the range [cur(rd)..avail(rd)-1] are
available to the implementation and can be read by clients without blocking.
If the client tries to read further, the implementation will block waiting for
the other characters. If rd is not intermittent, then avail(rd) is equal to
len(rd)+1. If rd is intermittent, then avail(rd) can increase asynchronously,
although the procedures in this interface are atomic with respect to such
increases.

The de�nitions above encompass readers with in�nite sources. If rd is such
a reader, then len(rd) and len(rd)+1 are both in�nity, and there is no �nal
eof value.

Every reader is a monitor; that is, it contains an internal lock that is acquired
and held for each operation in this interface, so that concurrent operations will
appear atomic. For faster, unmonitored access, see the UnsafeRd interface.

If you are implementing a long-lived reader class, such as a pipe or TCP
stream, the index of the reader may eventually overow, causing the program
to crash with a bounds fault. We recommend that you provide an operation to
reset the reader index, which the client can call periodically.

INTERFACE Rd;

IMPORT AtomList;

FROM Thread IMPORT Alerted;

TYPE T <: ROOT;

5.3 Rd 53

EXCEPTION EndOfFile; Failure(AtomList.T);

Since there are many classes of readers, there are many ways that a reader
can break|for example, the connection to a terminal can be broken, the disk
can signal a read error, etc. All problems of this sort are reported by raising
the exception Failure. The documentation of a reader class should specify
what failures the class can raise and how they are encoded in the argument to
Failure.

Illegal operations cause a checked runtime error.

PROCEDURE GetChar(rd: T): CHAR

RAISES {EndOfFile, Failure, Alerted};

Return the next character from rd. More precisely, this is equivalent to

the following, in which res is a local variable of type CHAR:

IF closed(rd) THEN Cause checked runtime error END;

Block until avail(rd) > cur(rd);

IF cur(rd) = len(rd) THEN

RAISE EndOfFile

ELSE

res := src(rd)[cur(rd)]; INC(cur(rd)); RETURN res

END

Many operations on a reader can wait inde�nitely. For example, GetChar can
wait if the user is not typing. In general these waits are alertable, so each
procedure that might wait includes Thread.Alerted in its RAISES clause.

PROCEDURE EOF(rd: T): BOOLEAN RAISES {Failure, Alerted};

Return TRUE i� rd is at end-of-�le. More precisely, this is equivalent to:

IF closed(rd) THEN Cause checked runtime error END;

Block until avail(rd) > cur(rd);

RETURN cur(rd) = len(rd)

Notice that on an intermittent reader, EOF can block. For example, if there
are no characters bu�ered in a terminal reader, EOF must wait until the user
types one before it can determine whether he typed the special key signalling
end-of-�le. If you are using EOF in an interactive input loop, the right sequence
of operations is:

1. prompt the user;

2. call EOF, which probably waits on user input;

3. presuming that EOF returned FALSE, read the user's input.

54 5 I/O STREAMS

PROCEDURE UnGetChar(rd: T) RAISES {};

\Push back" the last character read from rd, so that the next call to

GetChar will read it again. More precisely, this is equivalent to the

following:

IF closed(rd) THEN Cause checked runtime error END;

IF cur(rd) > 0 THEN DEC(cur(rd)) END

except there is a special rule: UnGetChar(rd) is guaranteed to work only if
GetChar(rd) was the last operation on rd. Thus UnGetChar cannot be called
twice in a row, or after Seek or EOF. If this rule is violated, the implementation
is allowed (but not required) to cause a checked runtime error.

PROCEDURE CharsReady(rd: T): CARDINAL RAISES {Failure};

Return some number of characters that can be read without inde�nite

waiting. The \end of �le marker" counts as one character for this purpose,

so CharsReady will return 1, not 0, if EOF(rd) is true. More precisely,

this is equivalent to the following:

IF closed(rd) THEN Cause checked runtime error END;

IF avail(rd) = cur(rd) THEN

RETURN 0

ELSE

RETURN some number in the range [1 .. avail(rd) - cur(rd)]

END;

Warning: CharsReady can return a result less than avail(rd) - cur(rd); also,
more characters might trickle in just as CharsReady returns. So the code to ush
bu�ered input without blocking requires a loop:

LOOP

n := Rd.CharsReady(rd);

IF n = 0 THEN EXIT END;

FOR i := 1 TO n DO EVAL Rd.GetChar(rd) END

END;

PROCEDURE GetSub(rd: T; VAR (*OUT*) str: ARRAY OF CHAR)

: CARDINAL RAISES {Failure, Alerted};

Read from rd into str until rd is exhausted or str is �lled. More

precisely, this is equivalent to the following, in which i is a local variable:

i := 0;

WHILE i # NUMBER(str) AND NOT EOF(rd) DO

str[i] := GetChar(rd); INC(i)

END;

5.3 Rd 55

RETURN i

PROCEDURE GetSubLine(rd: T; VAR (*OUT*) str: ARRAY OF CHAR)

: CARDINAL RAISES {Failure, Alerted};

Read from rd into str until a newline is read, rd is exhausted, or str is

�lled. More precisely, this is equivalent to the following, in which i is a

local variable:

i := 0;

WHILE

i # NUMBER(str) AND

(i = 0 OR str[i-1] # '\n') AND

NOT EOF(rd)

DO

str[i] := GetChar(rd); INC(i)

END;

RETURN i

Note that GetLine strips the terminating line break, while GetSubLine does
not.

PROCEDURE GetText(rd: T; len: CARDINAL): TEXT

RAISES {Failure, Alerted};

Read from rd until it is exhausted or len characters have been read,

and return the result as a TEXT. More precisely, this is equivalent to the

following, in which i and res are local variables:

res := ""; i := 0;

WHILE i # len AND NOT EOF(rd) DO

res := res & Text.FromChar(GetChar(rd));

INC(i)

END;

RETURN res

PROCEDURE GetLine(rd: T): TEXT

RAISES {EndOfFile, Failure, Alerted};

If EOF(rd) then raise EndOfFile. Otherwise, read characters until a line

break is read or rd is exhausted, and return the result as a TEXT|but

discard the line break if it is present. A line break is either "\n" or "\r\n"

More precisely, this is equivalent to the following, in which ch and res

are local variables:

IF EOF(rd) THEN RAISE EndOfFile END;

res := ""; ch := '\000'; (* any char but newline *)

56 5 I/O STREAMS

WHILE ch # '\n' AND NOT EOF(rd) DO

ch := GetChar(rd);

IF ch = '\n' THEN

IF NOT Text.Empty(res) AND

Text.GetChar(res, Text.Length(res)-1) = '\r' THEN

res := Text.Sub(res, 0, Text.Length(res)-1)

END

ELSE

res := res & Text.FromChar(ch)

END

RETURN res

PROCEDURE Seek(rd: T; n: CARDINAL) RAISES {Failure, Alerted};

This is equivalent to:

IF closed(rd) OR NOT seekable(rd) THEN

Cause checked runtime error
END;

cur(rd) := MIN(n, len(rd))

PROCEDURE Close(rd: T) RAISES {Failure, Alerted};

Release any resources associated with rd and set closed(rd) := TRUE.

The documentation of a procedure that creates a reader should specify

what resources are released when the reader is closed. This leaves rd

closed even if it raises an exception, and is a no-op if rd is closed.

PROCEDURE Index(rd: T): CARDINAL RAISES {};

This is equivalent to:

IF closed(rd) THEN Cause checked runtime error END;

RETURN cur(rd)

PROCEDURE Length(rd: T): INTEGER RAISES {Failure, Alerted};

This is equivalent to:

IF closed(rd) THEN

Cause checked runtime error
END;

RETURN len(rd)

If len(rd) is unknown to the implementation of an intermittent reader,
Length(rd) returns -1.

PROCEDURE Intermittent(rd: T): BOOLEAN RAISES {};

5.4 TextWr and TextRd 57

PROCEDURE Seekable(rd: T): BOOLEAN RAISES {};

PROCEDURE Closed(rd: T): BOOLEAN RAISES {};

Return intermittent(rd), seekable(rd), and closed(rd), respectively.

These can be applied to closed readers.

END Rd.

5.4 TextWr and TextRd

A TextWr.T, or text writer, is a writer the contents of whose internal bu�er can
be retrieved as a TEXT. Retrieving the bu�er resets the target to be empty. Text
writers are bu�ered, seekable, and never raise Failure or Alerted. The fact
that they are bu�ered is essentially unobservable, since there is no way for the
client to access the target except through the text writer.

INTERFACE TextWr;

IMPORT Wr;

TYPE

T <: Public;

Public = Wr.T OBJECT METHODS init(): T END;

The call wr.init() initializes wr to be a seekable writer with c(wr) set to the
empty sequence and cur(wr) to 0. The writer has no upper bound on its length.

PROCEDURE New(): T;

Equivalent to NEW(T).init().

PROCEDURE ToText(wr: T): TEXT;

Return c(wr), resetting c(wr) to the empty sequence and cur(wr) to 0.

END TextWr.

A TextRd.T, or text reader, is a reader that delivers the characters of a
TEXT supplied when the reader was created. Text readers are seekable, non-
intermittent, and never raise Failure or Alerted.

INTERFACE TextRd;

IMPORT Rd;

TYPE

T <: Public;

Public = Rd.T OBJECT METHODS init(t: TEXT): T END;

58 5 I/O STREAMS

The call rd.init(t) initializes rd as a seekable, non-intermittent reader with:

len(rd) = Text.Length(t)

src(rd) = characters of t
cur(rd) = 0

It is a checked runtime error if t = NIL.

PROCEDURE New(t: TEXT): T;

Equivalent to NEW(T).init(t).

END TextRd.

5.5 Stdio, FileWr, and FileRd

Stdio provides streams for standard input, standard output, and standard error.
These streams correspond to �le handles returned by the GetStandardHandles
procedure in the Process interface.

INTERFACE Stdio;

IMPORT Rd, Wr;

VAR

stdin: Rd.T;

stdout: Wr.T;

stderr: Wr.T;

bufferedStderr: Wr.T;

END Stdio.

