
VBTkit Reference Manual: A Toolkit for Trestle

Edited by Marc H. Brown and James R. Meehan

Printed on April 26, 1996

cDigital Equipment Corporation 1996

This work may not be copied or reproduced in whole or in part except in ac-
cordance with this provision. Permission to copy in whole or in part without
payment of fee is granted only to licensees under (and is subject to the terms and
conditions of) the Digital License Agreement for SRC Modula-3, as it appears,
for example, on the Internet at the URL

http://www.research.digital.com/SRC/m3sources/html/COPYRIGHT.html

All such whole or partial copies must include the following: a notice that such
copying is by permission of the Systems Research Center of Digital Equipment
Corporation in Palo Alto, California; an acknowledgment of the authors and
individual contributors to the work; and all applicable portions of this copyright
notice. All rights reserved.

http://www.research.digital.com/SRC/m3sources/html/COPYRIGHT.html

Abstract

This manual describes VBTkit, a Modula-3 user interface toolkit based on the
Trestle window system toolkit. VBTkit provides a library of \widgets" and the
support software that makes it easy to customize these widgets and to construct
more widgets.

iii

Contents

Contributors ix

1 Introduction 1

1.1 Roadmap . 1

2 Composing VBTs 4

2.1 The MultiSplit Interface . 5
2.2 The MultiFilter Interface . 8
2.3 The MultiClass Interface . 9

2.3.1 The MultiSplit methods 10
2.3.2 The MultiFilter methods 11
2.3.3 Procedures for creating multis 11

3 The 3-dimensional look and feel 13

3.1 The Shadow Interface . 13
3.2 The ShadowedVBT Interface . 15
3.3 The ShadowedBarVBT Interface 16

4 Providing Visual Feedback 18

4.1 The FeedbackVBT Interface . 18
4.2 The ShadowedFeedbackVBT Interface 19
4.3 The MarginFeedbackVBT Interface 20
4.4 The BiFeedbackVBT Interface 21

5 Buttons 22

5.1 The SwitchVBT Interface . 23
5.2 The QuickSwitchVBT Interface 24
5.3 The MenuSwitchVBT Interface 24
5.4 The AnchorSplit Interface . 25
5.5 The TrillSwitchVBT Interface . 26
5.6 The GuardedBtnVBT Interface 26
5.7 The SourceVBT Interface . 27

5.7.1 Sources . 28
5.7.2 Targets . 28

5.8 The BooleanVBT Interface . 30
5.9 The ChoiceVBT Interface . 31

6 Subwindows 33

6.1 The ZChildVBT Interface . 33
6.2 The ZChassisVBT Interface . 35
6.3 The ZBackgroundVBT Interface 37
6.4 The ZMoveVBT Interface . 38
6.5 The ZGrowVBT Interface . 39

v

6.6 The ZSplitUtils Interface . 39
6.7 The ZTilps Interface . 40

7 Images 41

7.1 The PixmapVBT Interface . 41
7.2 The Image Interface . 42

7.2.1 Retrieving and storing \raw" pixmaps 44
7.2.2 Creating \raw" pixmaps from a VBT 45
7.2.3 Building an image from \raw" pixmaps 45

8 Text Editing 48

8.1 The TextPort Interface . 48
8.1.1 Access to the text . 50
8.1.2 Models . 52
8.1.3 Keybindings . 52
8.1.4 Selections . 53
8.1.5 Feedback . 56
8.1.6 Direct access to the text 56

8.2 The TypeinVBT Interface . 56
8.3 The TextEditVBT Interface . 57
8.4 The TypescriptVBT Interface . 58

9 Miscellaneous Leaf VBTs 61

9.1 The ListVBT Interface . 61
9.1.1 Locking levels . 61
9.1.2 The type ListVBT.T . 61
9.1.3 The Painter . 64
9.1.4 TextPainter . 65
9.1.5 The Selector . 65
9.1.6 UniSelector and MultiSelector 66

9.2 The FileBrowserVBT Interface 66
9.2.1 The Helper . 69
9.2.2 The Directory-Menu . 69
9.2.3 FileBrowser options . 70
9.2.4 Setting the displayed directory 70
9.2.5 Retrieving selections from the browser 71

9.3 The NumericVBT Interface . 71
9.4 The ScrollerVBT Interface . 74

10 Miscellaneous Filters 77

10.1 The FlexVBT Interface . 77
10.2 The ReactivityVBT Interface . 79
10.3 The ScaleFilter Interface . 81
10.4 The ViewportVBT Interface . 83

vi

10.4.1 Panning the contents . 85
10.4.2 Multiple views . 85

11 Miscellaneous Splits 86

11.1 The SplitterVBT Interface . 86

12 Installing Top-Level Windows 87

12.1 The XTrestle Interface . 87
12.2 The XParam Interface . 88

12.2.1 An example . 90

13 Utilities 92

13.1 The AnyEvent Interface . 92
13.2 The AutoRepeat Interface . 93
13.3 The Rsrc Interface . 94
13.4 The Pts Interface . 96
13.5 The VBTColors Interface . 97

14 Color Utilities 98

14.1 The Color Interface . 98
14.2 The ColorName Interface . 99

A Text-editing Interfaces 103

A.1 Meta, Option, and Compose keys 103
A.2 The TextPortClass interface . 103

A.2.1 Models . 106
A.2.2 Selections . 109
A.2.3 Cursor-motion . 110
A.2.4 Deletion commands . 111
A.2.5 Other modi�cation commands 111
A.2.6 Searching . 111
A.2.7 Scrolling the display . 112
A.2.8 Managing the \Undo" stack 112
A.2.9 Compose-character �ltering 113
A.2.10 Miscellany . 113

A.3 The EmacsModel Interface . 113
A.4 The IvyModel Interface . 115

A.4.1 The Ivy selection model 116
A.4.2 Replace-mode selection 117

A.5 The MacModel Interface . 117
A.6 The XtermModel Interface . 119
A.7 The KeyFilter Interface . 120

A.7.1 Composed Characters . 123
A.7.2 Extended characters in the Mac model 126

vii

A.7.3 Diacritical marks . 129

References 130

Index 131

viii

ix

Contributors

The VBTkit software reects the e�orts of many people at SRC. Development
of the software began in early 1988, and new pieces are still being developed.
The major contributors, in alphabetical order, are as follows:

� Andrew Birrell implemented ListVBT and preliminary versions of radio
buttons and check boxes.

� Ken Brooks implemented early versions of the text-editing modules.

� Marc H. Brown implemented the 3-D look and feel (Section 3.1), the
multi paradigm (Section 2), buttons (Sections 4 and 5), subwindows
(Section 6), and some of the utility routines.

� Mark R. Brown implemented the Ivy text editor. This isn't part of
VBTkit per se, but formed the inspiration for many of the advanced
features found in VBTkit's editing models.

� Pat Chan implemented an earlier version of ScrollerVBT. Pat also
implemented Ivy with Mark Brown.

� Luca Cardelli implemented a Trestle-based application builder in 1987.
That work inuenced the material in this document in many ways.

� John DeTreville implemented the VText package, which is the heart of
the VBTkit's text-editing facilities.

� Steve Glassman implemented Image, ScaleFilter, ViewportVBT and
XTrestle. Most importantly, Steve has discovered and �xed numerous
infelicities in a variety of modules.

� Mark Manasse helped implement AutoRepeat, ReactivityVBT, and
ViewportVBT. He was a valuable sounding board in the development of
the multi-�lter and multi-split paradigms.

� Jim Meehan implemented the text-editing modules (Section 8).

� Jorge Stol� implemented the color modules (Section 14).

1

1 Introduction

This document is a programmer's reference manual for VBTkit, a Modula-3 user
interface toolkit based on the Trestle window system toolkit. VBTkit provides
a library of \widgets" and the support software that makes it easy to customize
these widgets and to construct more widgets.

This reference manual is not self-contained; we assume you are already
familiar with Trestle. If you are not, you should read the Trestle Tutorial [4]
before continuing. You are advised to have a copy of the Trestle Reference
Manual [3] in hand as you read this. Most of the material in this manual are
logical extensions to Chapters 4, 5, and 6 of the Trestle Reference Manual.

1.1 Roadmap

Section 3 describes the facilities for giving a \three-dimensional" look. The
basic data types are de�ned in the Shadow interface. A ShadowedVBT displays
a 3-D border around a VBT, and a ShadowedBarVBT displays a horizontal or
vertical line in 3-D.

Section 2 describes the ways that one can build a VBTkit widget out of
other VBTs. For example, a ViewportVBT puts scrollbars around a child VBT.
If the child's minimum acceptable size is larger than the domain it has been
given, the scrollbars are used to see parts of the child. Logically, a ViewportVBT
has a single child. Internally, a ViewportVBT comprises nearly a dozen VBTs,
including two ScrollerVBTs, three HVSplits, one JoinedVBT, two FlexVBTs,
and so on.

We call a VBT with a single logical child a \multi-�lter." Similarly, a \multi-
split" is a VBT with zero more logical children. The common operations are
multi-�lters and multi-splits are done using the MultiFilter and MultiSplit

interface. The MultiClass interface is used for building composite VBTs.
Composite VBTs are at the heart of the buttons that VBTkit provides; you

are advised to study the Multi-related interfaces before reading about VBTkit
buttons.

Section 5 describes VBTkit buttons. They are composed of three elements:
contents, gesture, and feedback. By contents, we mean the \thing that's inside
the button." Often this is just a piece of text (e.g., a TextVBT), but it can
be any arbitrary VBT. Each subtype of ButtonVBT de�nes what constitutes
a \button press"; e.g., does it react on an up-click or a down-click? This is
called the gesture. Finally, by feedback, we mean the visual indication of the
state of the button; e.g., when the button is activated, does it change its colors?
The feedback is a multi-�lter and a subclass of FeedbackVBT. Feedbacks are
described in Section 4.

There are two fundamental di�erences between Trestle buttons and VBTkit
buttons. First, in VBTkit the gesture is independent of the visual feedback. The
gesture is de�ned by a subtype of ButtonVBT, and the feedback is de�ned by a

2 1 INTRODUCTION

subtype of FeedbackVBT. These VBTs are composed using the MultiFilter

interface. (It is not unusual for a feedback VBT to be a composite VBT
itself.) Second, the action procedure (\callback") that is invoked when the
user activates a VBTkit button is a method of the VBT subclass, whereas in
Trestle, it is a procedure that is speci�ed when a button subclass is initialized.
To ensure that there is no confusion, we call VBTkit buttons switches. VBTkit
also adds considerably to the collection of buttons provided by Trestle. The
switches provided by VBTkit includes guarded buttons (they require a double
click to be activated), trill buttons (they continue to invoke the callback while
the mouse button is down), Boolean check boxes, radio choices, and \drag and
drop" buttons with semantic feedback.

Section 6 describes support for subwindows. A subwindow is like a top-
level window but it is not installed in the window manager. The bad news is
that user-gestures for controlling the subwindow (moving, reshaping, closing)
are not the same as for top-level windows. The good news is that the user
interface is quite obvious, and the subwindows are automatically controlled by
the top-level window. For example, when the top level window is iconized, all
of its subwindows also disappear (without cluttering up the window manager's
icon box).

Section 7 contains the PixmapVBT and Image interfaces. A PixmapVBT is a
VBT that displays a pixmap. The Image interface contains utilities for creating
pixmaps, from �les (stored in Jef Poskanzer's \pnm" format) and from the
contents of an arbitrary VBT.

Section 8 describes the text-editing facilities in VBTkit. The primary VBT
class is a TextPort. It provides a full-screen editor, with the most common
commands bound to keys. It is rare to use a TextPort directly, however.
Typically, one uses a TextEditVBT|a TextPort with a scrollbar. A popular
subclass of TextEditVBT is a TypescriptVBT. Section 8 also describes a number
of interfaces that are of interest to programmers implementing subclasses of
text-editors.

Section 9 describes various leaf VBTs. (Internally, these VBTs may be
composed of many VBTs; however, they do not have any logical children.)
These include ListVBT, a text browser that displays a scrollable list of items,
typically strings; FileBrowserVBT, a �le browser that displays the �les in a
directory and allows the user to traverse the directory hierarchy; NumericVBT, a
widget for specifying an integer in a given range, comprising a type-in �eld with
increment and decrement buttons on its sides, and ScrollerVBT, a scrollbar.

Section 10 describes the �lters and multi-�lters provided by VBTkit. A
FlexVBT places size constraints on its child. You can give an explicit size (just
like Trestle's RigidVBT), or add some stretch or shrinkage to the child's preferred
size. A ReactivityVBT can make its child unresponsive to mouse and keyboard
activity, optionally also \graying-out" the child. A ScaleFilter magni�es or
de-magni�es its descendants. A ViewportVBT places scrollbars around the child
so the entire contents of the child can be viewed, even if the ViewportVBT is

1.1 Roadmap 3

allocated less screen space than the child has speci�ed that it needs.
Section 11 describes the splits and multi-splits provided by VBTkit. There

is only one: A SplitterVBT is like an HVSplit, but automatically puts adjusting
bars (HVBars) between each child. Because a SplitterVBT is a multi-split,
the client never deals with the HVBars (unless it accesses the children of the
SplitterVBT using the Split interface rather than the MultiSplit interface,
of course).

Section 12 contain some utilities for processing the standard X11 -geometry
and -display command-line arguments.

Section 13 contains the various utility interfaces. The AnyEvent interface
encapsulates di�erent types of Trestle events into a single parameter. It is
needed by clients of NumericVBT and FileBrowserVBT, since those widgets
allow di�erent types of user gestures (e.g., a double-click and a carriage return)
to invoke the same callback method. The AutoRepeat interface is useful
for causing a procedure to be invoked repeatedly at certainly time intervals.
The AutoRepeat is use for implementing trill buttons (TrillSwitchVBT and
continuous scrolling (ScrollerVBT). The Rsrc interface provides functions for
an application to locate the resources it needs at runtime. These resources
are stored in �les, and they include cursors, pixmaps, and text �les. You may
need to use routines in Pts to convert between points (as used by VBTkit text-
editing widgets) and millimeters (used by most other widgets). Finally, the
VBTColors interface is used to record the primary background and foreground
colors associated with a VBT. This is useful for ensuring that an outline of a
subwindow has a good chance of being noticed as it is dragged.

Section 14 describes some of the utilities for manipulating color. Most
noteworthy is the ColorName interface that takes a description like \Somewhat-
MurkyYellow" and returns the red, green, and blue components that will display
the color. This section also de�nes mappings between the RGB and HSV color
models.

The Appendices contain material about VBTkit text-editing. Appendix A
contains a description of the user interface text-editing models support by
VBTkit. The models include Emacs, Ivy, Macintosh, and Xterm. If you'd like
to customize the editing model, you'll need to use the TextPortClass interface
in Appendix A.2.

4 2 COMPOSING VBTS

2 Composing VBTs

A multi is a VBT with logical children that may or may not correspond to its
children in the VBT hierarchy. There are two types of multis: a multi-�lter
has a single logical child, and a multi-split has any number of logical children.
Typically, logical children of multi m are also VBT-descendants of m, but this is
not necessary.

Consider how one might implement a check-box widget, CheckboxVBT.
Logically, a check box is a VBT class with a single child|typically a piece
of text that appears to the right of the check box. The box itself is a pixmap
whose appearance changes dynamically. This can be implemented by a TSplit

with two children PixmapVBTs. The TSplit is placed next to the text using an
HVSplit, and a ButtonVBT is placed around the HVSplit in order to make it
responsive to mouse clicks. So, the VBT structure is

(ButtonVBT

(HVSplit

(TSplit PixmapVBT PixmapVBT)

child))

At a VBT level, the CheckboxVBT comprises 5 VBTs, plus the child. However,
it would su�ce for a client of a CheckboxVBT to to think in terms of a single
child (e.g., the piece of text that appears to the right of the check box).