The initialization of these streams depends on the underlying operating system.
If the standard error stream is directed to a terminal, it will be unbu�ered,

so that explicit Wr.Flush calls are unnecessary for interactive programs. A
bu�ered version of the standard error stream is also provided, but programs
should not use both stderr and bufferedStderr.

If the streams are directed to or from random-access �les, they will be
seekable.

It is possible that stderr is equal to stdout. Therefore, programs that
perform seek operations on stdout should take care not to destroy output data
when writing error messages.

A FileWr.T, or �le writer, is a writer on a File.T.

INTERFACE FileWr;

IMPORT Wr, File, OSError, Pathname;

5.5 Stdio, FileWr, and FileRd 59

TYPE

T <: Public;

Public = Wr.T OBJECT METHODS

init(h: File.T; buffered: BOOLEAN := TRUE): T

RAISES {OSError.E}

END;

If w is a �le writer and h is a �le handle, the call w.init(h) initializes w

so that characters output to w are written to h and so that closing w closes

h.

If h is a regular �le handle and b is a Boolean, w.init(h, b) causes w to be a
bu�ered seekable writer and initializes cur(w) to cur(h).

For any other �le handle h, w.init(h, b) causes w to be a nonseekable
writer, bu�ered if and only if b is TRUE, and initializes cur(w) to zero.

If a subsequent writer operation on w raises Wr.Failure, the associated
exception argument is the AtomList.T argument accompanying an OSError.E

exception from a �le operation on h.

PROCEDURE Open(p: Pathname.T): T RAISES {OSError.E};

Return a �le writer whose target is the �le named p. If the �le does not

exist, it is created. If the �le exists, it is truncated to a size of zero.

The call Open(p) is equivalent to the following:

RETURN NEW(T).init(FS.OpenFile(p))

PROCEDURE OpenAppend(p: Pathname.T): T RAISES {OSError.E};

Return a �le writer whose target is the �le named p. If the �le does not

exist, it is created. If the �le exists, the writer is positioned to append to

the existing contents of the �le.

The call OpenAppend(p) is equivalent to the following:

WITH h = FS.OpenFile(p, truncate := FALSE) DO

EVAL h.seek(RegularFile.Origin.End, 0);

RETURN NEW(T).init(h)

END

END FileWr.

A FileRd.T, or �le reader, is a reader on a File.T.

INTERFACE FileRd;

IMPORT Rd, File, OSError, Pathname;

60 5 I/O STREAMS

TYPE

T <: Public;

Public = Rd.T OBJECT METHODS

init(h: File.T): T RAISES {OSError.E}

END;

If r is a �le reader and h is a �le handle, the call r.init(h) initializes r

so that reading r reads characters from h, and so that closing r closes h.

If h is a regular �le handle, r.init(h) causes r to be a nonintermittent, seekable
reader and initializes cur(r) to cur(h).

For any other �le handle h, r.init(h) causes r to be an intermittent,
nonseekable reader and initializes cur(r) to zero.

If a subsequent reader operation on r raises Rd.Failure, the associated
exception argument is the AtomList.T argument accompanying an OSError.E

exception from a �le operation on h.

PROCEDURE Open(p: Pathname.T): T RAISES {OSError.E};

Return a �le reader whose source is the �le named p. If the �le does not

exist, OSError.E is raised with an implementation-de�ned code.

The call Open(p) is equivalent to

RETURN NEW(T).init(FS.OpenFileReadonly(p))

END FileRd.

61

6 Operating System

The interfaces in this section provide access to operating system facilities:
timekeeping, �les, pathnames, directories, and processes. The interfaces are
intended to be implementable at least on POSIX [8] and Win32 [12] systems.

6.1 Time

A Time.T represents a moment in time, reckoned as a number of seconds since
some epoch or starting point.

INTERFACE Time;

TYPE T = LONGREAL;

PROCEDURE Now(): T;

Return the current moment in time.

VAR (*CONST*) Grain: LONGREAL;

If a thread performs t0 := Time.Now(); t1 := Time.Now(), then either

t1 = t0 or t1 >= t0 + Time.Grain. Grain always lies in the half-open

interval (0..1] and is usually no larger than one sixtieth of a second.

END Time.

There are a variety of timekeeping needs, and Time.Now may not satisfy all of
them. It is intended to be useful for recording times and measuring intervals
arising during the execution of computer programs with a resolution comparable
to human reaction times.

The epoch for a Time.T varies from one operating system to another.
To determine the epoch, call Date.FromTime(0.0D0, Date.UTC). Note that
communicating a Time.T between systems, say via remote procedure call or
pickles, is likely to be a bad idea.

In many computers, Time.Now is implemented with the technology of an
inexpensive wristwatch, and is therefore likely to su�er from similar errors: the
rate may vary, and the value may be changed by a human operator.

The Thread interface contains procedures that delay the execution of the
calling thread for a speci�ed duration. The Tick interface provides access to a
clock with subsecond resolution.

6.2 Date

A Date.T is a moment in time, expressed according to the standard (Gregorian)
calendar, as observed in some time zone. A Date.TimeZone (or just a

62 6 OPERATING SYSTEM

time zone) is an object that encapsulates the rules for converting from UTC
(universal coordinated time, sometimes known as Greenwich mean time) to
local time within a particular jurisdiction, taking into account daylight time
when appropriate.

INTERFACE Date;

IMPORT Time;

TYPE

T = RECORD

year: CARDINAL; (* e.g., 1992 *)

month: Month;

day: [1 .. 31];

hour: [0 .. 23];

minute: [0 .. 59];

second: [0 .. 59];

offset: INTEGER;

zone: TEXT;

weekDay: WeekDay

END;

Month = {Jan, Feb, Mar, Apr, May, Jun, Jul,

Aug, Sep, Oct, Nov, Dec};

WeekDay = {Sun, Mon, Tue, Wed, Thu, Fri, Sat};

A date's offset �eld speci�es the di�erence in the readings of two clocks, one
set to UTC and one set to local time, at the moment the date occurred, and thus
reects daylight time when appropriate. This di�erence is speci�ed in seconds,
with positive values corresponding to local zones behind (west of) UTC. A date's
zone �eld speci�es a name (often a three-letter abbreviation) for the time zone
in which the date is observed, for example, \PDT" for Paci�c Daylight Time.

TYPE TimeZone <: REFANY;

VAR Local, UTC: TimeZone;

Local is initialized to the time zone in which the computer running

this program is located. UTC is initialized to the time zone for universal

coordinated time.

PROCEDURE FromTime(t: Time.T; z: TimeZone := NIL): T;

Return the date corresponding to t, as observed in the time zone z. If z

is NIL, Local is used.

EXCEPTION Error;

PROCEDURE ToTime(READONLY d: T): Time.T RAISES {Error};

6.3 Tick 63

Return the time corresponding to the date d, using the �eld offset rather

than zone and ignoring the �eld weekDay. Raise Error if d cannot be

represented as a Time.T.

END Date.

On POSIX systems, FromTime(t, Local) calls localtime(3). On Win32
systems, it calls GetTimeZoneInformation. Some systems keep local time
instead of UTC, and typically don't record the identity of the local time zone.
On such a system, FromTime(t, Local) always returns a result with offset

equal to zero and zone equal to "[Unknown zone]", and UTC is NIL.

6.3 Tick

A Tick.T represents a value of a clock with subsecond resolution. The exact
resolution di�ers from implementation to implementation and is typically one
sixtieth of a second or smaller.

INTERFACE Tick;

IMPORT Word;

TYPE T = Word.T;

PROCEDURE Now(): T;

Return the current reading of the tick clock.

PROCEDURE ToSeconds(t: Word.T): LONGREAL;

Return the number of seconds in t ticks.

EXCEPTION Overflow;

PROCEDURE FromSeconds(s: LONGREAL): Word.T RAISES {Overflow};

Return the number of ticks equivalent to s seconds, rounded to the nearest

whole number, or raise Overflow if s is negative or the result would not

be less than 2^Word.Size.

END Tick.

If t0 is a reading of the tick clock and t1 is another reading taken less than
2Word.Size ticks after t0, then the number of ticks between t0 and t1 is
Word.Minus(t1, t0).

The values returned by Tick.Now() and Time.Now() typically won't stay
synchronized for long periods of time. The purpose of Tick.Now() is to provide
accurate measurements of short intervals. The purpose of Time.Now() is to
provide \wall clock" time, preferably synchronized with UTC (coordinated
universal time).

64 6 OPERATING SYSTEM

6.4 OSError

OSError.E is an exception raised by a number of operating system interfaces
such as File, FS, and Process.

INTERFACE OSError;

IMPORT AtomList;

TYPE Code = AtomList.T;

EXCEPTION E(Code);

END OSError.

E(code) is raised by a number of methods and procedures in the operating
system interfaces to signal any of an open-ended class of failures.

6.5 File

A File.T, or �le handle, is a source and/or sink of bytes. File handles provide
an operating-system independent way to perform raw I/O. For bu�ered I/O,
use the FileRd and FileWr interfaces instead. A �le handle is created using
OpenFile or OpenFileReadonly in the FS interface.

INTERFACE File;

IMPORT Atom, OSError, Time;

TYPE

T <: Public;

Public = OBJECT METHODS

read(VAR (*OUT*) b: ARRAY OF Byte;

mayBlock: BOOLEAN := TRUE): INTEGER RAISES {OSError.E};

write(READONLY b: ARRAY OF Byte) RAISES {OSError.E};

status(): Status RAISES {OSError.E};

close() RAISES {OSError.E}

END;

Byte = BITS 8 FOR [0 .. 255];

Status = RECORD

type: Type;

modificationTime: Time.T;

size: CARDINAL

END;

Type = Atom.T;

END File.

Formally, a �le handle h has the components:

6.5 File 65

type(h) an atom, the type of �le
readable(h) a boolean
writable(h) a boolean
src(h) (a REF to) a sequence of bytes
srcCur(h) an integer in the range [0..len(src(h))]
srcEof(h) a boolean
snk(h) (a REF to) a sequence of bytes
snkCur(h) an integer in the range [0..len(snk(h))]

The src... components are meaningful only if readable(h). The sequence
src(h) is zero-based: src(h)[i] is valid for i from 0 to len(src(h))-1. For
some subtypes of File.T, the sequence src(h) can grow without bound.

The snk... components are meaningful only if writable(h). The sequence
snk(h) is zero based: snk(h)[i] is valid for i from 0 to len(snk(h))-1.

For full details on the semantics of a �le handle, consult the interface de�ning
the particular subtype, for example, Pipe.T, Terminal.T, or RegularFile.T. In
the case where no exceptions are raised, the methods of the subtypes of File.T
obey the following speci�cations:

The call

h.read(b, mayBlock)

is equivalent to

IF NOT readable(h) OR NUMBER(b) = 0 THEN

Cause checked runtime error
END;

IF srcCur(h) = len(src(h)) AND NOT srcEof(h) THEN

IF NOT mayBlock THEN RETURN -1 END;

Block until srcCur(h) # len(src(h)) OR srcEof(h)

END;

IF srcCur(h) = len(src(h)) THEN RETURN 0 END;

Choose k such that:
1 <= k <= MIN(NUMBER(b), len(src(h))-srcCur(h));

FOR i := 0 TO k-1 DO

b[i] := src(h)[srcCur(h)];

INC(srcCur(h))

END;

RETURN k

A result of zero always means end of �le. The meaning of a subsequent read
after end of �le has been reached is unde�ned for a File.T but may be de�ned
for a particular subtype.

The call

h.write(b)

66 6 OPERATING SYSTEM

is equivalent to

IF NOT writable(h) THEN Cause checked runtime error END;

FOR i := 0 TO NUMBER(b)-1 DO

IF snkCur(h) = len(snk(h)) THEN

Extend snk(h) by one byte

END;

snk(h)[snkCur(h)] := b[i]

INC(srcCur(h))

END;

The read and write methods are not alertable because it isn't possible to alert
a thread blocked in a Win32 ReadFile or WriteFile system call.

The call

h.status()

returns a result whose type �eld contains type(h). See the documentation
for each subtype of File.T for more details, including the values of the
modificationTime and size �elds of the result, if any.

The call

h.close()

is equivalent to

readable(h) := FALSE;

writable(h) := FALSE

Additionally, it releases any subtype-speci�c resources used by h. Every �le
handle should be closed.

Clients should assume that �le handles are unmonitored and should avoid
concurrent accesses to a �le handle from multiple threads. A particular subtype
of File.T may provide a stronger speci�cation with respect to atomicity.

6.6 Pipe

A Pipe.T, or pipe, is a �le handle that provides access to one endpoint of a
unidirectional channel that is typically used to communicate between a parent
and a child process or two sibling processes. (See Process.Create.)

INTERFACE Pipe;

IMPORT File, OSError;

TYPE T <: File.T;

VAR (*CONST*) FileType: File.Type;

6.6 Pipe 67

Equal to Atom.FromText("Pipe").

PROCEDURE Open(VAR (*OUT*) hr, hw: T) RAISES {OSError.E};

Create a new channel allowing bytes written to hw to be read from hr.

END Pipe.

Like every File.T, a pipe h has the components

type(h) an atom, equal to FileType

readable(h) a boolean
writable(h) a boolean

Exactly one of readable(h) and writable(h) is true (until the pipe is closed).
A pipe h also has the component

channel(h) a channel

If there are pipes hw and hr with channel(hw) = channel(hr), writable(hw),
and readable(hr), then a process holding hw can send information to a process
holding hr.

A channel c has the components

seq(c) a sequence of bytes
w(c) a non-negative integer, the index of the next byte to write
r(c) a non-negative integer, the index of the next byte to read
nw(c) a non-negative integer, the number of pipes writing c

nr(c) a non-negative integer, the number of pipes reading c

It is possible (but not very useful) for a channel to have values of nw(c) or
nr(c) other than zero or one (see Process.Create).

Open creates a channel c with

w(c) = r(c) = 0

nw(c) = nr(c) = 1

and two pipes hr and hw with

type(hr) = type(hw) = FileType

readable(hr) = writable(hw) = TRUE

writable(hr) = readable(hw) = FALSE

channel(hr) = channel(hw) = c

The meaning of the call

h.read(b, mayBlock)

is given by the speci�cation of File.T.read together with these de�nitions,
where c = channel(h):

src(h) = seq(c)

68 6 OPERATING SYSTEM

srcCur(h) = r(c)

srcEof(h) = (nw(c) = 0)

Note that end-of-�le is not reported until after the last pipe that can write on
the channel is closed; subsequent reads are legal but always report end-of-�le.

The meaning of the call

h.write(b)

is given by the speci�cation of File.T.write together with these de�nitions,
where c = channel(h):

snk(h) = seq(c)

snkCur(h) = w(c)

In some implementations, a channel has a bounded bu�er, so write may have
to block. If nr(channel(h)) = 0, that is, no pipe can read h's channel, write
raises OSError.E.

The call

h.status(stat)

assigns FileType to stat.type. Its e�ect on stat.modificationTime and
stat.size is unde�ned.

The call

h.close()

is equivalent to

IF readable(h) THEN

DEC(nr(channel(h)))

ELSE

DEC(nw(channel(h)))

END;

readable(h) := FALSE;

writable(h) := FALSE

The channel connecting a pair of pipes is necessarily monitored, since the
purpose of the channel is to allow asynchronous communication via the pipes.
Nevertheless, an individual pipe should be treated as unmonitored, thus avoiding
the question of the unit of atomicity for reads and writes.

6.7 Terminal

A Terminal.T, or terminal handle, is a �le handle that provides access to a
duplex communication channel usually connected to a user terminal.

INTERFACE Terminal;

6.7 Terminal 69

IMPORT File;

TYPE T <: File.T;

VAR (*CONST*) FileType: File.Type;

Equal to Atom.FromText("Terminal").

END Terminal.

Like every File.T, a terminal handle h has the components

type(h) an atom, equal to FileType

readable(h) a boolean
writable(h) a boolean

A terminal handle is readable, or writable, or both (until it is closed). If it is
readable, it has the component

srcTerm(h) a terminal device

If it is writable, it has the component

snkTerm(h) a terminal device

A terminal device t has the components

seq(t) a sequence of bytes
r(t) a non-negative integer, the index of the next byte to read
w(t) a non-negative integer, the index of the next byte to write
flag(t) a byte reserved to mark the end-of-�le in seq(t)

The meaning of the call

h.read(b, mayBlock)

is given by the speci�cation of File.T.read together with these de�nitions,
where t = srcTerm(h), and k is the number of occurrences of flag(t) in
seq(t) up to r(t)-1:

src(h) = subsequence of seq(t) with no occurrences of flag(t)
srcCur(h) = r(t)-k

srcEof(h) = (seq(t)(r(t)) = flag(t))

When end-of-�le is reported, r(t) is also incremented. This means subsequent
reads can return further data in seq(t).

The meaning of the call

h.write(b)

is given by the speci�cation of File.T.write together with these de�nitions,
where t = snkTerm(h):

snk(h) = seq(t)

70 6 OPERATING SYSTEM

snkCur(h) = w(t)

A speci�c implementation may provide one or more subtypes of Terminal.T
with additional methods.

The communication channel underlying a terminal handle is necessarily mon-
itored, since the purpose of the channel is to allow asynchronous communication
between a program and a user operating a terminal device. However a terminal
handle itself should be treated as unmonitored, thus avoiding the question of
the unit of atomicity for reads and writes.

6.8 RegularFile

A RegularFile.T, or regular �le handle, provides access to a persistent
extensible sequence of bytes.

INTERFACE RegularFile;

IMPORT File, OSError;

TYPE

T <: Public;

Public = File.T OBJECT METHODS

seek(origin: Origin; offset: INTEGER): INTEGER

RAISES {OSError.E};

flush() RAISES {OSError.E};

lock(): BOOLEAN RAISES {OSError.E};

unlock() RAISES {OSError.E}

END;

Origin = {Beginning, Current, End};

VAR (*CONST*) FileType: File.Type;

Equal to Atom.FromText("RegularFile").

END RegularFile.

Like every File.T, a regular �le handle h has the components

type(h) an atom, equal to FileType

readable(h) a boolean
writable(h) a boolean

A regular �le handle h also has the components

cur(h) an integer, the index of the next byte to read or write
file(h) the identity of a regular �le

There may be distinct regular �le handles h1 and h2 with file(h1) equal to
file(h2), and more than one process may hold a single regular �le handle (see
Process.Create).

6.8 RegularFile 71

A regular �le (not a handle) f has the components

buffer(f) an extensible byte sequence
stable(f) an extensible byte sequence

mtime(f) a Time.T, the last modi�cation time
locked(f) a Process.ID

The sequences buffer(f) and stable(f) are zero-based and always have the
same length. stable(f) represents the contents of the �le on the disk or other
persistent storage medium, while buffer(f) represents write-behind caching
performed by the operating system. From time to time, a daemon performs

WITH i = some integer i in the range [0..len(buffer(f))-1] DO

stable(f)(i) := buffer(f)(i)

END

The methods described in this interface are atomic with respect to the daemon.
The meaning of the call

h.read(b, mayBlock)

is given by the speci�cation of File.T.read together with these de�nitions,
where f = file(h):

src(h) = buffer(f)

srcCur(h) = cur(h)

srcEof(h) = TRUE

Because srcEof(h) is always TRUE, read never blocks. However, a subsequent
read can return more data if an interleaved write extends buffer(f). If cur(h)
is negative (because of a prior seek), read raises OSError.E.

The meaning of the call

h.write(b)

is given by the speci�cation of File.T.write together with these de�nitions,
where f = file(h):

snk(h) = buffer(f)

snkCur(h) = cur(h)

In addition, write sets mtime(file(h)) to the current time. If write is called
when cur(h) > size(f) (because of a prior seek), it extends f with bytes of
unde�ned value. If cur(h) is negative, write raises OSError.E.