A multi-�lter allows a CheckboxVBT to act as a single entity to its clients.
The child of a CheckboxVBT c is retrieved by calling

MultFilter.Child(c)

and the call

MultiFilter.Replace(c, new)

replaces the child of c by new.
A SplitterVBT is a good example of a multi-split. It is built as an

HVSplit with HVBars automatically inserted between children. The client of
a SplitterVBT doesn't care about the HVBars at all. Invoking

MultiSplit.Nth(v,i)

retrieves child i of the SplitterVBT (which is actually child 2*i of the HVSplit),
whereas invoking

Split.Nth(v,i)

retrieves child i of the HVSplit. Invoking

MultiSplit.Delete(v, ch)

deletes child ch and its adjacent HVBar, whereas invoking

2.1 The MultiSplit Interface 5

Split.Delete(v, ch)

deletes a single child ch of the HVSplit.
An important feature of multi-�lters and multi-splits is that they allow the

implementor of a multi to hide the actual VBT structure from clients. Not
only does this simplify the abstraction presented to clients, but it also frees the
implementor to change the VBT structure without a�ect clients. Thus, unless
you are a wizard (or you are feeling very lucky), don't use procedures from the
Split or Filter interfaces on a multi; instead use the corresponding procedures
from the MultiSplit and MultiFilter interfaces respectively. The procedures
in MultiSplit and MultiFilterwork like their Split and Filter counterparts
if the argument is not a multi.

We document the fact that a VBT class is a multi-split or multi-�lter
using the SUBTYPE pragma. In general, this is intended to suggest a subtype
relationship where none actually exists (because the Modula-3 type system does
not have multiple inheritance).

For example, here's what the CheckboxVBT interface would look like:

INTERFACE CheckboxVBT;

IMPORT ButtonVBT, VBT;

TYPE

<* SUBTYPE T <: MultiFilter.T *>

T <: Public;

Public = ButtonVBT.T OBJECT METHODS

<* LL <= VBT.mu *>

init (ch: VBT.T):T

END;

...

END CheckboxVBT.

The pragma indicates that a CheckBoxVBT is a kind of multi-�lter, i.e., that it
has one logical child. In fact, it is actually a subtype of ButtonVBT.T.

Clients wishing to implement their own multi-�lters or multi-splits should
refer to the MultiClass interface.

2.1 The MultiSplit Interface

The MultiSplit interface de�nes operations that are common to all multi-splits,
such as enumerating and deleting children.

INTERFACE MultiSplit;

IMPORT Point, VBT;

EXCEPTION NotAChild;

6 2 COMPOSING VBTS

TYPE T = VBT.T;

A MultiSplit.T is a VBT.T with a MultiClass.Split in its property set.

All of the procedures in this interface can accept either a MultiSplit.T or a
Split.T as the �rst argument. If the �rst argument is not a MultiSplit.T,
the procedure just calls the corresponding procedure in the Split interface,
re-raising any Split.NotAChild exceptions as NotAChild exceptions.

Unlike the procedures in the Split interface, the procedures here do not
perform any VBT operations. For example, Split.Delete(v, ch) deletes
the child ch of split v, detaches ch, and marks v for redisplay, whereas
MultiSplit.Delete just deletes the multi-child ch of multi-split v, without
detaching ch or marking v for redisplay. The MultiClass methods of v that
implement the Delete functionality will most likely manipulate the VBT tree
using Split.Delete (or other calls to Split and Filter as appropriate), so
that v will be marked and ch will be detached, as one would expect.

PROCEDURE Succ (v: VBT.T; ch: VBT.T): VBT.T

RAISES {NotAChild};

<* LL >= {VBT.mu} *>

Return the child of v that follows the child ch.

The successor of NIL is the �rst child; the successor of the last child is NIL; the
successor of NIL is NIL if there are no children.

PROCEDURE Pred (v: VBT.T; ch: VBT.T): VBT.T

RAISES {NotAChild};

<* LL >= {VBT.mu} *>

Return the child of v that precedes the child ch.

More precisely, Pred(v,ch) = x i� Succ(v,x) = ch.

PROCEDURE NumChildren (v: VBT.T): CARDINAL

RAISES {NotAChild};

<* LL >= {VBT.mu} *>

Return the number of children of v.

PROCEDURE Nth (v: VBT.T; n: CARDINAL): VBT.T;

<* LL >= {VBT.mu} *>

Return the child of v with index n.

More precisely, Nth(v, n) is the child of v with n predecessors, or NIL if v has
at most n children.

PROCEDURE Index (v: VBT.T; ch: VBT.T): CARDINAL

RAISES {NotAChild};

2.1 The MultiSplit Interface 7

<* LL >= {VBT.mu} *>

Return the index of v's child ch.

In other words, Index(v, ch) is the value n such that Nth(v, n) = ch. It is
always true that Index(v, NIL) equals NumChildren(v).

PROCEDURE Locate (v: VBT.T; READONLY pt: Point.T): VBT.T;

<* LL.sup = VBT.mu *>

Return the child of v that would receive a mouse click at point pt, or NIL

if there is no such child.

PROCEDURE Delete(v: T; ch: VBT.T)

RAISES {NotAChild};

<* LL.sup = VBT.mu *>

Delete the child ch of v.

PROCEDURE Replace (v: VBT.T; ch, new: VBT.T)

RAISES {NotAChild};

<* LL.sup = VBT.mu *>

Replace child ch of v with new.

PROCEDURE Insert (v: VBT.T; pred, new: VBT.T)

RAISES {NotAChild};

<* LL.sup = VBT.mu *>

Add new as a child of v following pred.

Some multi-splits can accommodate only a bounded number of children.
Whenever Insert(v,pred,new) is applied to a multi-split v that cannot
accommodate an additional child, then pred (or the original �rst child, if
pred=NIL) is deleted from the multi-split. The precise semantics are de�ned
by the individual multi-splits.

PROCEDURE Move (v: VBT.T; pred, ch: VBT.T)

RAISES {NotAChild};

<* LL.sup = VBT.mu *>

Move child ch of v to follow pred. ch and, if non-NIL, pred, must be

children of v.

PROCEDURE AddChildArray (

v: VBT.T;

READONLY new: ARRAY OF VBT.T);

<* LL.sup = VBT.mu *>

Insert the non-NIL elements of new at the end of v's list of children.

Procedure AddChildArray is equivalent to

8 2 COMPOSING VBTS

pred := Pred(v, NIL);

FOR i := FIRST(new) TO LAST(new) DO

IF new[i] # NIL THEN

Insert(v, pred, new[i]);

pred := new[i]

END

END

PROCEDURE AddChild (

v: VBT.T;

n0, n1, n2, n3, n4, n5, n6, n7, n8, n9: VBT.T := NIL);

<* LL.sup = VBT.mu *>

Insert the non-NIL parameters as children to v.

Procedure AddChild is equivalent to

AddChildArray(v,

ARRAY OF VBT.T{n0, n1, n2, n3, n4, n5, n6, n7, n8, n9})

END MultiSplit.

2.2 The MultiFilter Interface

The MultiFilter interface de�nes the functionality that is common to all clients
of multi-�lters; namely, retrieving and changing a multi-�lter's multi-child.

A multi-�lter is a multi-split with at most one child. Thus, you can use the
procedures in the MultiSplit interface on a VBT that is a multi-�lter. The
semantics of the MultiSplit procedures on a multi-�lter should be obvious,
with the following exceptions: MultiSplit.Move on a multi-�lter is a no-op,
and MultiSplit.Insert on a multi-�lter replaces the child, if any.

INTERFACE MultiFilter;

IMPORT VBT;

TYPE T = VBT.T;

A MultiFilter.T is a VBT.T with a MultiClass.Filter in its property

set.

The following procedures can accept either a MultiFilter.T or a Filter.T as
the �rst argument. If the �rst argument is not a MultiFilter.T, the procedure
just calls the corresponding procedure in the Filter interface.

PROCEDURE Child (v: VBT.T): VBT.T;

<* LL.sup = VBT.mu *>

2.3 The MultiClass Interface 9

Return the child of v, or NIL if there is no child.

PROCEDURE Replace (v, ch: VBT.T): VBT.T;

<* LL.sup = VBT.mu *>

Replace v's child by ch and return v's old child.

MultiFilter.Replace is similar to MultiSplit.Replace, except that it returns
the old multi-child instead of taking the old multi-child as an argument, and if
ch is NIL it is similar to MultiSplit.Delete.

END MultiFilter.

2.3 The MultiClass Interface

An arbitrary VBT is made into a multi by providing a set of methods for
maintaining the logical structure. The methods are used for replacing, inserting,
traversing, and performing other common operations on the children.

In a language with multiple inheritance, multis would simply inherit di�erent
methods from di�erent parent-types. In Modula-3, however, we achieve this
e�ect by creating an instance mc of type MultiClass.T, and attaching mc to a
VBT v by way of v's property set. The object mc points back to v via the �eld
mc.vbt.

Clients de�ning their own multis can make a VBT v \into" a multi by calling
Be(v,mc) during the initialization of the VBT. They must call BeChild on each
new child when it is inserted, and UnChild when a child of a multi is deleted.
MultiFilter.Replace, MultiSplit.Replace, and MultiSplit.Insert all do
this automatically, and MultiSplit.Insert calls BeChild.

INTERFACE MultiClass;

IMPORT RefList, VBT;

TYPE

T = ROOT OBJECT

vbt: VBT.T; (* READONLY *)

METHODS

<* LL = VBT.mu *>

replace (ch, new: VBT.T);

insert (pred, new: VBT.T);

move (pred, ch: VBT.T);

succ (ch: VBT.T): VBT.T;

pred (ch: VBT.T): VBT.T;

nth (n: CARDINAL): VBT.T;

index (ch: VBT.T): CARDINAL;

END;

10 2 COMPOSING VBTS

2.3.1 The MultiSplit methods

The methods implement the behavior in the MultiSplit interface.
The method call mc.replace(ch,new) implements the operation

MultiSplit.Replace(mc.vbt, ch, new)

and the call mc.replace(ch,NIL) implements

MultiSplit.Delete(mc.vbt, ch)

Before calling the method, the generic code in the MultiSplit interface checks
that ch is a multi-child of mc.vbt, and, if new is not NIL, calls BeChild(mc.vbt,
new). After calling the method, the generic code calls UnChild(mc.vbt, ch),
if ch was not NIL.

Similarly, the method call mc.insert(pred,new) implements the operation

MultiSplit.Insert(mc.vbt, pred, new)

Before calling the method, the generic code in MultiSplit checks that pred

is a multi-child of mc.vbt and calls BeChild(mc.vbt, new). If new is NIL,
MultiSplit.Insert raises a runtime exception.

The default methods for replace and insert are both equal to NIL, so every
multi-split needs to override these methods.

The method call mc.move(pred, ch) implements

MultiSplit.Move(mc.vbt, pred, ch)

Before calling the method, the generic code in MultiSplit veri�es that ch and
pred are both multi-children of mc.vbt (or NIL, in the case of pred). The call
to mc.move is avoided if pred=ch or mc.succ(pred)=ch.

The default move method for a MultiClass.T object mc is simply a call to
mc.replace(ch, NIL) followed by a call to mc.insert(pred, ch).

This default method is naive on two fronts. One, it is not particularly
e�cient since the tree of VBTs is typically being manipulated twice. Two,
and more importantly, some multi-splits will take action as part of the replace
method (e.g., reallocating the screen layout of its children) that is not \undone"
by the subsequent call to the insert method.

The method calls

mc.succ(ch)

mc.pred(ch)

mc.nth(n)

mc.index(ch)

all implement the corresponding operations in the MultiSplit interface. The
default pred, nth and index methods are implemented by repeatedly calling
the succ method. The default succ method �nds the successor of ch for the
MultiClass.T object mc by a depth-�rst walk of mc.vbt's descendants, starting

2.3 The MultiClass Interface 11

after ch, and stopping at the �rst VBT w for which IsChild(mc.vbt, w) returns
TRUE, or when all of mc.vbt's descendants have been visited, in which case, ch
has no successor so NIL is returned. In practice, the default succ method seems
to work nearly all of the time; however, there is often a more e�cient way to
implement a succ method for any particular multi-split.

2.3.2 The MultiFilter methods

TYPE

Split <: T;

Filter <: Split;

The default methods for a Filter are the same as for a Split, except that the
insert method has a default. Thus, you only need to override the replace

method of a multi-�lter.
The default method call mc.insert(pred, new) is

mc.replace (mc.succ(pred), new)

Also, the move method is never run; the generic code in Split.Move ensures
this.

2.3.3 Procedures for creating multis

PROCEDURE Be (v: VBT.T; mc: T);

<* LL.sup <= VBT.mu *>

Make v into a multi by storing mc on v's property set and setting mc.vbt

to v.

PROCEDURE Resolve (v: VBT.T): T;

<* LL.sup < v *>

Return the multiclass of v, that is, the mc for which Be(v,mc) was

previously called. Return NIL if there is no such mc.

PROCEDURE BeChild (v: VBT.T; ch: VBT.T);

<* LL.sup < ch *>

Make ch into one of v's children that is exposed to the client via the

MultiSplit or MultiFilter interfaces. It is possible for ch to be a child

of more than one multi, and it is possible that ch is not related to v in

the VBT hierarchy.

PROCEDURE UnChild (v: VBT.T; ch: VBT.T);

<* LL.sup < ch *>

Unmark ch as one of v's children that is exposed to the client via the

MultiSplit or MultiFilter interfaces.

12 2 COMPOSING VBTS

PROCEDURE IsChild (v: VBT.T; ch: VBT.T): BOOLEAN;

<* LL.sup < ch *>

Return TRUE i� BeChild(v,ch) was previously invoked and

UnChild(v,ch) has not been subsequently called.

PROCEDURE Parents (ch: VBT.T): RefList.T (* of VBT.T *);

<* LL.sup < ch *>

Return a list of VBTs for which IsChild(v,ch) is TRUE. The list may be

NIL.

END MultiClass.

13

3 The 3-dimensional look and feel

This section describes the facilities for giving a \three-dimensional" look. (See
Kobara [2] for information on this style.) The basic data types are de�ned in
the Shadow interface. A ShadowedVBT displays a 3-D border around a VBT,
and a ShadowedBarVBT displays a horizontal or vertical line in 3-D.

3.1 The Shadow Interface

The Shadow interface contains the basic de�nitions for VBT classes that
implement a Motif-like, 3-D look. There are two basic primitives: a 3-D border,
and a 3-D vertical or horizontal line. The style, size, and colors of the shadow
are speci�ed by data structures de�ned in this interface.

A 3-D border can give the visual illusion of \raising" an object above the
background, \lowering" an object into the background, drawing a \ridge" above
the background, or chiseling a \groove" into the background. A 3-D line has
the visual e�ect of being either a \ridge" above the background or a \groove"
chiseled into the background (see Figure 3.1).

These visual e�ects are actually quite simple to accomplish by drawing parts
of the 3-D border or 3-D line using a dark variant of the background color, and
by drawing other parts using a light variant of the background color.

For example, to give the impression that an object is raised above its
background, the north and west borders are drawn using a light color, whereas
the south and east border are drawn in a dark color. To draw a \ridge," the
north and west shadows start out in the light color, and, halfway, switch to the
dark color. Analogously, the south and east shadows start out dark and switch
to a light color.

The following chart summarizes the visual e�ects:

Style North/West South/East

Flat Background Background
Raised Light Dark
Lowered Dark Light
Ridged Light/Dark Dark/Light
Chiseled Dark/Light Light/Dark

For maximum e�ectiveness, the child's background should be a color whose
saturation level is about 50%, and the light and dark shadows should be colors
with the same hue and lightness, but with saturation levels of 25% and 75%
respectively.

On a monochrome display, the 3-D borders and lines appear at and 50%
of the size they'd be on non-monochrome displays. Also, those VBTkit widgets
that use 3-D borders for feedback (say, a button that gives the e�ect of lowering

14 3 THE 3-DIMENSIONAL LOOK AND FEEL

its contents when depressed) are implemented in such a way as to give feedback
in a non-3-D manner (e.g., the ShadowedFeedbackVBT interface in Section 4.2).

You can force VBTkit widgets to use a non-3-D style of feedback by
specifying a shadow size that is negative. Such widgets will draw borders and
lines with 50% of the absoluate value of the shadow size. (You should also be
sure to set the light and dark shadow to be the same as the foreground color.)

INTERFACE Shadow;

IMPORT PaintOp, VBT;

TYPE

T = PaintOp.ColorScheme OBJECT

size: REAL;

light, dark, both, reversed: PaintOp.T;

END;

TYPE

Style = {Flat, Raised, Lowered, Ridged, Chiseled};

PROCEDURE New (size : REAL := 0.5;

bg : PaintOp.T := PaintOp.Bg;

fg : PaintOp.T := PaintOp.Fg;

light: PaintOp.T := PaintOp.Fg;

dark : PaintOp.T := PaintOp.Fg): T;

<* LL = arbitrary *>

Return a newly allocated Shadow.T. The size, light, and dark �elds of

the new Shadow.T are copies of the parameters, respectively. The both

�eld is computed from PaintOp.Pair(light, dark), and the reversed

�eld is computed from PaintOp.Pair(dark, light).