The call

h.status(stat)

is equivalent to the following, in which stat is a local variable of type Status:

stat.type := FileType;

72 6 OPERATING SYSTEM

stat.modificationTime := mtime(file(h));

stat.size := len(buffer(file(h)));

RETURN stat

The call

h.seek(origin, offset)

is equivalent to

CASE origin OF

Origin.Beginning => cur(h) := offset

| Origin.Current => cur(h) := cur(h)+offset

| Origin.End => cur(h) := len(buffer(file(h)))+offset

END;

RETURN cur(h)

Note that seek never changes the length of the �le, although a subsequent write
may do so. Use the call h.seek(Origin.Current, 0) to determine cur(h)

without changing it.
The call

h.flush()

is equivalent to

WITH f = file(h) DO

FOR i := 0 TO len(buffer(f))-1 DO

stable(f)(i) := buffer(f)(i)

END

END

The call

h.close()

extends the normal action of the close method with

IF locked(file(h) = Process.GetMyID() THEN

locked(file(h)) := Process.NullID

END

The call

h.lock()

is equivalent to:

IF locked(file(h)) = Process.NullID THEN

locked(file(h)) := Process.GetMyID();

RETURN TRUE

END;

6.9 Pathname 73

RETURN FALSE

The call

h.unlock()

is equivalent to:

IF locked(file(h)) # Process.GetMyID() THEN

RAISE OSError.E

END;

locked(file(h)) := Process.NullID

Some implementations raise an exception if a process tries to read or write a
�le locked by another process. You should treat this as a checked runtime error
rather than writing code to catch and recover from the exception; the same
applies to unlocking a �le that you didn't lock.

You lock a �le with code like

CONST

MaxTry = 3;

RetryInterval = 5.0D0;

VAR try := 1;

BEGIN

WHILE NOT h.lock() DO

IF try=MaxTry THEN Give up END;

INC(try);

Time.Pause(RetryInterval)

END;

TRY Read or write h FINALLY h.unlock() END

END

The regular �le underlying a regular �le handle is monitored, thus allowing
concurrent operations. We leave unspeci�ed the unit of atomicity for reads and
writes, so a set of processes sharing a �le that needs to be updated should use
the lock and unlock methods. A regular �le handle itself should be treated as
unmonitored. A client thread typically needs to perform a seek followed by a
read or write as an atomic unit, which can be implemented with a mutex in
the client.

6.9 Pathname

Pathname de�nes procedures for manipulating pathnames in a portable fashion.

INTERFACE Pathname;

IMPORT TextSeq;

74 6 OPERATING SYSTEM

TYPE

T = TEXT;

Arcs = TextSeq.T;

Most operating systems include a �le system providing persistent storage (�les)
and naming (directories). The name space is usually a directed, rooted graph
in which interior nodes are directories and exterior nodes are �les and empty
directories. Each arc is labeled with a character string called an arc name; the
arc names in any one directory are distinct. A Pathname.T (or just a pathname)
is a text conforming to the syntax of the underlying operating system. It consists
of a sequence of arc names specifying a path starting from some distinguished
directory and ending at the referent of the pathname.

A pathname may be absolute, in which case it begins with the name of a
root directory. If a pathname is not absolute, it is interpreted relative to the
working directory associated with the process (see GetWorkingDirectory in the
Process interface).

Not all operating systems use the same syntax for pathnames, so we
de�ne the type Arcs to represent a pathname in a standard form allowing
manipulations by portable programs. Suppose a is of type Arcs. Then a

is non-NIL, a.getlo() indicates whether or not the pathname is absolute,
and TextSeq.Sub(a, 1) represents a sequence (possibly empty) of arc names
(all non-NIL). If a represents an absolute pathname, then a.getlo() is the
root directory name and is non-NIL; if a represents a relative pathname, then
a.getlo() is NIL.

It is often useful to view an arc name as having two parts, a base and an
extension, separated by a period, for example Pathname.i3.

See the end of this interface for operating-system speci�c details.

EXCEPTION Invalid;

PROCEDURE Valid(pn: T): BOOLEAN;

Return TRUE i� pn conforms to the pathname syntax of this operating

system.

When a pathname with invalid syntax is passed to a procedure in this interface
not declared as raising the exception Invalid, the result is unde�ned, but safe.

PROCEDURE Decompose(pn: T): Arcs RAISES {Invalid};

Parse pn, returning a sequence whose �rst element is a root directory

name (possibly NIL) and whose remaining elements consist of zero or

more arc names. Raise Invalid if Valid(pn) is FALSE.

Decompose returns exactly the sequence of arc names present in pn; it doesn't
attempt to produce a canonical form. Some operating systems allow zero-length
arc names (see the discussion of speci�c systems at the end of this section.)

6.9 Pathname 75

PROCEDURE Compose(a: Arcs): T RAISES {Invalid};

Combine the elements of a to form a pathname corresponding to the

syntax of this operating system. Raise Invalid if a is NIL, if a.getlo()

is neither NIL nor a valid root directory name, or if one of the elments of

TextSeq.Sub(a, 1) is not a valid arc name.

PROCEDURE Absolute(pn: T): BOOLEAN;

Return TRUE i� pn is an absolute pathname. Equivalent to

Decompose(pn).getlo() # NIL, but faster.

PROCEDURE Prefix(pn: T): T;

Return a pathname equal to pn up to, but not including, the �nal arc

name. If pn consists only of a root directory name, Prefix(pn) returns

pn.

PROCEDURE Last(pn: T): T;

Return the �nal arc name in pn. If pn consists only of a root directory

name, Last(pn) returns the empty string.

PROCEDURE Base(pn: T): T;

Return a pathname equal to pn except with Last(pn) replaced by its

base.

PROCEDURE Join(pn, base: T; ext: TEXT): T;

Return a pathname formed by prepending pn to base (if pn is not NIL)

and appending ext to base (if ext is not NIL). More precisely, this is

equivalent to the following, in which a is a local variable of type Arcs:

IF pn = NIL THEN a := NIL

ELSE

IF Absolute(base) THEN Cause checked runtime error END;

a := Decompose(pn)

END;

IF ext # NIL THEN base := base & "." & ext END;

RETURN Compose(

TextSeq.Cat(a, TextSeq.Sub(Decompose(base), 1)))

The value returned by Join will be a valid pathname only if the base and ext

conform to the syntax of the particular operating system, as speci�ed at the
end of this section.

PROCEDURE LastBase(pn: T): T;

76 6 OPERATING SYSTEM

Return the base of the �nal arc name of pn. It is a checked runtime error

if pn is empty or consists only of a root directory name.

PROCEDURE LastExt(pn: T): TEXT;

Return the extension of the last arc name of pn. It is a checked runtime

error if pn is empty or consists only of a root directory name.

PROCEDURE ReplaceExt(pn: T; ext: TEXT): T;

Return a pathname equal to pn except with the extension of the �nal arc

name replaced with ext, which must be non-NIL.

VAR (*CONST*)

Parent: TEXT;

A special arc name that, when encountered during a pathname lookup,

stands for the parent of the directory currently being examined.

Current: TEXT;

A special arc name that, when encountered during a pathname lookup,

stands for the directory currently being examined.

END Pathname.

POSIX. Pathnames have the syntax:

Pathname = Absolute | Relative.

Absolute = "/" Relative.

Relative = [ArcName {"/" ArcName}].

Parent is \.." and Current is \.".
There is only one root directory and it is named \/". A POSIX-compliant

system must support arc names at least as long as fourteen characters. An arc
name longer than the maximum supported is either silently truncated by the
operating system or is reported as an error, depending on a con�guration option.
A zero-length arc name is treated the same as \.". An arc name may contain
any character except \/" and the null character, but for maximum portability
the POSIX speci�cation recommends they be restricted to upper and lower case
letters, digits, and these special characters:

. _ -

Furthermore, it is recommended that arc names not start with hyphen (-).
The extension of an arc name is the su�x starting after the last \.".
The base of an arc name is the pre�x up to, but not including, the �nal \."

if the extension is nonempty; it is the entire arc name if the extension is empty.

6.9 Pathname 77

Win32. Pathnames have the syntax, where backslash is not an escape
character but a literal character:

Pathname = Absolute | Relative.

Absolute = Volume "\" Relative.

Relative = [ArcName {"\" ArcName}].

ArcName = Base "." Extension | "." | "..".

Volume = Drive ":" | "\\" Server "\" Share.

Server = ?

Share = ?

Parent is \.." and Current is \.".
The FAT (MS-DOS) �le system restricts Drive to a single letter, and Base

to between one and eight letters, digits, or these special characters:

$ % ' - _ @ { } ~ ` ! # ()

Extension is one to three characters from the same set. Certain Bases, including
AUX, CLOCK$, COM1, CON, LPT1, NUL, and PRN are reserved|they name
devices, regardless of the directory or extension. Embedded (but not trailing)
spaces are allowed in the Base of a �le name (but not a directory name).

The HPFS and NTFS �le systems allow arc names up to 254 characters, and
these additional special characters are allowed:

, + = [] ;

Additionally, blank is signi�cant anywhere in an arc name except at the end.
Win32 allows a programmer to use either ANSI or Unicode representation for
pathname strings. The NTFS �le system stores full Unicode pathnames in the
directories.

Macintosh. Pathnames have the syntax:

Pathname = Absolute | Relative.

Absolute = Volume ":" [ArcName {Colons ArcName}].

Relative = ArcName

| Colons ArcName {Colons ArcName}.

Colons = ":" {":"}.

Parent is \::" and Current is \:".
A Volume is one to twenty-seven printing characters excluding colon (:). An

arc name is one to thirty-one printing characters excluding colon. A single colon
is a separator; n+1 adjacent colons means the nth parent.

The extension of an arc name is the su�x starting after the last \."; if there
is no \.", the extension is empty.

The base of an arc name is the pre�x up to, but not including, the �nal \."
if the extension is nonempty; it is the entire arc name if the extension is empty.

78 6 OPERATING SYSTEM

6.10 FS

The FS interface provides persistent storage (�les) and naming (directories).

INTERFACE FS;

IMPORT OSError, File, Pathname, Time;

PROCEDURE GetAbsolutePathname(p: Pathname.T): Pathname.T

RAISES {OSError.E};

Return an absolute pathname referring to the same �le or directory as p.

The new pathname will not involve any symbolic links or relative arcs (that is,
occurrences of Pathname.Parent or Pathname.Current.

The procedures OpenFile and OpenFileReadonly look up a pathname and
return a �le handle, which is an object allowing a �le to be read and perhaps
written. The returned value will be of some subtype of File.T, depending on
the kind of object named by p. If the object is a regular �le, the type will
be RegularFile.T. If the object is a terminal, the type will be Terminal.T.
Other, system-speci�c subtypes are also possible. Under appropriate conditions,
OpenFile can create a new regular �le. OSError.E is raised if the pathname
passed to OpenFile or OpenFileReadonly is that of a directory.

TYPE

CreateOption = {Never, Ok, Always};

AccessOption = {OnlyOwnerCanRead, ReadOnly, Default};

PROCEDURE OpenFile(

p: Pathname.T;

truncate: BOOLEAN := TRUE;

create: CreateOption := CreateOption.Ok;

template: File.T := NIL;

access: AccessOption := AccessOption.Default): File.T

RAISES {OSError.E};

Return an object permitting writing and reading an existing or newly-

created �le named p.

Suppose p names an existing regular �le. If create = Always, then OSError.E

is raised. Otherwise, the existing �le is opened, after truncating it to zero size
if truncate = TRUE.

On the other hand, suppose the �le named by p does not exist. If create
= Never, then OSError.E is raised. Otherwise, a new �le is created. Normally
the new �le is a regular �le, but some implementations may determine the type
of the new �le from the identity of the directory in which it is being created.
The access control settings of the new �le are set using the values of template
and access. If template # NIL, then access is ignored and the new �le is

6.10 FS 79

given the same per-�le access control settings as template. If template = NIL,
the �le's access control settings are determined by an implementation-de�ned
default value, with possible restrictions determined by the value of access:

OnlyOwnerCanRead read access is allowed only by this user

ReadOnly write access is allowed to no one (except via the File.T returned by
this call of OpenFile)

Default the default applies with no restrictions.

A newly-created �le f has

buffer(f) = stable(f) = empty sequence
mtime(f) = current time
locked(f) = Process.NullID

OpenFile doesn't change mtime(f) of an existing �le f.
If OpenFile returns a regular �le handle, say h, then its initial state will be:

type(h) = RegularFile.FileType

readable(h) = writable(h) = TRUE

cur(h) = 0

file(h) = �le with pathname p

To append to an existing �le, perform the call

EVAL h.seek(Origin.End, 0)

after opening h.

PROCEDURE OpenFileReadonly(p: Pathname.T): File.T

RAISES {OSError.E};

Return an object permitting reading the �le named by p.

If p names a regular �le, the call OpenFileReadonly(p) returns a �le handle h
with

type(h) = Atom.FromText("RegularFile")

readable(h) = TRUE

writable(h) = FALSE

cur(h) = 0

file(h) = �le with pathname p

PROCEDURE CreateDirectory(p: Pathname.T) RAISES {OSError.E};

Create a directory named by p.

PROCEDURE DeleteDirectory(p: Pathname.T) RAISES {OSError.E};

80 6 OPERATING SYSTEM

Delete the directory named by p. OSError.E is raised if the

directory contains entries (other than perhaps Pathname.Current and

Pathname.Parent).

PROCEDURE DeleteFile(p: Pathname.T)

RAISES {OSError.E};

Delete the �le or device named by p. OSError.E is raised if p names a

directory.

Note: Under Win32, DeleteFile raises OSError.E if p is open. Under POSIX,
an open �le may be deleted; the �le doesn't actually disappear until every link
(pathname) for it is deleted.

PROCEDURE Rename(p0, p1: Pathname.T)

RAISES {OSError.E};

Rename the �le or directory named p0 as p1.

Some implementations automatically delete an existing �le named p1, others
raise OSError.E. Some implementations disallow a rename where p0 and p1

name di�erent physical storage devices (di�erent root directories or �le systems).

TYPE

Iterator <: PublicIterator;

PublicIterator = OBJECT METHODS

next(VAR (*OUT*) name: TEXT): BOOLEAN;

nextWithStatus(VAR (*OUT*) name: TEXT;

VAR (*OUT*) stat: File.Status): BOOLEAN;

close();

END;

VAR (*CONST*) DirectoryFileType: File.Type;

Equal to Atom.FromText("Directory").

PROCEDURE Iterate(p: Pathname.T): Iterator

RAISES {OSError.E};

Return an iterator for the entries of the directory named by p.

An Iterator supplies information about the entries in a directory: names
and, optionally, status. The iteration does not include entries corresponding
to Pathname.Current or Pathname.Parent.

The methods have the following speci�cations:
If more entries remain, the call i.next(n) sets n to the name of the next one

and returns TRUE. It returns FALSE without setting n if no more entries remain.
If more entries remain, the call i.nextWithStatus(n, s) sets n to the name

of the next one, sets s to the status of that entry, and returns TRUE. The value

6.10 FS 81

of s.type is DirectoryFileType if the entry is a directory. The call returns
FALSE without setting n or s if no more entries remain.

The call i.close() releases the resources used by i, after which time it is
a checked runtime error to use i. Every iterator should be closed.

You iterate over the entries in a directory with code like this:

VAR

i := FS.Iterate(pathname);

name: TEXT;

BEGIN

TRY

WHILE i.next(name) DO

Process name
END

FINALLY

i.close()

END

END

Use nextWithStatus instead of next if you would otherwise call Status (or
the File.T status method) on most of the entries (in some implementations,
nextWithStatus requires an extra disk access).

What can be assumed if a directory is being updated concurrently with an
iteration? An entry that is not inserted or deleted will occur in the iteration
at least once, and an entry that occurs in the iteration must have been in the
directory at some moment.

PROCEDURE Status(p: Pathname.T): File.Status

RAISES {OSError.E};

Return information about the �le or directory named by p.

Possible values of stat.type include

FS.DirectoryFileType (a directory)
RegularFile.FileType (a disk �le)
Terminal.FileType (a terminal)

If p is a disk �le, stat.modificationTime and stat.size will be set.
See also the status method of File.T and the nextWithStatus method of

Iterator.

PROCEDURE SetModificationTime(

p: Pathname.T;

READONLY t: Time.T)

RAISES {OSError.E};

Change the modi�cation time of the �le or directory named by p to t.

82 6 OPERATING SYSTEM

END FS.

6.11 Process

A process is the execution of a program by one or more threads within an
address space. A process may hold a variety of resources such as �le handles.

INTERFACE Process;

IMPORT File, OSError, Pathname;

TYPE T <: REFANY;

A Process.T, or process handle, provides access to a child process.

PROCEDURE Create(

cmd: Pathname.T;

READONLY params: ARRAY OF TEXT;

env: REF ARRAY OF TEXT := NIL;

wd: Pathname.T := NIL;

stdin, stdout, stderr: File.T := NIL): T

RAISES {OSError.E};

Create a new process and cause it to execute the program with pathname

cmd, parameters params, environment variables env, working directory

wd, and standard �le handles stdin, stdout, and stderr. Return the

handle of the new process.

If cmd consists of a single (relative) arc name, then it is looked up in an operating-
system dependent way (see below). Otherwise, cmd is looked up in the normal
fashion as an absolute pathname or as a pathname relative to the current
working directory (not wd).

A process can examine its own parameters via the interface Params.
The parameter params[i] passed to Create will correspond to the value of
Params.Get(i+1) in the newly created process (because Params.Get(0) returns
the command name). (See the Params interface for the way SRC Modula-3
treats parameters beginning with the characters @M3.)

If env is not NIL, it consists of a reference to an array of texts that must have
the form name=value. If env is NIL, it defaults to the environment variables of
the caller's process. A process can examine its own environment variables via
the interface Env.

If wd is NIL, it defaults to the working directory of the caller's process.

If any of stdin, stdout, or stderr are NIL, the corresponding �le handle of
the new process is NIL. A process can obtain its own standard �le handles by
calling the procedure GetStandardFileHandles de�ned later in this interface.

6.11 Process 83

The sharing established by passing a File.T to a new process requires care.
For example, seeks done by either process a�ect both, and passing a Pipe.T

increments a reference count of the underlying channel. See the end of this
interface for an example of using Create with pipes.

POSIX. Create forks a child process, which executes the speci�ed command.
If cmd consists of a single (relative) arc name, Create searches each of the
directories speci�ed by the PATH environment variable for a �le named cmd

that is executable by the current (e�ective) user. If the attempt to execute the
command returns the Unix error ENOEXEC, then the child process executes
/bin/sh with the original arguments pre�xed by the pathname determined
earlier.

Win32. Create calls Win32.CreateProcess. If cmd consists of a single
(relative) arc name, Win32.CreateProcess �rst appends .EXE if cmd includes
neither an extension nor a �nal period, and then searches for this name in
the following sequence of directories: the working directory; the Windows
system directory; the Windows directory; the directories listed in the PATH
environment variable.

TYPE ExitCode = [0 .. 16_7FFFFFFF];

An exit code (or status) of zero normally means successful termination, and
a non-zero value normally indicates an error, but the exact conventions vary
between systems and programs.

PROCEDURE Wait(p: T): ExitCode;

Wait until the process with handle p terminates, then free the operating

system resources associated with the process and return an exit code

indicating the reason for its termination. It is a checked runtime error to

call Wait twice on the same process handle.

POSIX. The value returned by Wait is equal to the status result of the wait
system call.

Win32. The value returned by Wait is c MOD (LAST(ExitCode) + 1) where
c is the value returned by Win32.GetExitCodeProcess.

PROCEDURE Exit(n: ExitCode := 0);

Call the registered exitors and terminate the program with exit code n.

Terminating a Modula-3 program by \falling o� the end" is equivalent to

calling Exit(0).

84 6 OPERATING SYSTEM

PROCEDURE Crash(msg: TEXT);

Call the registered exitors and terminate the program with the error

message msg. If possible, invoke a debugger or generate a core dump.

Modula-3 implementations that don't convert checked runtime errors into
exceptions should call Crash to abort the program.