The size is speci�ed in millimeters. All of the paint ops must be tints, arranged
so that on a monochrome screen bg draws in background, while fg, light, and
dark draw in foreground.

PROCEDURE Supported (shadow: T; v: VBT.T): BOOLEAN;

<* LL.sup < v *>

Return whether shadow should appear 3-D on v. Two conditions must

hold: v must be on screen whose depth is greater than 1, and shadow.size

must be positive.

Finally, we have the de�nition for a \default" shadow:

VAR (* CONST *) None: T;

This variable is really a constant for

New(0.0, PaintOp.Bg, PaintOp.Fg, PaintOp.Fg, PaintOp.Fg)

3.2 The ShadowedVBT Interface 15

Figure 1: ShadowStyles, with size = 4 points.

Because None is not a constant, it cannot be the default value of a procedure
argument. Therefore, we adopt the following convention: when a parameter
whose type is Shadow.T has a default value of NIL, the procedure will use
Shadow.None instead.

END Shadow.

3.2 The ShadowedVBT Interface

A ShadowedVBT.T is a �lter whose parent's screen consists of the child's screen
surrounded by a 3-D border. The style, size, and colors of the shadow can be
set dynamically. The parent's shape is determined from the child's shape by
adding the size of the shadow.

INTERFACE ShadowedVBT;

IMPORT Filter, Shadow, VBT;

TYPE

T <: Public;

Private <: Filter.T;

Public = Private OBJECT

METHODS

<* LL.sup <= VBT.mu *>

init (ch: VBT.T;

shadow: Shadow.T := NIL;

style: Shadow.Style := Shadow.Style.Flat): T;

END;

The call v.init(...) initializes v as a ShadowedVBT with child ch and
the given shadow and style. When Shadow.Support(shadow, v) is TRUE,
each dimension of v exceeds the corresponding dimension of ch by 2 *

ABS(shadow.size); otherwise, each dimension of v exceeds the corresponding
dimension of ch by 2 * ABS(shadow.size/2). If shadow=NIL, it defaults to
Shadow.None.

PROCEDURE Set (v: T; shadow: Shadow.T);

<* LL.sup = VBT.mu *>

16 3 THE 3-DIMENSIONAL LOOK AND FEEL

Change the size and colors of v's shadow and mark v for redisplay.

PROCEDURE SetStyle (v: T; style: Shadow.Style);

<* LL.sup = VBT.mu *>

Change the style of v's shadow, and mark v for redisplay.

PROCEDURE Get (v: T): Shadow.T;

<* LL.sup = VBT.mu *>

Return v's shadow.

PROCEDURE GetStyle (v: T): Shadow.Style;

<* LL.sup = VBT.mu *>

Return v's shadow style.

END ShadowedVBT.

3.3 The ShadowedBarVBT Interface

A ShadowedBarVBT.T is a leaf-VBT that displays a horizontal or vertical 3-D
line.

The following chart summarizes the visual e�ects:

top (vertical) bottom (vertical)
left (horizontal) right (horizontal)

Style

Flat Background Background
Raised Light Dark
Lowered Dark Light
Ridged Light Dark
Chiseled Dark Light

INTERFACE ShadowedBarVBT;

IMPORT Axis, Shadow, VBT;

TYPE

T <: Public;

Public = VBT.Leaf OBJECT

METHODS

<* LL.sup <= VBT.mu *>

init (axis : Axis.T;

shadow: Shadow.T := NIL;

style := Shadow.Style.Flat): T;

3.3 The ShadowedBarVBT Interface 17

END;

The call v.init(...) initializes v as a ShadowedBarVBT with the axis

orientation and with the given shadow and style. The default shadow is
Shadow.None. If the shadow.size along the axis dimension results in an odd
number of pixels, the extra pixel goes to the top half.

When Shadow.Supported(shadow, v) is TRUE, the shape of v is ABS(shadow.size)
in the primary axis, and unconstrained in the other dimension. Otherwise, the
shape of v in the primary axis is ABS(shadow.size/2).

PROCEDURE Set (v: T; shadow: Shadow.T);

<* LL.sup = VBT.mu *>

Change the size and colors of v's shadow and mark v for redisplay.

PROCEDURE SetStyle (v: T; style: Shadow.Style);

<* LL.sup = VBT.mu *>

Change the style of v's shadow and mark v for redisplay.

END ShadowedBarVBT.

18 4 PROVIDING VISUAL FEEDBACK

4 Providing Visual Feedback

4.1 The FeedbackVBT Interface

A FeedbackVBT is a �lter that provides some visual feedback for its child.
The essence of a FeedbackVBT are its normal and excited methods. The

normalmethod is intended for giving permanent feedback, whereas the excited
method is used for displaying transitory feedback (e.g., while a button is
pressed). In addition, a feedback maintains a state ag to distinguish between
an \on" and \o�" state (e.g., for use by a BooleanVBT).

Clients should not invoke a FeedbackVBT's normal and excited methods
directly. Instead, use the procedures Normal and Excited in this interface. The
state of a FeedbackVBT is set using the SetState procedure; it is queried using
the procedure GetState.

The default normal and excited methods are no-ops. A FeedbackVBT by
itself is not very useful; subtypes are expected to override these methods with
something useful. Also, VBTkit switches that use FeedbackVBTs assume that
the FeedbackVBT is a multi-�lter, not simply a �lter.

INTERFACE FeedbackVBT;

IMPORT Filter, VBT;

TYPE

T <: Public;

Public = Filter.T OBJECT

METHODS

<* LL <= VBT.mu *>

init (ch: VBT.T): T;

<* LL = VBT.mu *>

normal ();

excited ();

END;

The call v.init(ch) initializes v as a FeedbackVBT with VBT child ch. The
default normal and excited methods are no-ops.

PROCEDURE Normal (v: T);

<* LL.sup = VBT.mu *>

Invoke v's normal method.

PROCEDURE Excited (v: T);

<* LL.sup = VBT.mu *>

Invoke v's excited method.

PROCEDURE SetState (v: T; state: BOOLEAN);

4.2 The ShadowedFeedbackVBT Interface 19

<* LL.sup = VBT.mu *>

Record the state and then invoke whichever of v's methods, normal or

excited, was most recently invoked. If neither method has ever been

invoked, the normal method is invoked.

PROCEDURE GetState (v: T): BOOLEAN;

<* LL.sup = VBT.mu *>

Return the value of the most recent call to SetState. The initial state is

FALSE.

END FeedbackVBT.

4.2 The ShadowedFeedbackVBT Interface

A ShadowedFeedbackVBT is a multi-�lter feedback that displays a 3-D border
as visual feedback to another VBT.

INTERFACE ShadowedFeedbackVBT;

IMPORT FeedbackVBT, Shadow, VBT;

TYPE

<* SUBTYPE T <: MultiFilter.T *>

T <: Public;

Public =

FeedbackVBT.T OBJECT

METHODS

<* LL <= VBT.mu *>

init (ch : VBT.T;

shadow : Shadow.T := NIL;

onStyle := Shadow.Style.Lowered;

onExcitedStyle := Shadow.Style.Raised;

offStyle := Shadow.Style.Raised;

offExcitedStyle := Shadow.Style.Lowered): T

END;

The call v.init(ch, shadow, ...) initializes v as a ShadowedFeedbackVBT.
The internal structure of v includes a ShadowedVBT for displaying the shadow
shadow around ch. The default normal and excited methods change the
style of the shadow, taking into account the state of v. For example, when
FeedbackVBT.GetState(v) returns FALSE, the excited method uses the value
of offExcitedStyle.

On a monochrome screen (whenever Shadow.IsSupport(v, shadow) is
false), ch is inverted by the default normal method when the state is \on"
and by the excited method when the state is \o�."

20 4 PROVIDING VISUAL FEEDBACK

Figure 2: MarginFeedbackVBTs

The default parameters to the init method generate a feedback that is
appropriate for buttons. The following procedure generates a feedback that is
appropriate for use by menu buttons:

PROCEDURE NewMenu (ch: VBT.T; shadow: Shadow.T := NIL): T;

<* LL <= VBT.mu *>

Return a ShadowedFeedbackVBT appropriate for menu buttons. The

normal method always uses Shadow.Style.Flat; the excited method

always uses Shadow.Style.Lowered.

END ShadowedFeedbackVBT.

4.3 The MarginFeedbackVBT Interface

A MarginFeedbackVBT is a multi-�lter feedback that provides visual feedback
to the left of another VBT. This interface de�nes a handful of useful \left-hand
sides."

INTERFACE MarginFeedbackVBT;

IMPORT FeedbackVBT, Shadow, VBT;

TYPE

<* SUBTYPE T <: MultiFilter.T *>

T <: Public;

Public = FeedbackVBT.T OBJECT

METHODS

<* LL.sup <= VBT.mu *>

init (ch, marginVBT: VBT.T): T

END;

The following procedures create some popular types of MarginFeedbackVBTs.
See Figure 4.3.

PROCEDURE NewCheck (ch: VBT.T; shadow: Shadow.T := NIL): T;

<* LL.sup <= VBT.mu *>

PROCEDURE NewBox (ch: VBT.T; shadow: Shadow.T := NIL): T;

4.4 The BiFeedbackVBT Interface 21

<* LL.sup <= VBT.mu *>

PROCEDURE NewBullet (ch: VBT.T; shadow: Shadow.T := NIL): T;

<* LL.sup <= VBT.mu *>

END MarginFeedbackVBT.

4.4 The BiFeedbackVBT Interface

A BiFeedbackVBT is a multi-�lter feedback that is used for composing
two arbitrary feedbacks. The default normal and excited methods of a
BiFeedbackVBT invoke the corresponding methods on the two feedbacks. The
BiFeedbackVBT itself doesn't have any visual appearance.

INTERFACE BiFeedbackVBT;

IMPORT FeedbackVBT, VBT;

TYPE

<* SUBTYPE T <: MultiFilter.T *>

T <: Public;

Public = FeedbackVBT.T OBJECT

METHODS

<* LL <= VBT.mu *>

init (f1, f2: FeedbackVBT.T; ch: VBT.T): T;

END;

The call v.init(f1, f2, ch) initializes v as a BiFeedbackVBT. The multi-child
of v is ch. The internal structure of v is as follows: The VBT-child of v is f1,
the multi-child of f1 is f2, and the multi-child of f2 is ch. (Recall that it is
legal and meaningful for a VBT to have multiple multi-parents, as ch will have.)
When the init method is called, both f1 and f2 must be childless.

END BiFeedbackVBT.

22 5 BUTTONS

5 Buttons

Buttons in VBTkit di�er from buttons in Trestle (i.e., ButtonVBT and its
subclasses). VBTkit buttons are referred to as switches.

There are three primary di�erences:

1. Trestle buttons are passed an action procedure. VBTkit switches de�ne
a callbackmethod, which makes it easier to de�ne a subclass of a switch.
The callback method is invoked whenever the action procedure would
be.

2. Trestle buttons provide visual feedback as part of their pre, cancel, and
post methods. VBTkit switches assume that their VBT-child is a feedback
multi-�lter; the pre, cancel, and post methods invoke the feedback's
normal and excited methods appropriately. This facilitates a \mix and
match" of button-styles with gestures (e.g., putting a radio button within
a menu).

3. Trestle buttons are �lters. VBTkit switches are multi-�lters. The multi-
child of the feedback is the switch's multi-child. This makes is it easy
to create buttons with sophisticated visual feedback, while retaining the
model that a button is a \�lter with an arbitrary child." Clients should use
the MultiFilter interface to access the arbitrary multi-child of a switch,
and the Filter interface to access the feedback.

A switch s follows these three conventions:

1. s has a callbackmethod. This method will be invoked whenever a button
would have invoked its action procedure.

2. The VBT-child of s is a feedback, f. The default methods are as follows:
s.pre() invokes Feedback.Excited(f), and s.post() and s.cancel()

both invoke Feedback.Normal(f).

3. s is also a multi-�lter. Its multi-child is de�ned to be the multi-child of f.

Although all VBTkit switches follow these conventions and are subtypes of
ButtonVBT.T, few are subtypes of SwitchVBT.T. A MenuSwitchVBT, for example,
is a subtype of MenuBtnVBT.T.

This section de�nes the following switches:

� SwitchVBT, MenuSwitchVBT, and QuickSwitchVBT are switch versions of
basic Trestle buttons. (See the Trestle Reference Manual [3], sections 5.6{
5.9.)

5.1 The SwitchVBT Interface 23

� AnchorSplit is a switch version of Trestle's AnchorBtnVBT. There, the
\menu" is a data �eld, and \anchor" is the child of the button, but in
an AnchorSplit, which is a multi-split, the \menu" and the \anchor" are
children.

� A TrillSwitchVBT is an auto-repeating version of a basic button. Trestle
has no counterpart.

� A GuardedBtnVBT is button that forces the user to click to remove the
guard. Trestle has no counterpart.

� A SourceVBT implements VBTkit's \drag-and-drop" buttons. Trestle has
no counterpart.

� BooleanVBT and ChoiceVBT implement check boxes and radio buttons,
respectively. Trestle has no counterparts.

5.1 The SwitchVBT Interface

A SwitchVBT is a switch version of Trestle's ButtonVBT.

INTERFACE SwitchVBT;

IMPORT ButtonVBT, FeedbackVBT, MultiClass, VBT;

TYPE

<* SUBTYPE T <: MultiFilter.T *>

T <: Public;

Public = ButtonVBT.T OBJECT

METHODS

<* LL.sup <= VBT.mu *>

init (f: FeedbackVBT.T): T;

<* LL.sup = VBT.mu *>

callback (READONLY cd: VBT.MouseRec);

END;

The call v.init(f) initializes v as a SwitchVBT with child f. The multi-child
of f is marked as v's multi-child too.

The default callback method is a no-op.

The following type is useful for creating switches that have the same in-
ternal structure as a SwitchVBT.T; namely, a Filter.T whose child is a
FeedbackVBT.T.

TYPE

MC <: MultiClass.Filter;

24 5 BUTTONS

The following procedures are useful for some VBTkit switches to use as their
default ButtonVBT methods:

PROCEDURE Pre (v: ButtonVBT.T);

<* LL.sup = VBT.mu *>

Equivalent to: Feedback.Excited (Filter.Child(v))

PROCEDURE Post (v: ButtonVBT.T);

<* LL.sup = VBT.mu *>

Equivalent to: Feedback.Normal (Filter.Child(v))

PROCEDURE Cancel (v: ButtonVBT.T);

<* LL.sup = VBT.mu *>

Equivalent to: Feedback.Normal (Filter.Child(v))

END SwitchVBT.

5.2 The QuickSwitchVBT Interface

A QuickSwitchVBT is a switch version of Trestle's QuickBtnVBT.

INTERFACE QuickSwitchVBT;

IMPORT FeedbackVBT, QuickBtnVBT, VBT;

TYPE

<* SUBTYPE T <: MultiFilter.T *>

T <: Public;

Public = QuickBtnVBT.T OBJECT

METHODS

<* LL <= VBT.mu *>

init (f: FeedbackVBT.T): T;

<* LL = VBT.mu *>

callback (READONLY cd: VBT.MouseRec);

END;

END QuickSwitchVBT.

5.3 The MenuSwitchVBT Interface

A MenuSwitchVBT is a switch version of Trestle's MenuBtnVBT.

INTERFACE MenuSwitchVBT;

5.4 The AnchorSplit Interface 25

IMPORT FeedbackVBT, MenuBtnVBT, VBT;

TYPE

<* SUBTYPE T <: MultiFilter.T *>

T <: Public;

Public = MenuBtnVBT.T OBJECT

METHODS

<* LL.sup <= VBT.mu *>

init (f: FeedbackVBT.T): T;

<* LL.sup = VBT.mu *>

callback (READONLY cd: VBT.MouseRec);

END;

END MenuSwitchVBT.

5.4 The AnchorSplit Interface

An AnchorSplit is a multi-split version of AnchorBtnVBT. The �rst child is the
anchor that is displayed (such as a text string or an icon). The second child is
the menu that is displayed when the anchor is activated. Attempts to give an
anchor-split more than two children cause the extra children to be lost.