Some Modula-3 implementations catch external events (e.g. Unix signals)
or internal interrupts (e.g. oating-point underow) and call Crash. Consult
your local installation guide for more information.

PROCEDURE RegisterExitor(p: PROCEDURE());

Register the procedure p to be called when Exit or Crash is called.

Each registered exitor is called at most once. Exitors are called in reverse
of the order they were registered. A facility implementing a class of objects
should register only a single exitor, which can consult a private data structure
to determine which of its objects need cleanup. RegisterExitor should be
called at module initialization time (not when the �rst object is created) to
guarantee the correct registration order.

TYPE ID = [0 .. 16_7FFFFFFF];

CONST NullID: ID = 0;

An ID or process identi�er is assigned to each process when it is created. At any
moment, no two processes on the same computer have the same identi�er, but
identi�ers can be reused over time. No process is ever assigned the identi�er
NullID.

PROCEDURE GetID(p: T): ID;

Return the process identi�er of the process with handle p.

PROCEDURE GetMyID(): ID;

Return the process identi�er of the caller's process.

PROCEDURE GetStandardFileHandles(

VAR (*OUT*) stdin, stdout, stderr: File.T);

Return the standard input/output handles that were supplied when this

process was created.

PROCEDURE GetWorkingDirectory(): Pathname.T

6.11 Process 85

RAISES {OSError.E};

Return an absolute pathname for the working directory of the caller's

process.

PROCEDURE SetWorkingDirectory(path: Pathname.T)

RAISES {OSError.E};

Change the working directory of this process to path.

END Process.

Example. A typical use of Create is to run a �lter process that reads from
standard input and writes a transformed version to standard output. The �rst
step is to create two sets of pipes to carry the standard input and standard
output of the new process. (If desired, standard error can be handled in the
same way as standard output.)

VAR hrChild, hwChild, hrSelf, hwSelf: Pipe.T;

BEGIN

Pipe.Open(hr := hrChild, hw := hwSelf);

Pipe.Open(hr := hrSelf, hw := hwChild);

The next step is to create the process, passing the appropriate pipes, and then
to close the original instances of these pipes. (The pipes must be closed to
maintain the correct reference counts on the underlying channels.)

WITH p = Process.Create(..., hrChild, hwChild, NIL) DO

TRY

TRY hrChild.close(); hwChild.close()

EXCEPT OSError.E => (*SKIP*)

END;

Now comes the actual writing and reading, which is conveniently performed
using I/O streams:

WITH wr = NEW(FileWr.T).init(hwSelf),

rd = NEW(FileRd.T).init(hrSelf) DO

Write wr (and perhaps read rd)

Closing wr causes the �lter to encounter end-of-�le on its standard input, which
should cause it to ush its standard output and terminate. This in turn causes
this process to read end-of-�le.

TRY Wr.Close(wr)

EXCEPT Wr.Failure, Thread.Alerted => (*SKIP*)

END;

86 6 OPERATING SYSTEM

Read rd to end-of-�le;
TRY Rd.Close(rd)

EXCEPT Rd.Failure, Thread.Alerted => (*SKIP*)

END

END

The last step is to clean up the process.

FINALLY EVAL Process.Wait(p)

END

END

END

6.12 Params

This interface provides access to the command line arguments given to a process
when it is started (see Process.Create).

INTERFACE Params;

VAR (*CONST*) Count: CARDINAL;

Parameters are indexed from 0 (the command name) to Count-1.

PROCEDURE Get(n: CARDINAL): TEXT;

Return the parameter with index n. It is a checked runtime error if n >=

Count.

END Params.

Parameters that begin with the characters @M3 are reserved for use by the SRC
Modula-3 runtime. They are not included in the value of Count or in the
sequence indexed by Get.

6.13 Env

This interface provides access to the environment variables given to a process
when it is started (see Process.Create).

INTERFACE Env;

PROCEDURE Get(nm: TEXT): TEXT;

Return the value of the environment variable whose name is equal to nm,

or NIL if there is no such variable.

6.13 Env 87

VAR (*CONST*) Count: CARDINAL;

Environment variables are indexed from 0 to Count-1.

PROCEDURE GetNth(n: CARDINAL; VAR (*OUT*) nm, val: TEXT);

Set nm and val to the name and value of the environment variable with

index n. It is a checked runtime error if n >= Count.

END Env.

88 7 RUNTIME

7 Runtime

7.1 WeakRef

Most Modula-3 programs simply let the garbage collector deallocate storage
automatically, but some programs need more control. For example, if a variable
allocated in the traced heap contains a handle on a resource in the operating
system or in some other address space, then when the variable is garbage-
collected it may be important to deallocate the resource. The WeakRef interface
provides this additional control.

A node is a datum allocated on the traced heap. Thus a node is either the
referent of a variable of a �xed reference type or the data record of a traced
object. Note that a node is not a Modula-3 reference, but the allocated storage
to which a reference can refer.

A WeakRef.T is a data structure that refers to a node without protecting
the node from the garbage collector. If w is a weak reference, we write nd(w) to
denote the node to which w refers.

We say that a weak reference w dies at the moment that the garbage collector
detects that nd(w) is unreachable. A precise de�nition of unreachable is given
below. Once a weak reference has died, it remains dead forever, even if the node
to which it refers becomes reachable again.

Associated with each weak reference w is a cleanup procedure cp(w). If the
cleanup procedure is not NIL, the garbage collector will schedule a call to it
when the weak reference dies.

INTERFACE WeakRef;

TYPE T =

RECORD

byte: ARRAY [0..7] OF BITS 8 FOR [0..255]

END;

Please treat this as though it were an opaque type: the only operations

allowed are assignment, equality tests, and the procedures in this interface.

PROCEDURE FromRef(r: REFANY; p: CleanUpProc := NIL): T;

Return a weak reference w such that nd(w) = r and cp(w) = p. It is

a checked runtime error if r is NIL. It is illegal to create more than one

weak reference with a non-nil cleanup to the same node; violations of this

rule may lead to a checked runtime error, or may cause one of the cleanup

actions to be omitted. FromRef is not necessarily functional: it is possible

that nd(w1) = nd(w2) but w1 # w2.

PROCEDURE ToRef(w: T): REFANY;

Return a reference to nd(w), unless w is dead, in which case return NIL.

7.1 WeakRef 89

TYPE CleanUpProc = PROCEDURE(READONLY w: T; r: REFANY);

If cp(w) is not NIL, then when w dies, the garbage collector will schedule

the call cp(w)(w, <reference to nd(w)>).

END WeakRef.

The cleanup procedure will be executed at some point after the weak reference
dies. A cleanup procedure is called with no locks held; it must return promptly
to allow other objects to be cleaned up.

The computation cp(w)(w, ref) is allowed to store ref in a non-local
variable, thus making nd(w) reachable again; the heap storage will not have
been freed. This does not change the fact that w is dead. The cleanup procedure
can re-enable cleanup, if desired, by creating a new weak reference to nd(w).

The storage for a node is reclaimed when it is unreachable and all weak
references to it are dead and all cleanup calls scheduled for it have been
completed.

Finally we come to the precise de�nition of \reachable":
A node is reachable if it can be reached by a path of traced references

starting from a current procedure activation record, a global variable, or a
weakly referenced node with a non-nil cleanup other than itself.

Thus a weak reference to a node nd does not make nd reachable, but if it
has a non-nil cleanup, it makes other nodes referenced from nd reachable.

For example, if A and B are two nodes that are weakly referenced by weak
references with non-nil cleanup procedures, then if B is reachable from A, then B

is reachable. But if A is not reachable, then the garbage collector will eventually
detect this and schedule the cleanup of A. If the cleanup call returns without
resurrecting A, then A's storage will be reclaimed, at which point B will be
unreachable, which will lead to its cleanup.

If A and B are weakly referenced nodes with non-nil cleanups that are
connected by a cycle of traced references, then both of them are reachable. As
long as the cycle persists, neither will be cleaned up. This situation represents
a storage leak and should be avoided.

Examples

1. Suppose you want writers of the class WrX.T to be automatically ushed and
closed if they become unreachable. Then you could write code like the following
in the WrX module:

MODULE WrX; IMPORT WeakRef, Wr, ...;

PROCEDURE New(...): T =

VAR res := NEW(T); BEGIN

(* ... initialize res as a WrX.T ... *)

EVAL WeakRef.FromRef(res, Cleanup);

90 7 RUNTIME

RETURN res

END New;

PROCEDURE Cleanup(self: WeakRef.T; ref: REFANY) =

VAR wr: T := ref; BEGIN

IF NOT Wr.Closed(wr) THEN

Wr.Flush(wr);

Wr.Close(wr)

END

END Cleanup;

There is no danger that another thread could close the writer after the test
NOT Wr.Closed(wr) and before the call Wr.Flush(wr), since when Cleanup is
called, the writer is unreachable. Therefore the cleanup method has exclusive
access to the writer.

2. The network object runtime must map wire representations for network
objects into surrogate objects. To hand out the same surrogate for the same
wire representation, it keeps a table mapping wire representations to surrogates.
This table contains weak references, so the table entry itself does not prevent the
surrogate from being collected. When the surrogate is collected, it is removed
from the table and the server containing that object is noti�ed that the client
no longer has a surrogate for it.

When a weak reference in the table becomes dead, the network object
represented by the dead surrogate might be unmarshaled by the address space
before the surrogate is cleaned up. In this case the unmarshaling code resurrects
the unreachable surrogate by creating a new weak reference and inserting it in
the table in place of the dead weak reference. The cleanup code can tell whether
to report in clean by checking whether there is a new weak reference in the table
or not.

Here is a sketch of the code:

TYPE Surrogate = OBJECT wr: WireRep; ... END;

VAR

mu := NEW(MUTEX);

<* LL >= {mu} *>

tbl := NEW(WireRepToWeakRefTbl.T);

The mutex mu must be held to read or write tbl (that is what the LL pragma
means).

The table tbl maps WireReps to WeakRefs that reference surrogates.
The following invariants hold whenever mu is not held:
If tbl(wrep) is not dead, then nd(tbl(wrep)) is the surrogate for the

network object whose wire representation is wrep.