At initialization time, the feedback for the anchor is speci�ed. It must be
a childless multi-�lter. Also at initialization time, a frame is speci�ed that will
surround the menu. The frame is also a childless multi-�lter.

INTERFACE AnchorSplit;

IMPORT AnchorBtnVBT, FeedbackVBT, MultiFilter, VBT;

TYPE

<* SUBTYPE T <: MultiSplit.T *>

T <: Public;

Public = AnchorBtnVBT.T OBJECT

METHODS

<* LL <= VBT.mu *>

init (f : FeedbackVBT.T;

menuFrame : MultiFilter.T;

n : CARDINAL := 0;

anchorParent: VBT.T := NIL;

hfudge := 0.0;

vfudge := 0.0): T;

END;

The call v.init(...) initializes v as an AnchorSplit. The feedback
f and the multi-�lter menuFrame must have no multi-children. That is,
calling MultiFilter.Child(f) and MultiFilter.Child(menuFrame) must

26 5 BUTTONS

both return NIL. The other parameters, n, anchorParent, hfudge, and vfudge

are the same as in AnchorBtnVBT.

END AnchorSplit.

5.5 The TrillSwitchVBT Interface

A TrillSwitchVBT.T is a switch version of Trestle's TrillBtnVBT.
Actually, a TrillBtnVBT does not exist. If it existed, it would be a button

that generates events repeatedly while the mouse is down and in its domain.
When the mouse leaves the domain, events generation is suspended until the
mouse returns.

The implementation uses the AutoRepeat interface for repeatedly generating
events. That interface de�nes the parameters that control how frequently events
are generated, and how long to wait before starting to auto-repeat.

INTERFACE TrillSwitchVBT;

IMPORT ButtonVBT, FeedbackVBT, VBT;

TYPE

<* SUBTYPE T <: MultiFilter.T *>

T <: Public;

Public = ButtonVBT.T OBJECT

METHODS

<* LL.sup <= VBT.mu *>

init (f: FeedbackVBT.T): T;

<* LL.sup = VBT.mu *>

callback (READONLY cd: VBT.MouseRec);

END;

END TrillSwitchVBT.

5.6 The GuardedBtnVBT Interface

A GuardedBtnVBT protects its child against unintentional mouse clicks. While
the guard is displayed, mouse clicks are not forwarded. To remove the guard,
click on the button. The guard is restored after the next upclick, chord-cancel,
or when the mouse leaves the domain of the VBT.

Typically, a GuardedBtnVBT is placed above a \dangerous" button, like one
that terminates an application. This forces the user to click twice to terminate
the application|the �rst time to remove the guard, and the second time to
invoke the button that terminates the application.

A GuardedBtnVBT is much closer to being a VBTkit switch than a Trestle
button. There's a callback method (invoked when the guard is removed), and

5.7 The SourceVBT Interface 27

the guard is a multi-�lter. However, the client does not provide a feedback; it
is hard-wired into the GuardedBtnVBT implementation.

INTERFACE GuardedBtnVBT;

IMPORT ButtonVBT, PaintOp, VBT;

TYPE

T <: Public;

<* SUBTYPE T <: MultiFilter.T *>

Public =

ButtonVBT.T OBJECT

METHODS

<* LL <= VBT.mu *>

init (ch: VBT.T; colors: PaintOp.ColorScheme := NIL): T;

<* LL = VBT.mu *>

callback (READONLY cd: VBT.MouseRec);

END;

END GuardedBtnVBT.

5.7 The SourceVBT Interface

A SourceVBT is used to implement a \drag-and-drop" paradigm. The object
being dragged is the source and an object into which the source may be dropped
is the target.

As a subclass of ButtonVBT, a SourceVBT has pre, post, and cancel

methods. In addition, it has during, callback, and hitmethods. The methods
are called as follows: The pre method is invoked on the �rst click in the VBT;
the postmethod is called on an uncanceled upclick; the cancelmethod is called
whenever the mouse is chord-canceled; the during method is called whenever
the mouse has moved (and remained on the same screen) since the last call to
during or pre. A new VBT cage containing the current cursor position will be
set before calls to pre and during. The callback method is called after the
post method, as long as the mouse was over an \acceptable target" when the
upcplick happened.

The heart of drag-and-drop is implemented by the default during method:
Recall that the during method is invoked each time the mouse moves while the
button is down and not chord-cancelled. The default during method looks to
see if the mouse is over a VBT marked as a target. If so, then the SourceVBT's
hit method is invoked to see if the target is acceptable for the source. If so,
an excited method on the target is invoked to give feedback, and eventually,
a target's normal method is called to remove the feedback. If the target is not
acceptable, nothing happens.

INTERFACE SourceVBT;

28 5 BUTTONS

IMPORT ButtonVBT, FeedbackVBT, HighlightVBT, PaintOp, VBT;

5.7.1 Sources

TYPE

<* SUBTYPE T <: MultiFilter.T *>

T <: Public;

Public =

ButtonVBT.T OBJECT

METHODS

<* LL <= VBT.mu *>

init (f: FeedbackVBT.T): T;

<* LL = VBT.mu *>

during (READONLY cd: VBT.PositionRec);

callback (READONLY cd: VBT.MouseRec);

hit (target: VBT.T; READONLY cd: VBT.PositionRec):

BOOLEAN;

END;

The call v.init(...) initializes v as a SourceVBT. The default pre method
changes the cursor to a starburst and calls SwitchVBT.Pre. The default during
method calls the hit method whenever it is on a location controlled by a VBT
that is a target. If the hitmethod returns TRUE, the target's excitedmethod is
called. As the mouse moves from target to target, the previous trarget's normal
method is called before another target's excited method is invoked. The post
and cancel methods invoke the current target's normal method, restore the
original cursor, and call SwitchVBT.Post and SwitchVBT.Cancel respectively.
It's guaranteed that a target's excited and normal methods are called in non-
nested pairs.

The default hit method always returns TRUE. The default during and
callback methods are no-ops.

PROCEDURE GetTarget (v: T): Target;

<* LL.sup = VBT.mu *>

If the mouse is not over a valid target, or if the most recent call to

v.hit(target, cd) returned FALSE, then return NIL; otherwise return

target. This procedure is intended to be called by a callback method

to �nd out the current target.

5.7.2 Targets

TYPE Target = VBT.T;

A target is a VBT on which BeTarget has been invoked.

5.7 The SourceVBT Interface 29

TYPE

TargetClass <: TargetClassPublic;

TargetClassPublic =

ROOT OBJECT

vbt: VBT.T; (* READONLY; set by BeTarget *)

source: T; (* READONLY; for use by normal/excited *)

METHODS

<* LL = VBT.mu *>

normal ();

excited ();

END;

A TargetClass determines the feedback when a target's excited method is
called. The source �eld can be read by the normal and excited methods, but
clients may �nd GetSource more convenient to use.

The default normal and excited methods are no-ops.

PROCEDURE BeTarget (w: VBT.T; class: TargetClass);

<* LL.sup < w *>

Make w into a target for a SourceVBT. As a target, w may be passed to

some SourceVBT's hit method.

PROCEDURE TargetClassOf (w: Target): TargetClass;

<* LL.sup < w *>

Return the class argument for which there was a previous call to

BeTarget(w, class), or NIL if there was no such call.

PROCEDURE GetSource (w: Target): T;

<* LL.sup = VBT.mu *>

Called by a target's normal or excitedmethods to �nd out the SourceVBT

causing the method to be invoked.

PROCEDURE GetHighlighter (v: T): HighlightVBT.T;

<* LL.sup = VBT.mu *>

Returns the HighlightVBT above the nearest Trestle-installed ancestor of

v. This is typically called by a normal or excited method.

Here are three TargetClass objects that may be useful. Each of these use the
op parameter for painting in the HighlighVBT.

PROCEDURE NewInserterTarget (op := PaintOp.TransparentSwap): TargetClass;

<* LL = arbitrary *>

Displays a grid over itself when excited. Appropriate for an adjusting

bar in a tiling window manager. The parent of the target must be an

HVSplit, and grid has a minimum size in the HVSplit's axis.

30 5 BUTTONS

PROCEDURE NewSwapTarget (op := PaintOp.TransparentSwap): TargetClass;

<* LL = arbitrary *>

Displays a grid over itself when excited. This target is appropriate for a

non-adjusting bar in a tiling window manager.

PROCEDURE NewTarget (op := PaintOp.TransparentSwap): TargetClass;

<* LL = arbitrary *>

Inverts itself when excited. This target class is a general-purpose target.

END SourceVBT.

5.8 The BooleanVBT Interface

A BooleanVBT is a multi-�lter that maintains a Boolean state for its VBT-child.
When the action procedure of the button would normally be invoked, the

value of the state of the BooleanVBT is toggled and the callback method on
the BooleanVBT is invoked.

The multi-child of a BooleanVBT is de�ned to be the multi-child of the
ButtonVBT.

INTERFACE BooleanVBT;

IMPORT ButtonVBT, HighlightVBT, VBT;

TYPE

<* SUBTYPE T <: MultiFilter.T *>

T <: Public;

Public = HighlightVBT.T OBJECT

METHODS

<* LL <= VBT.mu *>

init (button: ButtonVBT.T): T;

<* LL = VBT.mu *>

callback (READONLY cd: VBT.MouseRec);

END;

The call v.init(...) initializes v as a BooleanVBT with an initial state of
FALSE. The default callback method is a no-op.

Warning: This call modi�es the action �eld of button.

PROCEDURE Put (v: T; state: BOOLEAN);

<* LL.sup = VBT.mu *>

Set v's state.

PROCEDURE Get (v: T): BOOLEAN;

<* LL.sup = VBT.mu *>

Returns v's current state.

END BooleanVBT.

5.9 The ChoiceVBT Interface 31

5.9 The ChoiceVBT Interface

A ChoiceVBT multi-�lter behaves in concert with other ChoiceVBTs to imple-
ment radio buttons. Abstractly, a ChoiceVBT v consists of

state(v) TRUE or FALSE

group(v) a set of ChoiceVBTs (the radio group)

A group g consist of

selection(g) the one member of g whose state is TRUE,
or NIL if there is no such member.

state(v) is de�ned as v = selection (group (v)).
Structurally, a ChoiceVBT is identical to a BooleanVBT: it is a multi-�lter

that maintains a Boolean state for its VBT-child. All events are forwarded to
the VBT-child.

When the action procedure of the button would normally be invoked, the
value of the state of the ChoiceVBT is toggled and the callback method on the
ChoiceVBT is invoked.

The multi-child of a ChoiceVBT is de�ned to be the multi-child of the
ButtonVBT.

INTERFACE ChoiceVBT;

IMPORT BooleanVBT, ButtonVBT;

TYPE

<* SUBTYPE T <: MultiFilter.T *>

T <: Public;

Public = BooleanVBT.T OBJECT

METHODS

<* LL <= VBT.mu *>

init (button: ButtonVBT.T; group: Group): T;

END;

The call v.init(...) initializes v as a ChoiceVBTwith an initial state of FALSE.
It is added to the radio group group.

TYPE Group <: ROOT;

A Group is a set of ChoiceVBTs.
A ChoiceVBT v is added to a group when v is initialized. When v is discarded,

it is removed from its group.

PROCEDURE Get (v: T): T;

<* LL.sup = VBT.mu *>

Return selection(group(v))

32 5 BUTTONS

PROCEDURE Put (v: T);

<* LL.sup = VBT.mu *>

Equivalent to selection(group(v)) := v

PROCEDURE Clear (v: T);

<* LL.sup = VBT.mu *>

Equivalent to selection(group(v)) := NIL

PROCEDURE Selection (group: Group): T;

<* LL.sup = VBT.mu *>

Return selection(group)

END ChoiceVBT.

33

6 Subwindows

This section describes the facilities in VBTkit for subwindows. Technically, a
subwindow is any non-background child of a ZSplit. Informally, a subwindow
is just like a top-level window but it is not installed in the window manager.

We recommend that you use a ZChildVBT or ZChassisVBT �lter for
subwindows, and a ZBackground �lter for the background child of a ZSplit.
The ZChildVBT gives you a powerful notation for specifying a location within
the ZSplit where the subwindow should appear, and whether the subwindow
should be visible or invisible. A ZChassisVBT is a subtype of ZChildVBT and
provides a \chassis" for subwindow that contains widgets for moving, resizing,
and closing the subwindow.

The ZGrowVBT and ZMoveVBT interface de�ne switches that have the side-
e�ect of resizing and repositioning its nearest ancestor that is a subwindow.
These are used by ZChassis.

The ZSplitUtils contains some utility procedures for clients operating with
subwindows. Finally, the ZTilps multi-split is just like a ZSplit, but considers
its children from bottom to top.

6.1 The ZChildVBT Interface

An ZChildVBT.T is a VBT that is typically used as a subwindow.
A ZChildVBT is a subclass of a HighlightVBT that insulates any highlighting

done in the ZChildVBT from highlighting done in other subwindows. Clients
should use a ZBackgroundVBT around the background child in order to insulate
highlighting in the background child from highlighting in the subwindows.

There are two alternate ways to initialize a ZChildVBT. Each allows the client
to specify whether the subwindow should be initially visible (\mapped") and
how the subwindow should be reshaped when the parent ZSplit is reshaped.

The method call v.init(...) allows the client to specify where the center or
a corner of v should be placed, relative to the parent, either in absolute distance
(in millimeters) from the parent's northwest corner (CoordType.Absolute), or
as percentages of the parent's width and height (CoordType.Scaled). The
default is to align the center of v with the center of the parent. The size of v is
its preferred sizes in both the horizontal and vertical dimensions.

The method call v.initFromEdges(...) allows the client to specify the
edges of v, either in absolute distance (in millimeters) from the parent's
northwest corner (this is the only case in which the client speci�es the absolute
size of v), or as percentages of the parent's width and height.

The implementation will not pop up a subwindow with its northwest corner
north or west of the visible portion of the ZSplit parent; it will override the
speci�ed position as necessary to bring it into view. It is a checked runtime
error to specify scaled coordinates (percentages) that are outside the range 0.0{
1.0. If the speci�ed position is overriden, or if the subwindow is not entirely

34 6 SUBWINDOWS

visible when the subwindow is �rst made visible, the implementation will also
override the reshape method so that the subwindow will be repositioned using
the information speci�ed when it was initialized.

Finally, in order for the reformatting to meet speci�cations above, the client
must call Inserted after the subwindow is inserted as a child of a ZSplit; the
client must call Moved after the subwindow is repositioned by the user; and the
client must call Grew after the size of the subwindow is changed by the user.

INTERFACE ZChildVBT;

IMPORT HighlightVBT, VBT, ZSplit;

TYPE

Location = {NW, NE, SW, SE, Center};

CoordType = {Absolute, Scaled};

T <: Public;

Public = HighlightVBT.T OBJECT

METHODS

<* LL <= VBT.mu *>

init (ch : VBT.T;

h, v := 0.5;

loc := Location.Center;

type := CoordType.Scaled;

shaper: ZSplit.ReshapeControl := NIL;

open: BOOLEAN := TRUE): T;

initFromEdges (ch: VBT.T;

w, e, n, s: REAL;

type := CoordType.Absolute;

shaper: ZSplit.ReshapeControl := NIL;

open := TRUE): T;

END;

PROCEDURE InitiallyMapped (v: VBT.T): BOOLEAN;

If v is a ZChild, return the value of open when it was initialized.

Otherwise, return TRUE.

PROCEDURE Pop (v: VBT.T; forcePlace := FALSE);

Map v and lift it to the top of its parent's children. If forcePlace is set,

position v at its initial location.

PROCEDURE Inserted (v: VBT.T);

The client must call this procedure after v has been inserted into a ZSplit.

This procedure sets a ReshapeControl object on v. If v isn't a ZChildVBT,

the ReshapeControl tries to center v, subject to the contraint that its

northwest corner is just visible. If v is a ZChild, the ReshapeControl will

follow vbt's initial position until v is moved by the user (usually because

6.2 The ZChassisVBT Interface 35

Moved is called). At that point, the northwest corner of v will remain at

that position relative to its parent, until the user moves it again.

PROCEDURE Moved (v: VBT.T);

The client must call this procedure after v has been moved by a user.

If v is a ZChildVBT, this procedure notes that v has been moved by the

user, so that the next time it is reshaped, v will retain its current position

relative to its parent. If v isn't a ZChildVBT, this procedure is a no-op.

PROCEDURE Grew (v: VBT.T; w, h: INTEGER);

The client must call this procedure after the size of v has been changed

to w-by-h (in pixels) by a user. If v is a ZChildVBT, this procedure notes

that v has a new shape and calls VBT.NewShape to tell the parent ZSplit.

Subsequently, v will report its shape as w-by-h. If v is not a ZChildVBT,

this procedure is a no-op.

Finally, here are a few ZSplit reshape controllers that are sometimes useful:

VAR (*CONST*)

Scaled: ZSplit.ReshapeControl;

ScaledHFixed: ZSplit.ReshapeControl;

ScaledVFixed: ZSplit.ReshapeControl;

ScaledHVFixed: ZSplit.ReshapeControl;

Scaled reshapes the child by scaling the old child domain to occupy the same
relative position of the changing parent domain. ScaledHFixed does the same,
and then insets the west and east edges so that the child's width is not changed.
Similarly, ScaledVFixed scales the child's domain and then insets the north
and south edges. ScaledHVFixed insets both the north and south edges and
the west and east edges so the size of the child's domain stays �xed. In other
words, ScaledHVFixed can be used to reposition the center point of the child
without changing its size.

END ZChildVBT.

6.2 The ZChassisVBT Interface

A ZChassisVBT multi-�lter provides a chassis for a subwindow. The visual
display of the chassis is hard-wired into this module; in particular, it won't look
like a top-level window of most of the common X window managers. The top of
the chassis is a banner containing (from left to right) a close button, draggable
title, and a grow button. (See Figure 6.2.)

Clicking on the close button unmaps the ZChassisVBT, thereby causing it
to disappear. Dragging the title allows the user to reposition the ZChassisVBT

36 6 SUBWINDOWS

within its parent. Clicking on the grow button allows the user to change the
size of the ZChassisVBT, subject to its size constraints. That is, the user isn't
allowed to make the interior of the chassis smaller or larger than its reported
bounds along each dimension.

INTERFACE ZChassisVBT;

IMPORT Shadow, VBT, ZChildVBT, ZSplit;

TYPE

<* SUBTYPE T <: MultiFilter.T *>

T <: Public;

Public =

ZChildVBT.T OBJECT

METHODS

<* LL.sup <= VBT.mu *>

init (ch : VBT.T;

title : VBT.T;

shadow : Shadow.T := NIL;

closable: BOOLEAN := TRUE;

open : BOOLEAN := TRUE;

h, v := 0.5;

loc := ZChildVBT.Location.Center;

type := ZChildVBT.CoordType.Scaled;

shaper: ZSplit.ReshapeControl := NIL):

T;

initFromEdges (ch : VBT.T;

title : VBT.T;

w, e, n, s: REAL;

shadow : Shadow.T := NIL;

closable : BOOLEAN := TRUE;

open : BOOLEAN := TRUE;

type := ZChildVBT.CoordType.Absolute;

shaper: ZSplit.ReshapeControl := NIL): T;

<* LL = VBT.mu *>

callback (READONLY cd: VBT.MouseRec);

END;

END ZChassisVBT.

The call v.init(...) initializes v as a ZChassisVBT. It is assumed that v will
be a subwindow. The interior of the chassis, ch, is v's child in the multi-child
sense.

An alternative method, v.initFromEdges, also initializes v, using di�erent
information for specifying the initial location of the subwindow. (See the
ZChildVBT interface on page 33 for details of the h, v, loc, and type parameters

6.3 The ZBackgroundVBT Interface 37

Figure 3: A ZChassis.

to init, as well as for details of the w, e, n, s, and type parameters to
initFromEdges.)

A close button is displayed i� closable is set. The grow button is
implemented with a ZGrowVBT. title also functions as a drag bar. It is
implemented by a ZMoveVBT. The looks of these buttons is governed by the
shadow parameter.

If open is TRUE, then v will be visible when it is inserted as a child of its
parent ZSplit.

In the current implementation, a chassis has the following general structure
(using FormsVBT notation):

(Stable

(Border

(VBox

(HBox (CloseButton "C")

(ZMove title)
(ZGrow "G"))

(Frame ch)))))

See Figure 6.2.
However, don't try to traverse the VBT tree directly; it is subject to change.

To retrieve the contents of a chassis v, use MultiFilter.Child(v).
v.callback(cd) is invoked when the close button is activated. The default

method is a no-op.
A ZChassisVBT's move, grow, and close buttons are not e�ective unless the

ZChassis is a non-background child of a ZSplit.

6.3 The ZBackgroundVBT Interface

A ZBackgroundVBT is a �lter that should be put around the background child
of a ZSplit. This �lter will insulate highlighting that takes place within the
background child from highlighting in the other children of the ZSplit. The
implementation is merely a HighlightVBT, but it's easier to remember the
purpose of that highlighter by calling it a ZBackgroundVBT instead.

38 6 SUBWINDOWS

In order for ZChassisVBT to display an outline of a subwindow that is
visible against the background when it is moved or resized, you should use
the VBTColors interface to associate the primary background and foreground
colors of the contents of the ZBackgroundVBT.

INTERFACE ZBackgroundVBT;

IMPORT HighlightVBT;

TYPE

T = HighlightVBT.T BRANDED OBJECT END;

END ZBackgroundVBT.

6.4 The ZMoveVBT Interface

A ZMoveVBT is a switch that has the side-e�ect of repositioning its nearest
ancestor subwindow.

If the initial mouse click is unshifted, the subwindow is lifted to the top of
its sibling; otherwise, the subwindow keeps its current top-to-bottom ordering
among its siblings. As the mouse is moved, the cursor is changed to give
appropriate feedback, and an outline of the subwindow is moved to show where
it will be repositioned on an uncancelled upclick. On an uncancelled upclick or
chord-cancel, the outline is removed.

INTERFACE ZMoveVBT;

IMPORT Rect, SourceVBT;

TYPE T <: SourceVBT.T;

The following procedure is useful for subclasses, such as ZGrowVBT, to control
the shape of the outline of v's subwindow as the mouse is being dragged.

PROCEDURE MoveAndHighlight (v: T; READONLY rect: Rect.T);

<* LL = VBT.mu *>

Show the outline of v as rect. Should only be called by the during

method of a subclass.

The default during method calls MoveAndHighlight with rect equal to the
domain of the subwindow being moved, translated by an appropriate amount
to reect the mouse movement since the initial mouse click.

On an uncancelled upclick, the default post method moves the subwindow
to the rectangle last speci�ed to MoveAndHighlight and calls ZChildVBT.Moved
and ZChildVBT.Grew.

The highlighter used for displaying an outline of the subwindow contain
v is the HighlightVBT returned by SourceVBT.GetHighlighter(v). An

6.5 The ZGrowVBT Interface 39

appropriate paint op is constructed by examing the colors of the background
child of the subwindow's parent. Those colors are found using the VBTColors

interface; be sure to use that interface to record the background child's primary
foreground and background colors.

END ZMoveVBT.

6.5 The ZGrowVBT Interface

A ZGrowVBT is a switch that has the side e�ect of reshaping its nearest ancestor
subwindow.

If the initial mouse click is unshifted, the subwindow is lifted to the top of
its sibling; otherwise, the subwindow keeps its current top-to-bottom ordering
among its siblings. As the mouse is moved, the cursor changes to give
appropriate feedback, and an outline of the subwindow is displayed to show
the shape the subwindow will acquire on an uncancelled upclick. The shape
of the subwindow is not actually changed until the uncancelled upclick. The
outline is removed on an uncancelled upclick or on a chord-cancel.

INTERFACE ZGrowVBT;

IMPORT FeedbackVBT, ZMoveVBT;

TYPE

<* SUBTYPE T <: MulitFilter.T *>

T <: Public;

Public = ZMoveVBT.T OBJECT

METHODS

<* LL <= VBT.mu *>

init (f: FeedbackVBT.T): T;

END;

END ZGrowVBT.

6.6 The ZSplitUtils Interface

The ZSplitUtils interface contains utility procedures for working with ZSplits.
The ZChildVBT interface contains some additional utility procedures that are
oriented for children of ZSplits that are used as subwindows.

INTERFACE ZSplitUtils;

IMPORT VBT;

PROCEDURE FindZChild (v: VBT.T): VBT.T;

40 6 SUBWINDOWS

Return the lowest (possibly improper) ancestor of v whose parent is a ZSplit.T
and which is not the ZSplit.T's background child. If no such VBT is found,
return NIL. There's a good chance that the VBT returned is a ZChildVBT.T, but
this is not required.

END ZSplitUtils.

6.7 The ZTilps Interface

A ZTilps.Tmulti-split is like a ZSplit, except that its children are stored from
bottom to top. For example, MultiSplit.Nth(v,0) returns the background
child of the ZTilps.

INTERFACE ZTilps;

IMPORT ZSplit;

TYPE

<* SUBTYPE T <: MultiSplit.T *>

T <: Public;

Public = ZSplit.T OBJECT

METHODS

<* LL <= VBT.mu *>

init (saveBits := FALSE; parlim := -1): T

END;

The call v.init(...) initializes v as a ZTilps and returns v. See the ZSplit
interface for a description of saveBits and parlim.

END ZTilps.

41

7 Images

This section describes the facilities in VBTkit for displaying images. A
PixmapVBT is a VBT class that displays a Pixmap.T, a screen-independent
speci�cation of a pixmap. And the Image interface contains utilities for
building screen-independent pixmaps from screen-dependent pixmaps and from
descriptions stored in �les.

7.1 The PixmapVBT Interface

A PixmapVBT.T is a VBT that displays a pixmap.
The minimum size of a PixmapVBT is just large enough to display its pixmap

(surrounded by any margins that were supplied when the PixmapVBT was
created). Its preferred size is the same as its minimum size, and its maximum
size is very large.

INTERFACE PixmapVBT;

IMPORT VBT, PaintOp, Pixmap;

TYPE

T <: Public;

Public =

VBT.Leaf OBJECT

METHODS

<* LL.sup <= VBT.mu *>

init (pm: Pixmap.T;

halign, valign: REAL := 0.5;

hmargin, vmargin: REAL := 0.0;

op: PaintOp.T := PaintOp.BgFg;

bg: PaintOp.T := PaintOp.Bg): T

END;

The call v.init(...) initializes v as a PixmapVBT displaying pixmap pm using
the paint op op, and returns v.

If halign = 0.0, the west boundary of the pixmap will be indented by the
given hmargin (in millimeters) from the west boundary of the VBT; if halign =

1.0, the east boundary of the pixmap will be inside the east boundary of the
VBT by the given hmargin; for other values of halign, the horizontal position
of the text is computed by linear interpolation. In particular, halign = 0.5

centers the pixmap horizontally. The vertical position is determined by vmargin
and valign in a similar way.

If the domain of v is larger than the pixmap, the background is painted using
the tint bg.

When the pixmap has depth 1, op should be a pair of tints. Otherwise, a
good choice for op is PaintOp.Copy.

42 7 IMAGES

PROCEDURE Put (v: T; pm: Pixmap.T);

<* LL.sup = VBT.mu *>

Change the pixmap displayed by v to pm, and mark v for redisplay.

PROCEDURE SetColors (v : T;

op: PaintOp.T;

bg: PaintOp.T := PaintOp.Bg);

<* LL.sup = VBT.mu *>

Change the op and bg of v, and mark v for redisplay.

END PixmapVBT.

7.2 The Image Interface

An Image.T is a screen-independent speci�cation of an image. An image is a
pixmap that includes speci�cations for both color and resolution. It is rendered
consistently across screen types in terms of its colors and size.

INTERFACE Image;

IMPORT Pixmap, Rd, ScrnPixmap, Thread, TrestleComm,

VBT, Word, Wr;

TYPE T = Pixmap.T;

EXCEPTION Error;

An Image.Raw is an array of pixels, with both resolution and color information.
It is like a Pixmap.Raw, with the addition of resolution and color information. An
Image.T is built from an Image.Raw pixmap using procedures in this interface.

There are three types of Image.Raw pixmaps: The RawBitmap represents
bitmaps (1-bit deep pixmaps); the RawPixmap represents pixmaps that do not
have a color table; and the RawPixmapCMap represents pixmaps that use a color
table.

TYPE

Pixel = Word.T;

Mode = {Stable, Normal, Accurate};

RGB = RECORD r, g, b: REAL END;

TYPE

Raw = OBJECT

width, height: INTEGER;

xres, yres: REAL := 75.0; (* in pixels per inch *)

METHODS

get (h, v: INTEGER): Pixel;

7.2 The Image Interface 43

set (h, v: INTEGER; pixel: Pixel);

END;

RawBitmap = Raw BRANDED OBJECT END;

RawPixmap = Raw OBJECT

needsGamma := TRUE;

colorMode := Mode.Normal;

END;

RawPixmapCMap = RawPixmap OBJECT

colors: REF ARRAY OF RGB;

END;

If pm is a Raw pixmap, then pm contains pm.height rows, and each row contains
pm.width elements. These �elds are read-only after they are initialized. The
pixels are accessed with (0,0) in the northwest corner and (width-1,height-1)

in the southeast corner. The pm.xres and pm.yres �elds specify the resolution
at which pm was designed. The get and set methods retrieve and store
individual elements of the pixmap.

Each subtype of Raw can interpret a \pixel" in whatever way it chooses. The
three subtypes de�ned here do the following:

� If pm is a RawBitmap pixmap, then it is guaranteed that the method
pm.get will return a 0 or 1. In the call pm.set(h,v,pixel), only the
least signi�cant bit of pixel is used.

� If pm is a RawPixmap, the pixels in pm encode an RGB value each of whose
components is 8 bits. An (r,g,b) triple is stored as

r * 256 * 256 + g * 256 + b

and each of r, g, and b is between 0 and 255. The �eld pm.needsGamma in-
dicates whether to let Trestle gamma-correct the colors. The pm.colorMode
�eld determines how each RGB value in the pixmap should be displayed
on color-mapped display.

� If pm is a RawPixmapCMap, the pixels in pm are used as an index into the
color table stored in the �eld pm.colors.

The colors used to display a colored pixmap pm depends on a number of
factors. The pm.colorMode �eld is used to match colors in the pixmap with
colors in the color table, as described in the ScrnPixmap interface. The matching
depends on other applications running, on other pixmaps being displayed, and
on the depth of the screen.

The current implementation does not perform any dithering, except on
monochrome screens. On monochrome screen, a very crude \thresholding" is
performed: if the brightness of the color is more than 50% of the maximum

44 7 IMAGES

brightness, the screen's foreground color is used. Otherwise, the screen's
background color is used.

7.2.1 Retrieving and storing \raw" pixmaps

An Image.Raw can be built from a reader containing an image in Jef Poskanzer's
\portable anymap �le" (\pnm") format, and a \pnm" description of an
Image.Raw can be stored into a writer.

There are many tools available in the public domain for manipulating images
in \pnm" format and for converting between that format and other formats (e.g.,
GIF, X11, Macintosh PICT, HP PaintJet, and so on).

There are three types of \pnm" �les:

� \pbm" { portable bitmap �le

� \pgm" { portable graymap �le

� \ppm" { portable pixmap �le

Each of these format has two variants: \raw" and \ASCII." In the \ASCII"
version, pixel values are stored as ASCII decimal numbers. In the \raw" version,
pixel values must be less than 256 and are stored as plain bytes.

PROCEDURE FromRd (rd: Rd.T): Raw

RAISES {Thread.Alerted, Rd.Failure, Error};

<* LL = arbitrary *>

Returns an Image.Raw from the reader rd containing an image in \pnm"

format. Pixels in \ppm" �les are normalized to 8 bits per channel and

intensity values of \pgm" �les are normalized to 8 bits.

PROCEDURE ToWr (raw: Raw; wr: Wr.T)

RAISES {Thread.Alerted, Wr.Failure};

<* LL = arbitrary *>

Store an ASCII description of raw into the writer wr using \pnm" format.

Procedures FromRd and ToWr are not guaranteed to be idempotent because pixel
values are normalized by FromRd to be 8 bits. Also, the \pnm" format produced
by ToWr is either ASCII \pbm" for subtypes of RawBitmap or ASCII \ppm" for
subtypes of RawPixmap, whereas procedure FromRd can accept these formats as
well as the \raw" variants and grayscale formats (\pgm").

The more serious limitation of using \pnm" format is that \pnm" does
include any information about the pixmap resolution or color matching. FromRd
will use the default resolution of a Raw and the default color parameters of a
RawPixmap; ToWr simply ignores the resolution and color �elds.