7.2 RTType 91

If tbl(wrep) is dead, then the surrogate for wrep is unreachable.
If tbl has no entry for wrep, then the address space contains no surrogate

for wrep.

PROCEDURE Cleanup(wref: WeakRef.T; ref: REFANY) =

<* LL = {} *>

VAR

srg := NARROW(ref, Surrogate);

tblVal: WeakRef.T;

BEGIN

LOCK mu DO

IF tbl.get(srg.wr, tblVal) AND wref = tblVal

THEN

EVAL tbl.delete(srg.wr);

... Report that srg is deleted ...

END

END

END Cleanup;

PROCEDURE WireRepToSrg(wrep: WireRep): Surrogate =

VAR wref: WeakRef.T; res: Surrogate; BEGIN

LOCK mu DO

IF tbl.get(wrep, wref) THEN

res := WeakRef.ToRef(wref);

IF res # NIL THEN RETURN res END

END;

res := NewSurrogate(wrep);

EVAL tbl.put(wrep, WeakRef.FromRef(res, Cleanup));

RETURN res

END

END WireRepToSrg;

In the above we assume that NewSurrogate creates a new surrogate from a wire
representation.

The remaining interfaces in this section provide the low-level features needed
to implement pickles and network objects. Most programmers won't directly
use any of these interfaces.

7.2 RTType

RTType provides access to the runtime type system.
Each reference type is assigned a unique typecode. A typecode is \proper"

if it lies in the range [0..MaxTypecode()]. The proper typecodes include all
those that correspond to actual types in the running Modula-3 program. Other

92 7 RUNTIME

typecodes, proper and improper, may be used internally by the runtime system
and garbage collector.

Although the language requires that typecodes exist only for object types
and for traced reference types (including NULL), the implementation of RTType
also provides typecodes for untraced reference types.

The values returned by the builtin operation TYPECODE correspond to (a
subset of) the proper typecodes.

INTERFACE RTType;

IMPORT RT0;

TYPE Typecode = RT0.Typecode;

CONST NoSuchType: Typecode = LAST(Typecode);

A reserved typecode that represents unknown types.

PROCEDURE MaxTypecode(): Typecode;

Return the largest proper typecode.

PROCEDURE IsSubtype(a, b: Typecode): BOOLEAN;

Return TRUE i� the type corresponding to a is a subtype of the type

corresponding to b. It is a checked runtime error if either a or b is not a

proper typecode.

PROCEDURE Supertype(tc: Typecode): Typecode;

Return the typecode of the declared supertype of the object type

corresponding to tc. If tc corresponds to ROOT, UNTRACED ROOT or a

non-object reference type, return NoSuchType. It is a checked runtime

error if tc is not a proper typecode.

PROCEDURE IsTraced(tc: Typecode): BOOLEAN;

Return TRUE i� the type corresponding to tc is traced.

PROCEDURE Get(tc: Typecode): RT0.TypeDefn;

Return a pointer to the typecell with typecode tc. It is a checked runtime

error to pass an improper typecode.

PROCEDURE GetNDimensions(tc: Typecode): CARDINAL;

Return the number of open dimensions of the open array type that

corresponds to tc's referent. If tc's referent is not an open array, return

0.

END RTType.

7.3 RTAllocator 93

7.3 RTAllocator

RTAllocator provides access to the runtime storage allocator.

INTERFACE RTAllocator;

FROM RTType IMPORT Typecode;

Each of the procedures described below allocates and initializes heap storage.
Calling any of these procedures with a typecode tc that names a type T is
equivalent to calling NEW for that type. It is a checked runtime error to pass a
typecode that is not proper. (See RTType for the de�nition of proper typecode.)

PROCEDURE NewTraced(tc: Typecode): REFANY;

Return a reference to a freshly allocated and initialized, traced referent

with typecode tc. It is a checked runtime error if tc does not name a

traced reference type other than REFANY, or if its referent is an open array.

PROCEDURE NewUntraced(tc: Typecode): ADDRESS;

Return a reference to a freshly allocated and initialized, untraced referent

with typecode tc. It is a checked runtime error if tc does not name an

untraced reference type other than ADDRESS, or if it names an untraced

object type, or if its referent is an open array.

PROCEDURE NewUntracedObject(tc: Typecode): UNTRACED ROOT;

Return a freshly allocated and initialized, untraced object with typecode

tc. It is a checked runtime error if tc does not name an untraced object

type.

TYPE Shape = ARRAY OF INTEGER;

PROCEDURE NewTracedArray(

tc: Typecode;

READONLY s: Shape): REFANY;

Return a reference to a freshly allocated and initialized, traced open array

referent with typecode tc and sizes s[0], ..., s[LAST(s)]. It is a checked

runtime error if tc does not name a traced reference to an open array,

or if any s[i] is negative, or if NUMBER(s) does not equal the number of

open dimensions of the array.

PROCEDURE NewUntracedArray(

tc: Typecode;

READONLY s: Shape): ADDRESS;

Return a reference to a freshly allocated and initialized, untraced open

array referent with typecode tc and sizes s[0], ..., s[LAST(s)]. It is a

94 7 RUNTIME

checked runtime error if tc does not name an untraced reference to an

open array, or if any s[i] is negative, or if NUMBER(s) does not equal the

number of open dimensions of the array.

END RTAllocator.

7.4 RTCollector

RTCollector provides control over the Modula-3 garbage collector.

INTERFACE RTCollector;

The purpose of a garbage collector is to reclaim unreachable nodes on the traced
heap; most Modula-3 programs could not run very long without a collector.
Even so, automatic garbage collection has some practical drawbacks.

1. The collector mightmove heap nodes to di�erent addresses. This is usually
unnoticable to programs, but can cause problems when programs must
work with the addresses of heap nodes, since it is not guaranteed that
ADR(x^) is a constant over the lifetime of x^. There are two main cases
when programs must work with such addresses.

(a) To implement hash tables, etc.

(b) To pass addresses to procedures written in other languages, which is
inherently unportable.

2. Unsafe code can put the traced heap temporarily into an inconsistent
state. If the collector happens to run then, it might delete nodes that
seem unreachable but that in fact are accessible. Of course, unsafe code
itself is inherently unportable.

This interface allows the program to control the Modula-3 collector to avoid
such problems, as well as to pass hints to improve performance.

Disabling the collector. The collector is initially enabled; the collector can
reclaim storage, and move nodes in memory. While the collector is disabled,
there will be no time spent in the collector. Allocation in the traced heap
may proceed normally, although the heap will grow without bound. Nodes
unreachable by the Modula-3 rules will not be reclaimed, and no nodes will
move.

PROCEDURE Disable();

Disable the collector.

7.4 RTCollector 95

PROCEDURE Enable();

Reenable the collector if Enable has been called as many times as Disable.

It is a checked runtime error to call Enable more times than Disable.

Disabling motion. Disabling motion gives fewer guarantees than disabling
the collector; while motion is disabled, it is guaranteed only that no nodes will
move. Disabling motion is no more expensive than disabling the entire collector,
and may be cheaper in some implementations.

PROCEDURE DisableMotion();

Disable motion. While motion is disabled, no nodes will move.

PROCEDURE EnableMotion();

Reenable motion if EnableMotion has been called as many times as

DisableMotion, and Enable has been called as many times as Disable.

It is a checked runtime error to call EnableMotion more times than

DisableMotion.

Collecting. Calling Collect is a hint from the program that now would be a
good time for a collection (for example, if a large amount of storage has become
unreachable, or if the program expects to wait some time for an external event).

PROCEDURE Collect();

Maybe collect now.

END RTCollector.

Implementation notes. This section describes the implementation of the
SRC Modula-3 collector, as a guide to SRC Modula-3 programmers and as
an indication of how this interface is matched to a particular implementation.
Portable programs must not take advantage of implementation details of the
SRC Modula-3 collector.

The SRC Modula-3 collector is an incremental, generational, conservative
mostly-copying collector that uses VM protection on heap pages to be noti�ed
of certain heap accesses.

Because the SRC collector is conservative, an inaccessible node may be
considered reachable if a bit-pattern either on a thread's stack or in its registers
might be a reference to or into the node. Experience to date has not shown
accidental node retention to be a problem.

The SRC collector will not collect or move a node while any thread's stack
or registers contains a reference to or into the node. The SRC Modula-3 system

96 7 RUNTIME

guarantees that this will include references passed as value parameters. This
guarantee is useful for calling foreign procedures.

Disable completes the current incremental collection, if any, and unprotects
all heap pages, so that no page faults will occur while collection is disabled. No
new collections will start while collection is disabled. The next collection after
collection is reenabled will be total, as opposed to partial, since unprotecting
the heap loses generational information.

DisableMotion disables further collections from beginning. DisableMotion
does not �nish the current incremental collection, since the collector already
guarantees that the program will not see addresses in the previous space. No
new collections will start while motion is disabled, so that the current space will
not become the previous space. It is not necessary to unprotect the heap.

Collect completes the current incremental collection, if any, then performs
a total collection before returning to the caller.

The @M3nogc ag performs an initial call to Disable.
The SRC collector also supports additional operations for controlling the

frequency of collection, disabling and reenabling incremental and generational
collection, reporting on collector performance, and so on. These operations are
accessible through the implementation-dependent RTCollectorSRC interface.

7.5 RTHeap

RTHeap provides access to the layout of data on the heap.

Each referent on the heap, and the heap data record for each object, is
represented as a contiguous sequence of \data bytes". Referents and data
records may also contain other \non-data" bytes like headers, method suite
pointers, or open array shapes.

See RTType for related operations on types.

INTERFACE RTHeap;

PROCEDURE GetDataAdr(r: REFANY): ADDRESS;

If r is a traced reference, returns the address of r^'s data bytes. If r is a

traced object, returns the address of the bytes of r's data record. It is a

checked runtime error if r is NIL. Note that the address can subsequently

change unless object mobility is disabled using RTCollector.

PROCEDURE GetDataSize(r: REFANY): CARDINAL;

If r is a traced reference, returns the number of r^'s data bytes. If r is

a traced object, returns the number of bytes of r's data record. It is a

checked runtime error if r is NIL.