7.2 The Image Interface 45

7.2.2 Creating \raw" pixmaps from a VBT

FromVBT captures the information in an arbitrary VBT into an Image.Raw of
particular dimensions:

PROCEDURE FromVBT(v : VBT.T; width, height: REAL): Raw

RAISES {TrestleComm.Failure};

<* LL = VBT.mu *>

Return a screen-independent Raw that describes v when v is scaled to be

width by height millimeters.

The current implementation of FromVBT will cause v to be redisplayed multiple
times: First v is detached from its parent pm (unless pm = NIL). Next, v is
installed in an o�screen Trestle window, with an appropriate ScaleFilter

inserted to make v the correct size. A call to VBT.Capture creates a screen-
dependent version of the o�screen window. At this point, v is detached from
the o�screen window, and reattached to pm (unless pm = NIL). Each time that
v changes its parent, various VBT methods (reshape, rescreen, redisplay, and
so on) are called.

The following procedure converts a screen-dependent pixmap (such as that
returned by VBT.Capture), into one that is screen-independent:

PROCEDURE FromScrnPixmap (

spm: ScrnPixmap.T;

st: VBT.ScreenType): Raw RAISES {TrestleComm.Failure};

<* LL.sup <= VBT.mu *>

Returns a screen-independent Raw that describes the pixmap spm when

displayed on st. Any �eld of Raw that cannot be computed from spm

and st is given its default value. For example, the needsGamma and the

colorMode �elds of pixmaps that are deeper than 1-bit.

7.2.3 Building an image from \raw" pixmaps

The remaining procedures in this interface create an Image.T from an
Image.Raw pixmap:

PROCEDURE Unscaled (raw: Raw): T;

<* LL.sup <= VBT.mu *>

Returns a pixmap that will display as raw. The pixels in raw will not be

scaled regardless of the screen's resolution.

For example, consider a pixmap pm whose dimensions are 150 wide by 50 high.
On a 75dpi screen (a typical 1993-vintage monitor), the pixmap pmwould appear
2 inches wide and 2/3 inches high. On a high-resolution monitor of 300 dpi,

46 7 IMAGES

pm would appear 1/2 inch wide and 1/6 inch high. The pm.xres and pm.yres

�elds are ignored.
If you want pm always to appear as 2 inches by 2/3 inches, regardless of the

pixel density of the monitor, you'd use Scaled instead:

PROCEDURE Scaled (raw: Raw): T;

<* LL.sup <= VBT.mu *>

Return a pixmap that will display as raw, scaled for the screen's resolution.

The horizontal and vertical dimensions are scaled independently.

The current implementation scales pixmaps by non-negative integer amounts:
horizontally by ROUND(dpiX/pm.xres)and vertically by ROUND(dpiY/pm.yres),
where dpiX and dpiY are the horizontal and vertical resolution of the screen,
respectively, expressed in dots-per-inch.

In the example above, suppose that pm.xres and pm.yres were both 75. On
a 300 dpi screen, pm would appear 2 inches wide and 2/3 inches high. Each pixel
in pm would appear as a block of 4x4 screen pixels. If the screen were 250 dpi
horizontally and 175 dpi vertically, then pm would appear 11

2
inches wide and

11
3
inches high. Each pixel in pm would appear as a block of 3x2 screen pixels.
Procedure ScaledN allows you to provide a collection of pixmaps, each at a

di�erent resolution, and scales the most appropriate pixmap:

PROCEDURE ScaledN (READONLY raws: ARRAY OF Raw;

tolerance: REAL := 0.25;

maxScale : CARDINAL := 4): T;

<* LL.sup <= VBT.mu *>

Return a pixmap which will scale and display pixmap raws[i], where i

is chosen so that raws[i] has the \most appropriate" resolution.

Speci�cally, i is chosen such to minimize the scale factor (the amount that
a \raw" pixmap must be scaled) while remaining within the given error
tolerance.

The scale factor of pixmap pm is

MAX (dpiX/pm.xres, dpiY/pm.yres)

where dpiX and dpiY are the horizontal and vertical resolutions of the screen,
respectively, expressed in dots-per-inch.

For a given scale factor s, the error is

ABS (MAX ((dpiX - MAX(s, maxScale) * pm.xres) / dpiX,

(dpiY - MAX(s, maxScale) * pm.yres) / dpiY))

If none of the pixmaps in the raws array satis�es the tolerance, then the pixmap
giving the smallest error is chosen.

The purpose of tolerance and maxScale is to allow the user control over
the interpretation of \most appropriate" when chosing the pixmap.

7.2 The Image Interface 47

� A small tolerance ensures a small error, which can mean a larger scale
factor.

For example, suppose the screen has a resolution of 300 dpi and pixmaps
that are 150 and 250 dpi. When tolerance < 1/6, then ScaledN chooses
the 150 dpi pixmap with a scale factor equal to 2, rather than the 250 dpi
pixmap with a scale factor equal to 1.

� A small maxScale makes it less likely that a very low-resolution pixmap
(which happens to give very small error) is chosen over a higher-resolution
pixmap (which gives a larger error).

For example, suppose the screen has a resolution of 300 dpi and pixmaps
that are 50 and 200 dpi. If tolerance > 1/3, then ScaledN always chooses
the 200 dpi pixmap, because the error, (300 - 200)/300=1/3, is within the
tolerance and the scale factor for 200 dpi is less than the scale factor for
the 50 dpi pixmap. However, when tolerance < 1/3, the 50 dpi pixmap
is chosen unless maxScale <= 4.

END Image.

48 8 TEXT EDITING

8 Text Editing

The principal VBT for text-editing is a TextPort. It has a subtype, TypeinVBT,
for single-line \type-in boxes." A TextPort is also combined with a scrollbar
to form a TextEditVBT, which has a subtype, TypescriptVBT, for transcripts
and command-shells.

The TextPortClass interface in Appendix A.2 is the starting point for
clients wishing to de�ne subclasses of text-editors. You might also wish to
look at the implementation of the text-editors already provided: EmacsModel

(Appendix A.3), IvyModel (Appendix A.4), MacModel (Appendix A.5), and
XtermModel (Appendix A.6).

The VBTkit package also provides a number of interfaces, not described
in this manual, that are intended to help clients implement subclasses of text-
editors. Here are the interfaces of interest:

� Key de�nes constants for the VBT.KeySyms of some common non-graphic
keys.

� KeyTrans provides some standard mapping between keyboard keys and
ASCII characters.

� MTextUnit implements tools for treating the underlying text as sequences
of characters, lines, or paragraphs.

8.1 The TextPort Interface

A textport is a VBT that allows the user to type and edit text.
The methods and procedures in this interface fall into several categories,

each dealing with di�erent aspects of the text-editor.

Appearance The client can choose the font, colors, margins, and whether long
lines should be clipped or wrapped. The fonts and colors can be changed
dynamically.

Access to the text There are procedures to read and write subsequences of
the text, to read and set the current \type-in" point (cursor position), to
get the length of the text, and to make the text read-only.

Keybindings and Text-Selections A textport is initialized with a model,
an object (de�ned in the TextPortClass interface) that establishes the
connection between keystrokes and editing operations, and the connection
between mouse-gestures, the cursor position, local selections (including
highlighted regions), and global selections such as the \clipboard"
(VBT.Source). Four such models are implemented|Emacs, Ivy, Xterm,
and Mac|corresponding to di�erent editing paradigms. The choice of

8.1 The TextPort Interface 49

model can be changed dynamically. The client may override the filter

method to intercept keystrokes.

Feedback A textport has callback-methods that are invoked when the text
changes, when the user types Return or Tab, when the textport gains or
loses the keyboard focus, when the visible region changes, and when errors
are detected. All these methods have defaults.

The locking level for all procedures is LL <= VBT.mu except as noted.

INTERFACE TextPort;

IMPORT Font, PaintOp, VBT, VText;

TYPE

T <: Public;

Public = VBT.Leaf OBJECT

METHODS

init (hMargin, vMargin := 0.5;

font := Font.BuiltIn;

colorScheme: PaintOp.ColorScheme := NIL;

wrap := TRUE;

readOnly := FALSE;

turnMargin := 0.5;

model := Model.Default): T;

<* LL.sup = VBT.mu *>

filter (cd: VBT.KeyRec);

getFont (): Font.T;

setFont (font: Font.T);

getColorScheme (): PaintOp.ColorScheme;

setColorScheme (c: PaintOp.ColorScheme);

getModel (): SpecificModel;

setModel (model: Model);

getReadOnly (): BOOLEAN;

setReadOnly (flag: BOOLEAN);

(* callbacks *)

modified ();

returnAction (READONLY cd: VBT.KeyRec);

tabAction (READONLY cd: VBT.KeyRec);

focus (gaining: BOOLEAN; time: VBT.TimeStamp);

error (msg: TEXT);

END;

The call v.init(...) initializes v as a TextPort.T and returns it.
The parameters hMargin and vMargin indicate how much whitespace to

leave around the text, expressed in millimeters.

50 8 TEXT EDITING

colorScheme is used for painting the text. If the parameter is NIL, then
PaintOp.bgFg will be used.

If wrap is TRUE, then text will be wrapped across line boundaries; otherwise
it will be clipped. If it is wrapped, then turnMargin speci�es the width (in
millimeters) of the gray bar placed at the end of the �rst line and the beginning
of the second, indicating that the text has been wrapped.

If readOnly is TRUE, then the text cannot be changed through the user
interface (keyboard and mouse). The procedures Replace, Insert, SetText,
and PutText bypass the read-only protection, but these are not called by
internal routines. In all other descriptions in this interface, the words replace,
insert, delete, and so on should be understood as having the restriction that v
is not read-only.

If model is Model.Default, then the current value of DefaultModel will be
used. DefaultModel is de�ned below.

v.getModel() returns the name of the current model; note that the return
value cannot be Model.Default. The call v.setModel(...) changes the
current model; its parameter may be Model.Default, in which case the value
of DefaultModel will be used.

The call v.setFont(font) changes the font used for displaying the text.
The call v.setColorScheme(c) changes the colors used for displaying the

text.
The implementation calls v.focus(gaining, time) whenever v gains or

loses the keyboard focus. If gaining is TRUE, then v is about to gain the
keyboard focus (and time is a valid event-time); i.e., this method is called
before the selection feedback is established, so it is reasonable to call Select
(below) or put up some other indication. If gaining is FALSE, then v has just
lost the keyboard focus (and time is not valid), so it reasonable to take down
whatever indicated that the focus had been acquired. It is not within the power
of the focus method to prevent v from gaining or losing the focus. The default
for this method is a no-op.

The implementation calls v.error(msg)whenever an exception is raised for
which there is no particular remedy, such as an Rd.Failure. The value of msg
will be a short description of the error, typically the name of the procedure where
the exception was raised. No method or procedure de�ned in this interface raises
exceptions, but the client may wish to override this method in order to report
the error in a popup window, for example. The default for this method is a
procedure that tests whether the environment-variable named TEXTPORTDEBUG

is set (to any value); if so, it writes the message to Stdio.stderr.

8.1.1 Access to the text

The textport's initial read-only status depends on the readOnly parameter
to the init method. The getReadOnly method returns it; the setReadOnly

method sets it.

8.1 The TextPort Interface 51

PROCEDURE GetText (v : T;

begin: CARDINAL := 0;

end : CARDINAL := LAST (CARDINAL)): TEXT;

<* LL.sup = VBT.mu *>

Returns a sub-sequence of the text in v. The result will be empty if

begin >= Length(v)

Otherwise the range of indexes of the subsequence is

[begin .. MIN (end, Length (v)) - 1]

PROCEDURE SetText (v: T; t: TEXT);

Replace the current contents of v with t. This procedure does not test

the read-only status of v.

PROCEDURE PutText (v: T; t: TEXT);

Append t to the current contents of v. This procedure does not test the

read-only status of v.

PROCEDURE Replace (v: T; begin, end: CARDINAL; newText: TEXT);

Replace the text between positions begin and end in v with newText. If

begin and end are beyond the end of the text, they are taken to refer to

the end of the text. This procedure does not test the read-only status of

v.

PROCEDURE Insert (v: T; text: TEXT);

If there is a replace-mode selection (see Section A.4.2, page 117), replace

it with text; otherwise insert text at the type-in point. In either case,

this is a no-op if text is the empty string. This procedure does not test

the read-only status of v.

PROCEDURE Index (v: T): CARDINAL;

Return the current \type-in" position.

PROCEDURE Seek (v: T; n: CARDINAL);

Set the \type-in" position to n.

PROCEDURE Length (v: T): CARDINAL;

Return the number of characters in v's text.

PROCEDURE Newline (v: T);

Insert a newline character at the type-in point.

52 8 TEXT EDITING

PROCEDURE NewlineAndIndent (v: T);

Insert a newline character and enough spaces to match the indentation of

the previous line. As it leaves a blank line, it will delete all spaces from

that line so as to leave it truly empty.

PROCEDURE IsVisible (v: T; pos: CARDINAL): BOOLEAN;

Test whether the character at position pos is visible.

8.1.2 Models

TYPE

Model = {Default, Ivy, Emacs, Mac, Xterm};

SpecificModel = [Model.Ivy .. Model.Xterm];

VAR DefaultModel: SpecificModel := Model.Emacs;

The initial value of DefaultModel depends on the environment variable named
TEXTPORTMODEL; if that is set to emacs, ivy, mac, or xterm at startup time, then
DefaultModel will be set accordingly. If it is not de�ned, or is de�ned as some
other value, then the initial value of DefaultModelwill be Model.Emacs. See the
EmacsModel, IvyModel, XtermModel, and MacModel interfaces in Appendices
A.3{A.6 for details on keybindings, mouse-clicks, and selections.

PROCEDURE ChangeAllTextPorts (v: VBT.T; newModel := Model.Default);

For each textport p that is a descendent of VBT v, call

p.setModel(newModel).

8.1.3 Keybindings

The TextPort interface allows clients a great deal of exibility in handling
keystrokes. v.key(cd) proceeds in three steps:

In step 1, it tests whether cd.wentDown is true, whether v has the keyboard
focus, and whether v's domain is non-empty. If all three conditions are true, it
proceeds to step 2.

In step 2, it passes cd to the model's keyfilter object, which handles low-
level tasks such as converting \Escape + character" into \meta-character" (in
Emacs mode), 8-bit \compose character" operations, and so on. The model
may actually contain a chain of key�lters (see the KeyFilter interface), each
implementing some translation.

In step 3, the model passes cd (possibly changed by the key�lters) to the
textport's filter method. Clients who wish to intercept keystrokes usually do
so at this point, by overriding the filter method, rather than by overriding
the key method, so that they can take advantage of the low-level conversions.

In the default filter method, there are several mutually exclusive possibil-
ities, tested in this order:

8.1 The TextPort Interface 53

� If the key is Return, then if the shiftmodi�er is on, we insert a newline; if
the optionmodi�er is on, we insert a newline but leave the cursor in place;
otherwise, we invoke v.returnAction(cd), another callback method. Its
default method calls NewlineAndIndent(v, cd).

� If the key is Tab, we invoke v.tabAction(cd). The default method inserts
4 spaces.

� If the key is an \arrow" key, we call the model's arrowKey method, which
moves the cursor one character forward, one character backward, one line
up, or one line down, as appropriate.

� If the control modi�er is on, we call the model's controlChordmethod.

� If the option modi�er is on, we call the model's optionChord method.

� If the key is Backspace or Delete, we delete the previous character, or the
current primary selection, if that is non-empty and in replace-mode.

� If the key is an ISO Latin-1 graphic character, we insert it into the text.

� Otherwise, we ignore it.

Finally, we call Normalize(v), except in the controlChord and optionChord
cases.

Clients can specialize the handling of keys, therefore, by overriding the
textport's key, filter, returnAction, or tabAction methods, and by
overriding the model's controlChord, optionChord, or arrowKey methods.

The following procedures give the client access to the keyboard focus:

PROCEDURE TryFocus (v: T; t: VBT.TimeStamp): BOOLEAN;

Try to acquire the keyboard focus and the primary selection, and report

whether it succeeded.

PROCEDURE HasFocus (v: T): BOOLEAN; <* LL.sup = VBT.mu *>

Test whether v has the keyboard focus.

8.1.4 Selections

With various keyboard and mouse-gestures, the user may delimit a range of text,
known as a local selection. The TextPort interface de�nes two local selections,
called primary and secondary. The mechanism for doing this depends entirely
on the textport's model. (In fact, only the Ivy model implements secondary
selection.) The type-in point is always at one end or the other of the primary
selection.

54 8 TEXT EDITING

Primary selections in non-readonly textports may be in replace mode, also
called pending-delete mode. This means that any text that is inserted will replace
the primary selection, and that the Backspace and Delete keys will delete it.

Independent of the local selections are the two global selections de�ned by
Trestle: VBT.Source and VBT.Target. On X window systems, these are de�ned
by the X server, and are shared across applications. The Source selection, for
example, is e�ectively the \clipboard." Globals selections are \owned" by one
program at a time; in Trestle programs, they are owned by one VBT at a time.
While every textport may have a primary and secondary local selection, at most
one can own Source, and at most one can own Target. The contents of a global
selection are controlled by its owner.

The correspondence between local and global selections also depends entirely
on the model. Every model implements an operation called Copy, which is
de�ned as follows: the textport acquires ownership of Source, and copies the
Primary selection so that it is the contents of Source.

Some models establish an alias between a local and a global selection, which
means that when that textport owns the global selection, the contents of the
global selection are identical with the contents of the local selection.

In the Ivy model, for example, Primary is an alias for Target, and Secondary
is an alias for Source. In the Xterm model, Primary is an alias for Source. The
other models do not use aliasing at all; they implement Copy by making a
separate copy of the local selection. In those models, the contents of the global
selection are not visible; i.e., they are not displayed in the textport.

Local selections are usually highlighted in some way. The highlighting obeys
the following conventions, applied in this order:

1. A replace-mode Primary selection is highlighted with black text on a light
red background. (On monochrome screens, it is highlighted with \inverse
video": white text on a dark background.)

2. If a Source selection is visible (i.e., if it is aliased with a local selection),
it is highlighted with a thin, green underline. (On monochrome screens,
it is a thin, black underline.)

3. A Primary selection that is neither a replace-mode selection nor a Source
selection (e.g., a selection in the Emacs model), is underlined with a thick
line. On color screens, there is a further distinction: in a read-only text,
the underline is blue; otherwise, the underline is red.

A selection is represented by a pair of inclusive indexes (begin and end) into
the text. The current selection-indices can be retrieved via the GetSelection

procedure.

TYPE SelectionType = {Primary, Secondary};

PROCEDURE Select (v : T;

8.1 The TextPort Interface 55

time : VBT.TimeStamp;

begin: CARDINAL := 0;

end : CARDINAL := LAST (CARDINAL);

sel := SelectionType.Primary;

replaceMode := FALSE;

caretEnd := VText.WhichEnd.Right);

Make a selection in v, at event-time time. If begin and/or end are beyond the
end of the text, they will be clipped to the end of the text. Acquire ownership of
the corresponding VBT.Selection; if sel is SelectionType.Primary, acquire
ownership of the keyboard focus as well.

The parameters replaceMode and caretEnd are relevant only if the value of
sel is SelectionType.Primary. If replaceMode is TRUE and the entire selection
is writable, then Insert and VBT.Writewill replace the selected text; otherwise,
they cause the new text to be inserted at whichever end of the primary selection
is speci�ed by caretEnd.

PROCEDURE IsReplaceMode (v: T): BOOLEAN;

Return TRUE if the primary selection is in replace mode.

TYPE Extent = RECORD l, r: CARDINAL END;

CONST NotFound = Extent {LAST (CARDINAL), LAST (CARDINAL)};

PROCEDURE GetSelection (v: T; sel := SelectionType.Primary):

Extent;

Return the extent of the most recent selection in v. If there is no such

selection, return NotFound.

PROCEDURE GetSelectedText (v: T; sel := SelectionType.Primary):

TEXT;

<* LL.sup = VBT.mu *>

Return the text of the most recent selection in v if there is one, or the

empty string otherwise.

PROCEDURE PutSelectedText (v: T;

t: TEXT;

sel := SelectionType.Primary);

<* LL.sup = VBT.mu *>

Replace the text of the most recent selection in v, if there is one, with t.

If there is no such selection, this is a no-op.

56 8 TEXT EDITING

8.1.5 Feedback

A textport maintains a \modi�ed" ag. Any operation that changes the text
will cause this ag to be set to TRUE. If it was previously FALSE, then the
implementation calls v.modified() after the change has already happened to
v. The default is a no-op. The IsModified and SetModified procedures set
and test this ag, respectively.

PROCEDURE IsModified (v: T): BOOLEAN;

Return the value of the \modi�ed" ag for v. Any change to the text will

cause the ag to be set to TRUE.

PROCEDURE SetModified (v: T; value: BOOLEAN);

Set the value of the \modi�ed" ag for v. This will not invoke v.modified,

even if value is TRUE.

A textport also maintains a scrollbar (optional). See the TextEditVBT interface
in Section 8.3.

PROCEDURE Normalize (v: T; to := -1);

Scroll v if necessary to ensure that position to is visible. If to < 0, it

refers to the current type-in point. If to is larger than the length of the

text, normalizes to the end of the text.

8.1.6 Direct access to the text

PROCEDURE GetVText (v: T): VText.T;

For wizards only: extract the underlying VText. It is legal to create and

manipulate highlighting intervals on it. It is legal to run readers on it,

provided you can be sure that you are locking out concurrent change (for

example, by holding VBT.mu). It is not legal to modify it directly. It is

not legal to scroll it directly either, because that will leave the scrollbar

incorrect.

END TextPort.

8.2 The TypeinVBT Interface

INTERFACE TypeinVBT;

IMPORT Font, PaintOp, TextPort, VBT;

TYPE

T <: Public;

8.3 The TextEditVBT Interface 57

Public = TextPort.T OBJECT

<* LL.sup = VBT.mu *>

tabNext: VBT.T := NIL

METHODS

init (expandOnDemand := FALSE;

hMargin, vMargin := 0.5;

font := Font.BuiltIn;

colorScheme: PaintOp.ColorScheme := NIL;

wrap := TRUE;

readOnly := FALSE;

turnMargin := 0.5;

model := TextPort.Model.Default): T;

END;

END TypeinVBT.

TypeinVBT overrides the returnAction, tabAction, key, and shape methods.
The default returnActionmethod is a no-op, but most clients will override

this method.
The TextPort's height is initially set to the height of the tallest character in

the current font. Its default width is 30 times the width of the widest character
in the current font. The default height is one line, but if expandOnDemand is
TRUE, then SELF will expand (and contract) vertically as the text requires, so
that the entire text is visible in the window.

The default tabAction method tests whether SELF.nextTab is NIL. If
so, it calls the parent-method, TextPort.T.tabAction. If not, it sends a
miscellaneous code of type VBT.TakeSelectionwith the VBT.KBFocus selection
to SELF.nextTab, i.e., it asks the nextTab VBT to take the keyboard focus. In
addition, if that VBT is itself a TextPort, then it selects all the text in the
TextPort in replace-mode.

8.3 The TextEditVBT Interface

A TextEditVBT combines a textport with a scrollbar.

INTERFACE TextEditVBT;

IMPORT TextPort, TextPortClass, VBT;

TYPE

T <: Public;

Public = Private BRANDED OBJECT

(* READONLY after init *)

tp: TextPort.T := NIL;

sb: Scrollbar := NIL;

METHODS

58 8 TEXT EDITING

<* LL.sup = VBT.mu *>

init (scrollable := TRUE): T

END;

Private <: VBT.T;

Scrollbar <: TextPortClass.Scrollbar;

The call v.init() initializes v as a TextEditVBT and returns v. If the textport,
v.tp, is NIL, then a new textport will be allocated, initialized (with default
parameters), and assigned to v.tp. If scrollable is FALSE, then there will be
no scrollbar. If scrollable is TRUE but v.sb is NIL, then a new scrollbar will
be allocated, initialized as a vertical scrollbar with the textport's color scheme,
and assigned to v.sb.

If v is scrollable, then the default layout will contain the scrollbar, a thin
vertical bar, and the textport, laid out horizontally.

END TextEditVBT.

8.4 The TypescriptVBT Interface

A TypescriptVBT is a subtype of TextEditVBT, with additional features to
make it serve as a \glass teletype" with a memory.

Abstractly, a typescript contains

reader(v) an intermittent, unseekable reader
writer(v) a bu�ered, unseekable writer
readingThread(v) a thread

reader(v) provides the client with input that the user typed. writer(v) is
used to display output. The reader and writer are paired such that the writer
is ushed whenever a seek blocks on the reader. The writer is not ushed at
every newline.

All input to the typescript, once it has been read, and all output, become
part of the history of the typescript, and is not modi�able; it remains until the
client deletes it by calling ClearHistory. Selections that lie fully or partially
within the history region are never \replace-mode" selections (see Section A.4.2,
page 117). Any attempt to type or insert text in the history region becomes an
insertion at the end of the typescript instead.

readingThread(v) is initially NIL.When a client reads from v, readingThread(v)
is set to Thread.Self(). The handleInterrupt method (see below) alerts
readingThread(v). This is useful when the reading thread is blocked waiting
for input.

A typescript's textport, v.tp, must be of type TypescriptVBT.Port (which
is a subtype of TextPort.T). The textport's returnAction method makes the
text of the current type-in region available to the reader and no longer editable.
The textport's setReadOnly method is a no-op.

8.4 The TypescriptVBT Interface 59

Typescripts do not allow the use of Undo and Redo.

INTERFACE TypescriptVBT;

IMPORT Rd, TextEditVBT, TextPort, VBT, Wr, Thread;

TYPE

T <: Public;

Public = TextEditVBT.T OBJECT

METHODS

<* LL.sup <= VBT.mu *>

init (scrollable := TRUE): T;

interrupt (time: VBT.TimeStamp);

handleInterrupt (time: VBT.TimeStamp);

terminate ();

setThread (thread: Thread.T := NIL);

END;

Port <: TextPort.T;

The call v.init() initializes v as an empty typescript.
It is a checked runtime error if v.tp is NIL or is not of type TypescriptVBT.Port,

which is a subtype of TextPort.T.
The call v.interrupt(time) simulates an interrupt by ushing any pending

type-in, writing the characters ^C, and then calling v.handleInterrupt(time).
The call v.handleInterrupt(time) alerts readingThread(v).
After v.terminate() is called, subsequent attempts to read from v will

causes it to report end of �le, and v becomes unresponsive to further user input,
although it will continue to display output written to its output stream. This
is appropriate when v is being discarded.

The call v.setThread(thread) changes readingThread(v). This can
be used to protect Thread.Self() from being alerted after it has �nished
reading from reader(v). Subsequent reads on reader(v) will reset the
readingThread(v) to Thread.Self().

TYPE

Reader <: PublicReader;

PublicReader = Rd.T OBJECT METHODS typescript (): T END;

Writer <: PublicWriter;

PublicWriter = Wr.T OBJECT METHODS typescript (): T END;

PROCEDURE GetRd (v: T): Reader;

Get the input stream for v. By de�nition,

GetRd(v).typescript() = v

PROCEDURE GetWr (v: T): Writer;

60 8 TEXT EDITING

Get the output stream for v. By de�nition,

GetWr(v).typescript() = v

PROCEDURE GetHistory (v: T): TEXT; <* LL <= VBT.mu *>

Return the \history" text of v.

PROCEDURE ClearHistory (v: T); <* LL <= VBT.mu *>

Clear the \history" text of v.

END TypescriptVBT.

61

9 Miscellaneous Leaf VBTs

9.1 The ListVBT Interface

A ListVBT de�nes a VBT class for displaying a list (or table) of items. Each
item is in a cell. All cells are the same size. They are displayed in a single
vertical column, with a scrollbar.

The ListVBT itself deals with the details of being a VBT, maintains a
table that maps a cell-number to a cell-value, and maintains the selection, a
distinguished subset of the cells. It uses subsidiary objects to handle the details
of what cells look like on the screen (Painter), and how the list responds to
mouse clicks (Selector).

This interface contains basic versions of each of the subsidiary objects:

� TextPainter, which treats cells' values as TEXT and paints them.

� UniSelector, which maintains at most one selected cell, adjusted by
mouse clicks.

� MultiSelector, which uses mouse clicks for selection, but permits
multiple cells to be selected.

The client can subclass these, or provide entirely di�erent ones. A client that
wishes to take actions in response to mouse clicks should subclass a Selector.
Similarly, a client that wishes to display objects other than text strings should
subclass Painter.

9.1.1 Locking levels

ListVBT is internally synchronized; it can safely be called frommultiple threads.
All ListVBT.T methods have LL.sup < list. In addition, VBT.mu < list for
any list of type ListVBT.T.

VBT methods call Selector methods with LL.sup = VBT.mu. Selector

methods are permitted to call ListVBT.T methods.
ListVBT.T methods call Painter methods with the ListVBT.T's internal

mutex held. Painter methods must not call any of the ListVBT.T methods;
their locking level is such that LL.sup = list.

The TextPainter class uses its own internal lock for font information;
TextPainter.setFont(v,font) has LL.sup < v.

9.1.2 The type ListVBT.T

INTERFACE ListVBT;

IMPORT Font, PaintOp, Rect, VBT;

62 9 MISCELLANEOUS LEAF VBTS

TYPE Cell = INTEGER;

The number of a cell; the �rst cell-number is 0.

TYPE

T <: Public;

Private <: VBT.Split;

Public = Private OBJECT

painter : Painter := NIL;

selector: Selector := NIL;

METHODS

init (colors: PaintOp.ColorQuad): T;

setValue (this: Cell; value: REFANY);

getValue (this: Cell): REFANY;

count (): CARDINAL;

insertCells (at: Cell; n: CARDINAL);

removeCells (at: Cell; n: CARDINAL);

selectNone ();

selectOnly (this: Cell);

select (this: Cell; selected: BOOLEAN);

isSelected (this: Cell): BOOLEAN;

getAllSelected (): REF ARRAY OF Cell;

getFirstSelected (VAR this: Cell): BOOLEAN;

scrollTo (this: Cell);

scrollToShow (this: Cell);

reportVisible (first: Cell; num: CARDINAL);

END;

In the following descriptions, v is an object of type ListVBT.T, and a value n is
said to be in range if

0 � n < v.count()

v.painter is the list's painter; the client may read but not assign to this
�eld, although the client may provide a value at allocation time. If the actual
painter has methods allowing it to be modi�ed, the client is welcome to call
them, although the client and painter are then responsible for provoking any
necessary repaints.

v.selector is the list's selector; client may read but not assign to this
�eld, although the client may provide a value at allocation time. If the actual
selector has methods allowing it to be modi�ed, the client is welcome to call
them, although the client and selector are then responsible for any necessary
adjustments to the set of selected cells.

The call v.init(colors) initializes v as a ListVBT and returns v. It must
be called before any other method. colors is passed intact to the scroller;
colors.fg is used for a bar that separates the cells from the scroller. If
v.painter = NIL when this method is called, init will allocate and initialize

9.1 The ListVBT Interface 63

a TextPainter. If v.selector = NIL, init will allocate and initialize a
UniSelector. Neither the painter nor the selector need have been initialized
before this method is called. The list initially has no cells (and no selection).

In the call v.setValue(this,value), if this is in range, then record value

as the value of the cell this; otherwise do nothing.
In the call v.getValue(this), if this is in range, then return the previously

recorded value of the cell this; otherwise return NIL.
The call v.count() returns the number of cells.
The call v.insertCells(at,n) inserts n cells, starting at

MAX (0, MIN (at, v.count()))

Previously existing cells at and beyond at are renumbered appropriately, and
selections are relocated appropriately. The VBT will be repainted in due course.
The new cells' values are all NIL, and they are not selected.

The call v.removeCells(at, n) removes all cells in the range

[MAX (0, MIN (at, v.count ())) ..

-1 + MIN (at + n, v.count ())]

Subsequent cells are renumbered appropriately. The VBT will be repainted in
due course.

The call v.selectNone() makes the set of selected cells be empty.
In the call v.selectOnly(this), if this is in range, make the set of

selected cells be exactly this; otherwise make the list of selected cells be empty.
Equivalent to

v.selectNone(); v.select(this,TRUE)

In the call v.select(this,selected), if this is in range and selected is
TRUE, add this to the set of selected cells (without complaint if it's already
selected); otherwise if this is in range and selected is FALSE, remove it from
the set of selected cells (again without complaint). The VBT will be repainted
as necessary in due course.

The call v.isSelected(this) returns TRUE if this is in range and is a
selected cell; otherwise it returns FALSE.

The call v.getAllSelected() returns the set of selected cells. If there are
none, it returns a non-NIL REF to an array of length 0.