PROCEDURE GetArrayShape(r: REFANY; VAR s: ARRAY OF INTEGER);

7.6 RTTypeFP 97

If r is a traced reference to an open array, returns in s[0 .. n-1] the

size of each dimension of the n-dimensional open array r^. If s is too

large, the extra elements are ignored; if it's too small, the extra sizes are

discarded. It is a checked runtime error if r is NIL. If r is not a reference

to an open array, s is unchanged.

END RTHeap.

7.6 RTTypeFP

RTTypeFP provides runtime access to type �ngerprints.
A type's �ngerprint is a 64-bit checksum computed from its declaration. The

probability of distinct types having the same �ngerprint is very small. See the
Fingerprint interface for more details.

Typecodes may vary between executions of a program but �ngerprints do
not. Fingerprints are portable across multiple runs of a single program and
across all programs compiled by the same compiler.

INTERFACE RTTypeFP;

IMPORT Fingerprint;

FROM RTType IMPORT Typecode;

PROCEDURE ToFingerprint(tc: Typecode): Fingerprint.T;

Return the �ngerprint corresponding to tc. It is a checked runtime error

if tc is not proper or does not name a traced reference type.

PROCEDURE FromFingerprint(READONLY fp: Fingerprint.T)

: Typecode;

Return the typecode that corresponds to fp. If no such typecode exists,

returns RTType.NoSuchType.

END RTTypeFP.

98 A BASIC DATA TYPES

A Basic Data Types

An Integer.T is an INTEGER. This interface is intended to be used to instantiate
generic interfaces and modules such as Table and List.

INTERFACE Integer;

IMPORT Word;

TYPE T = INTEGER;

PROCEDURE Equal(a, b: T): BOOLEAN;

Return a = b.

PROCEDURE Hash(a: T): Word.T;

Return a.

PROCEDURE Compare(a, b: T): [-1..1];

Return -1 if a < b, 0 if a = b, or +1 if a > b.

END Integer.

A Refany.T is a REFANY. This interface is intended to be used to instantiate
generic interfaces and modules such as Table and List.

INTERFACE Refany;

IMPORT Word;

TYPE T = REFANY;

PROCEDURE Equal(r1, r2: T): BOOLEAN;

Return r1 = r2.

PROCEDURE Hash(r: T): Word.T;

Cause a checked runtime error.

PROCEDURE Compare(r1, r2: T): [-1..1];

Cause a checked runtime error.

END Refany.

Note that the interfaces Text, Real, LongReal, Extended, and Atom (which
were presented in the main body of this report) provide Equal, Hash, and
Compare procedures.

REFERENCES 99

References

[1] Cecilia Aragon and Raimund Seidel. Randomized search trees. In
Proceedings 30th FOCS, 1989.

[2] Andrew Birrell, Greg Nelson, Susan Owicki, and Edward Wobber. Network
objects. In Proceedings of the 14th Symposium on Operating Principles,
December 1993.

[3] Andrei Broder. Some applications of Rabin's �ngerprinting method. In
Renato Capocelli, Alfredo De Santis, and Ugo Vaccaro, editors, Sequences
II: Methods in Communications, Security, and Computer Science, pages
143{152. Springer-Verlag, 1993.

[4] Marc H. Brown and James R. Meehan (editors). VBTkit reference manual.
Research report, Digital Equipment Corporation Systems Research Center.
To appear.

[5] Marc H. Brown and James R. Meehan. FormsVBT reference manual.
Research report, Digital Equipment Corporation Systems Research Center.
To appear.

[6] David M. Gay. Correctly rounded binary-decimal and decimal-binary con-
versions. Numerical Analysis Manuscript 90-10, AT&T Bell Laboratories,
November 30 1990.

[7] C. A. R. Hoare. Monitors: An operating system structuring concept.
Communications of the ACM, 17(10), October 1974.

[8] IEEE Technical Committee on Operating Systems. Standard Portable

Operating System Interface for Computer Environments. IEEE, 1988.
Standard 1003.1-1988.

[9] Donald E. Knuth. Seminumerical Algorithms. Addison Wesley, second
edition, 1981.

[10] Butler W. Lampson and David D. Redell. Experience with processes and
monitors in Mesa. Communications of the ACM, 23(2), February 1980.

[11] Mark S. Manasse and Greg Nelson. Trestle reference manual. Research
Report 68, Digital Equipment Corporation Systems Research Center,
December 1991.

[12] Microsoft Corporation. Microsoft Win32 Programmer's Reference. Mi-
crosoft Press, 1993.

[13] Greg Nelson, editor. Systems Programming with Modula-3. Prentice Hall,
1991.

100 REFERENCES

[14] M. O. Rabin. Fingerprinting by random polynomials. Report TR-15-81,
Department of Computer Science, Harvard University, 1981.

[15] Paul Rovner, Roy Levin, and John Wick. On extending Modula-2 for
building large, integrated systems. Research Report 3, Digital Equipment
Corporation Systems Research Center, January 1985.

[16] Robert Sedgewick. Algorithms. Addison-Wesley, 1983.

[17] Guy L. Steele Jr. and Jon L White. How to print oating-point numbers
accurately. In Proceedings of the ACM SIGPLAN '90 Conference on

Programming Language Design and Implementation, 1990.

[18] J. E. Stoy and C. Strachey. OS6|an experimental operating system for
a small computer. Part 2: Input/output and �ling system. The Computer

Journal, 15(3), May 1972.

INDEX 101

Index

@M3nogc command-line ag, 96

absolute pathname, 74
from relative pathname, 78

abstract type, 1
abstraction, 1
alerting a thread, 8
aliasing of VAR parameters, 2
allocator, 93, 96
ArraySort generic interface, 40
Atom interface, 27
atomic execution

of memory operations, 8
of procedures and methods, 2

atomic symbol, 27

base of pathname, 74
bit sequence, 9
bu�ered �le I/O, 58, 59
Bundle interface, 38

calendar date, 62
character input stream, 51
character output stream, 48
checksum, 42
clock, see time
collector, 94
Compare procedure, 3
concurrency, 2
condition variable, 7
creating a �le, 79

Date interface, 62
deallocating resources, 88
decimal conversion

from oating-point, 14
to oating-point, 13

Default type, 2
deque: Sequence generic interface,

25
directory, 78
domain, 4

elapsed time, 63
Env interface, 86

environment variables, 82, 86
epoch, 61
Equal procedure, 3
equivalence relation, 4
errors, operating system, 64
exponentiation, 9
Extended interface, 11
ExtendedFloat interface, 12
extension of pathname, 74

�le
bu�ered I/O, 58, 59
creation, 79
handle, 64
unbu�ered I/O, 64

File interface, 64

FileRd interface, 59
FileWr interface, 58
Fingerprint interface, 42
�ngerprint of type, 97
�xed-point notation, 21
Float generic interface, 12
oating-point, 10

conversion from decimal, 13
conversion to decimal, 14
operations, 12

representation, 10
rounding, 16
traps (exceptions), 16

FloatMode interface, 15
Fmt interface, 20
formatted data

reading, 17
writing, 20

FS interface, 78

function: map, 4

garbage collection
control over, 94

102 INDEX

properties of, 95
weak references, 88

Greenwich mean time, 62

Hash procedure, 3
hashing references, 3
heap, 93, 96
Hoare's monitors, 7

I/O
bu�ered streams, 47
for simple programs, 47
standard handles, 82, 84
unbu�ered, 64

IEEE oating-point, 10

init method, 1
initializing an object, 1
input stream, 51
Integer interface, 98
interrupting a thread, 8
interval, 4

IO interface, 47

Lex interface, 17
List generic interface, 28
ListSort generic interface, 29
local time, 62

lock: mutex, 7
logical operations, 9
LongFloat interface, 12
LongReal interface, 11

m3bundle program, 38

map, 4
updatable, 34, 37

monitor, 7
monitored data structure, 2
mutex, 7

naming conventions
destructive list operations, 28
types, 1

NaN (not a number), 13
non-blocking read, 65

operating system errors, 64
OSError interface, 64
output stream, 48

parameters of a process, 82, 86

Params interface, 86
Pathname interface, 73
Pipe interface, 66
process

environment variables, 82, 86
identi�er, 84
parameters, 82, 86
standard I/O handles, 82, 84

working directory, 82, 85
Process interface, 82
pseudo-random number, 40

queue: Sequence generic interface,
25

Random interface, 40

range, 4
Rd interface, 52
reader, 51
reading formatted data, 17
Real interface, 10
RealFloat interface, 12
Refany interface, 98

RegularFile interface, 70
relation, 4

equivalence, 4
total order, 4

relative pathname, 74
RTAllocator interface, 93
RTCollector interface, 94
RTCollectorSRC interface, 96

RTHeap interface, 96
RTType interface, 92
RTTypeFP interface, 97
runtime type, 91

scienti�c notation, 21
sequence, 4
Sequence generic interface, 25

INDEX 103

set, 4
SortedTable generic interface, 37
sorting, 4

arrays, 40
lists, 29

stability of sorting algorithm, 4
stack: Sequence generic interface,

25
standard I/O

�le handles, 82, 84
streams, 58

standard instances of generic inter-
faces, 3

Stdio interface, 58
storage allocator, 93, 96
stream, 47

input, 51
output, 48

subtype, 1
Sx interface, 31
symbolic expression, 30

atom, 27

T type, 1
Table generic interface, 34
Terminal interface, 68
terminating execution, 84
Text interface, 5
TextRd interface, 57
TextWr interface, 57
Thread interface, 7
Tick interface, 63
time

Date interface, 62
elapsed, 63
Greenwich mean time, 62
local, 62
of day, 61
Tick interface, 63
Time interface, 61
timed wait, 8
UTC (universal coordinated time),

62
zone, 62

Time interface, 61
time zone, 62
total order, 4
type

Default, 2
�ngerprint of, 97
naming conventions for, 1
runtime, 91
T, 1

unbu�ered �le I/O, 64
universal coordinated time, 62
unsigned number, 9

weak reference, 88
WeakRef interface, 88
Word interface, 9
working directory, 82, 85
Wr interface, 49
writer, 48
writing formatted data, 20