The call v.getFirstSelected(this) assigns to this the lowest-numbered
selected cell and returns TRUE; if there are no selected cells, it returns FALSE.

The call v.scrollTo(this) adjusts the list's scrolling position to place

MAX (0, MIN (this, v.count () - 1))

at the top of v's domain.
The call v.scrollToShow(this) adjusts the list's scrolling position to make

this visible.

64 9 MISCELLANEOUS LEAF VBTS

The ListVBT will call v.reportVisible(first, num) whenever the set of
visible cells changes (either because of scrolling or because of reshaping). (A
cell is \visible" if it is within the domain of the ListVBT; it may not be visible
to the user if other windows obscure the ListVBT.) The argument first is the
index of the �rst visible cell, and num is the number of visible cells. The default
for this method is a no-op; override it if you need the information it provides.
The locking level of the method is LL.sup = v (that is, the ListVBT itself is
locked when the method is called, so the method mustn't operate on v).

9.1.3 The Painter

Here is the de�nition of a Painter. In the comments about its methods, v is
the VBT in which the painting is to take place; it is the ListVBT.T or a subtype
of it. Recall that LL.sup = list for all methods, other than init.

TYPE

Painter = OBJECT

METHODS

init (): Painter;

height (v: VBT.T): INTEGER;

paint (v : VBT.T;

r : Rect.T;

value : REFANY;

index : CARDINAL;

selected: BOOLEAN;

bad : Rect.T);

select (v : VBT.T;

r : Rect.T;

value : REFANY;

index : CARDINAL;

selected: BOOLEAN);

erase (v: VBT.T; r: Rect.T);

END;

The call p.init() initializes p as a Painter and returns p.
The call p.height(v) returns the pixel height of each cell if painted in v.

The list caches the result of this call, so it needn't be very e�cient. It is called
only when the list has a non-empty domain. It gets re-evaluated whenever the
list's screen changes.

The call p.paint(v, r, value, index, select, bad) paints the cell with
the given index and value in the given rectangle (whose height will equal that
returned by p.height(), and some part of which will be visible). If selected is
TRUE, highlight the painted cell to indicate that it is in the set of selected cells.
bad is the subset of r that actually needs to be painted; bad is wholly contained
in r.

9.1 The ListVBT Interface 65

The call p.select(v, r, value, index, selected) changes the highlight
of the cell with the given index and value, according to selected, to show
whether it is in the set of selected cells. The cell has previously been painted;
its selection state has indeed changed. It's OK for this method to be identical to
paint, but it might be more e�cient or cause less icker, e.g. by just inverting
r.

The call p.erase(v, r) paints the given rectangle to show that it contains
no cells. Typically, this just �lls it with the background color used when painting
cells.

9.1.4 TextPainter

Perhaps the most common type of Painter is a TextPainter. It displays cells
whose values are text strings. Here is its public de�nition:

TYPE

TextPainter <: TextPainterPublic;

TextPainterPublic =

Painter OBJECT

METHODS

init (bg := PaintOp.Bg;

fg := PaintOp.Fg;

hiliteBg := PaintOp.Fg;

hiliteFg := PaintOp.Bg;

font := Font.BuiltIn): TextPainter;

setFont (v: VBT.T; font: Font.T); <* LL.sup < v *>

END;

The call p.init(...) initializes p as a TextPainter and returns p. Unselected
cells are painted with fg text on bg; selected cells are painted with hiliteFg

text on hiliteBg; erased areas are painted with bg. Text is drawn using font.
After the call p.setFont(v, font), the TextPainter uses font for subse-

quent painting of values; the call also marks v for redisplay. v should be the
relevant ListVBT.T.

9.1.5 The Selector

Here is the de�nition of Selector. Recall that LL.sup = VBT.mu for all methods
other than init.

TYPE

Selector =

OBJECT

METHODS

init (v: T): Selector;

insideClick (READONLY cd: VBT.MouseRec; this: Cell);

66 9 MISCELLANEOUS LEAF VBTS

outsideClick (READONLY cd: VBT.MouseRec);

insideDrag (READONLY cd: VBT.PositionRec; this: Cell);

outsideDrag (READONLY cd: VBT.PositionRec);

END;

The call s.init(v) initializes s as a Selector and returns s. The ListVBT v

need not have been initialized before this method is called.
The call s.insideClick(cd, this) is called on a FirstDown mouse click

inside the cell, or on any mouse click inside the cell while we have the mouse
focus. On any click other than LastUp, the list itself has set a cage so that it
receives position reports during subsequent drags.

The call s.outsideClick(cd) is called when there is a FirstDown click in
the ListVBT that is not in a cell, or on any mouse click not in a cell while we
have the mouse focus. On any click other than LastUp, the list itself has set a
cage so that it receives position reports during subsequent drags.

The call s.insideDrag(cd) is called if the list has received a FirstDown

click and a subsequent position report with the mouse not in any cell. The list
itself has set a cage so that it receives further position reports.

The call s.outsideDrag(cd) is called if the list has the mouse focus and
receives a subsequent position report with the mouse in this cell. The list itself
has set a cage so that it receives further position reports.

9.1.6 UniSelector and MultiSelector

One common class of Selector is a UniSelector. It maintains the invariant
that there is at most one selected cell. On an insideClick �rstDown, or an
insideDrag, it removes any previous selection and then selects this cell. Its
other methods do nothing. Here is its declaration:

TYPE

UniSelector <: Selector;

The other common class of Selector is MultiSelector. It permits multiple
cells to be selected. On an insideClick �rstDown, it remembers this cell as the
anchor; if this is not a shift-click, it calls selectNone and inverts the selection
state of this cell. On an insideDrag, it makes the selection state of all cells
between this cell and the anchor be the same as that of the anchor. Here is its
declaration:

TYPE

MultiSelector <: Selector;

END ListVBT.

9.2 The FileBrowserVBT Interface

A FileBrowserVBT displays the �les in a directory, and allows the user to
traverse the �le system and to select one or more �les. There are two additional

9.2 The FileBrowserVBT Interface 67

widgets that can be associated with a FileBrowserVBT. A helper is a type-in
�eld that displays the pathname of the directory and allows the user to type
new pathnames. A directory-menu is a menu containing the names of each level
in the directory tree, with the root at the bottom; you can go to any level in
the tree by selecting the appropriate item in the menu.

There are two user-actions, selecting and activating.

� The user may select items, either by single-clicking on an item to select
just that one, or by single-clicking and dragging to select a range. Shift-
clicking adds to the selection. A change in selection is reported to the
client by invoking the selectItems method. The client can read the
current selection by calling GetFile or GetFiles.

� The user may activate an item, either by double-clicking on it, or by typing
its name in the helper followed by Return.

Activation of a �le is reported to the client by invoking the activateFile
method, whose default is a no-op.

Activation of a directory is reported by invoking the activateDirmethod,
whose default behavior is to call Set to display the activated directory.

The client can distinguish between a double-click and Return by looking
at the AnyEvent.T passed to the activation method. A double-click will
be reported as an AnyEvent.Mouse, and Return will be reported as an
AnyEvent.Key.

Directories are indicated in the display by showing some text (e.g., \(dir)")
after the name, but that is not part of the pathname returned by getValue,
GetFile, GetFiles, or the value passed to activateDir.

A background thread calls Refresh(v) for every open �lebrowser v, once per
second, to see whether it needs to be updated (although a distributed �lesystem
may cause a substantial delay before the change is noticed).

FileBrowserVBT is internally synchronized.

INTERFACE FileBrowserVBT;

IMPORT AnchorSplit, AnyEvent, Font, ListVBT, PaintOp,

Pathname, Shadow, TextList, TypeinVBT, VBT;

TYPE

T <: Public;

Public =

ListVBT.T OBJECT

METHODS

<* LL.sup <= VBT.mu *>

init (font := Font.BuiltIn;

colors: PaintOp.ColorQuad := NIL): T;

68 9 MISCELLANEOUS LEAF VBTS

<* LL.sup = VBT.mu *>

selectItems (event: AnyEvent.T);

activateFile (filename: Pathname.T; event: AnyEvent.T);

activateDir (dirname : Pathname.T; event: AnyEvent.T);

error (err: E);

END;

The call v.init(...) initializes v as a FileBrowserVBT. If v.painter is a
subtype of ListVBT.TextPainter, init calls v.paint.setFont(font). The
selector �eld must be either NIL (in which case a new selector is created) or
a subtype of FileBrowserVBT.Selector. The initial state of the �lebrowser is
the current working directory, as returned by Process.GetWorkingDirectory.

The implementation calls v.selectItems(event) when the user changes
the selection using the mouse.

When the user double-clicks on a �le in the browser, the implementation
calls v.activateFile(filename, event), where filename in the absolute
pathname corresponding to the �rst selected item. If the user types Return
in the helper, the implementation calls v.activateFile(filename, event),
where filename is either the pathname in the helper, if that was absolute, or
absolute pathname corresponding to

Pathname.Join (GetDir(v), 'helper text', NIL)

Don't forget that if activateFile is being called because of a double-click,
multiple �les might be selected in the browser, even though you are given only
one in the filename parameter.

The implementation calls v.activateDir(dir) when a directory is acti-
vated. The normal action is simply to set v to view that directory, relative
to GetDir(v). If an error occurs during the activation, the error method is
invoked.

The implementation calls v.error(...) when an error occurs during user
action in v, and the Error exception cannot be raised (e.g., because it happened
in a separate thread). Some examples of errors are as follows: the user has
typed a nonexistent directory in the path; the current directory has become
inaccessible; the user has no permission to read the directory. The default
method is a no-op. By overriding this method, the client can provide better
information to the user.

The error method is passed an E object containing information about the
error that occurred. Here is its de�nition:

EXCEPTION Error (E);

TYPE

E = OBJECT

v : T;

text: TEXT := "";

path: Pathname.T := ""

9.2 The FileBrowserVBT Interface 69

END;

The argument to the Error exception includes the FileBrowserVBT itself,

along with a descriptive message and the pathname in question when the

error occurred.

Finally, if you create a subtype of FileBrowserVBT (which is a subtype of
ListVBT.T) and you specify a selector for it, it must be a subtype of Selector:

TYPE Selector <: ListVBT.MultiSelector;

9.2.1 The Helper

The FileBrowser's helper (see page 67) is a TypeinVBT. Once the user types in
the helper, any selected items in the browser are unselected. If the user types
Return in the browser, that will activate the name in the Helper.

If an error occurs during the activation, the errormethod of the �lebrowser
to which the helper is attached will be invoked.

TYPE Helper <: TypeinVBT.T;

PROCEDURE SetHelper (v: T; helper: Helper) RAISES {Error};

<* LL.sup = VBT.mu *>

Sets the helper for v to be helper, and �lls it with GetDir(v).

9.2.2 The Directory-Menu

The directory menu shows the name of each of the parent directories, going back
to the root directory.

TYPE

DirMenu <: PublicDirMenu;

PublicDirMenu =

AnchorSplit.T OBJECT

METHODS

<* LL.sup <= VBT.mu *>

init (font := Font.BuiltIn;

shadow: Shadow.T := NIL;

n : CARDINAL := 0): DirMenu;

<* LL.sup = VBT.mu *>

setFont (font: Font.T);

END;

The font and shadow control the appearance of the text within the menu. As
usual, if shadow is NIL, then Shadow.None is used instead. The parameter n is
used by AnchorSplit to determine the ZSplit in which to install the menu.

70 9 MISCELLANEOUS LEAF VBTS

PROCEDURE SetDirMenu (v: T; dm: DirMenu);

<* LL.sup = VBT.mu *>

Sets the directory-menu of v to be dm and �ll it with the current directory.

9.2.3 FileBrowser options

A �le browser can be \read-only":

PROCEDURE SetReadOnly (v: T; readOnly: BOOLEAN);

<* LL.sup = VBT.mu *>

Change the \read-only" mode of v to be readOnly.

If a �le browser is \read-only" then in subsequent calls to

v.activateFile(filename)

filename is guaranteed to exist. Otherwise, the user can type the name of a
non-existing �le into the helper. A newly initialized FileBrowserVBT is not
read-only.

By default all �les in the directory are displayed, but the following procedure
can be used to �lter which �les are shown:

PROCEDURE SetSuffixes (v: T; suffixes: TEXT);

<* LL.sup = VBT.mu *>

Specify which suffixes are to be displayed.

If suffixes is not the empty string, only �les with the speci�ed su�xes (and
all directories) will be displayed. The format of suffixes is a sequence of
su�xes (not including the period) separated by non-alphanumeric characters
(e.g., spaces). The special su�x $ indicates \�les with no su�x." Calling
SetSuffixes procedure does not force v to be redisplayed.

9.2.4 Setting the displayed directory

PROCEDURE Set (v : T;

pathname: Pathname.T;

time : VBT.TimeStamp := 0) RAISES {Error};

<* LL.sup = VBT.mu *>

Set the display state of v.

The pathname may be absolute or relative; if it's relative, it is relative to the
current displayed directory.

If pathname refers to a non-existent or inaccessible directory, Error will be
raised. The exception will also be raised if pathname refers to a non-existent
�le and v is read-only.

9.3 The NumericVBT Interface 71

If time is not zero and there is a helper, then the helper will take the
keyboard focus and will display its new contents in replace-mode, ready for
the user to type something in its place.

PROCEDURE Unselect (v: T);

<* LL.sup = VBT.mu *>

Put v into the no-selection state, without changing the current directory.

Equivalent to v.selectNone().

PROCEDURE Refresh (v: T) RAISES {Error};

<* LL.sup = VBT.mu *>

Update the display without changing the directory.

If v's domain is not empty, and its directory has been Set, and the directory has
changed since the last time it was displayed, then v will be marked for redisplay.
Error is raised only if the directory has become inaccessible for some reason;
in this case, the browser goes to the empty state, so that if the client catches
Error and takes no other action, the browser will be empty but not broken.

9.2.5 Retrieving selections from the browser

PROCEDURE GetFiles (v: T): TextList.T RAISES {Error};

<* LL.sup = VBT.mu *>

Return the current selections of v, or NIL if there are no selections. The

list includes \full" pathnames; they satisfy Pathname.Absolute, but

they may contain symbolic links. Use FS.GetAbsolutePathname to get a

pathname with no symbolic links.

PROCEDURE GetFile (v: T): Pathname.T RAISES {Error};

<* LL.sup = VBT.mu *>

Return the �rst selection, or the empty string if there are no selections.

PROCEDURE GetDir (v: T): Pathname.T;

<* LL.sup = VBT.mu *>

Return the current displayed directory of v. Returns an empty string if v

is in the \empty" state.

END FileBrowserVBT.

9.3 The NumericVBT Interface

A NumericVBT is a VBT class for displaying and changing an integer within
some range. A NumericVBT has three parts (from left to right): a minus button,
a type-in �eld, and a plus button. The type-in �eld is restricted to contain

72 9 MISCELLANEOUS LEAF VBTS

an integer within a speci�ed range; it can be changed by editing (it uses the
default editing model), or by typing Return, or by clicking on the plus or minus
buttons. The plus/minus buttons are trill buttons, so clicking and holding will
cause the value of the NumericVBT to continuously increment/decrement.

The NumericVBT has a callback method that is called each time the user
types Return or click the plus or minus button. The default callback method is
a no-op.

INTERFACE NumericVBT;

IMPORT AnyEvent, Filter, Font, Shadow, TypeinVBT, VBT;

TYPE

T <: Public;

Public = Filter.T OBJECT

typein: Typein := NIL; (* READONLY after init *)

METHODS

<* LL.sup <= VBT.mu *>

init (min : INTEGER := FIRST (INTEGER);

max : INTEGER := LAST (INTEGER);

allowEmpty: BOOLEAN := FALSE;

naked : BOOLEAN := FALSE;

font : Font.T := Font.BuiltIn;

shadow : Shadow.T := NIL):

T;

callback (event: AnyEvent.T);

END;

Typein <: TypeinVBT.T;

The call to v.init(...) initializes v as a NumericVBT and returns v. The
integer stored with v, referred to as \the value in" v, is constrained to be in the
range

[min .. MAX (min, max)]

The initial value in v is equal to min.
If allowEmpty is TRUE, then \empty" (no text in the type-in area) is a distinct

and valid state, and can be tested by the procedure IsEmpty. The call Get(v)
in the empty state will return FIRST(INTEGER), regardless of whether this is in
the valid range. Clicking the plus/minus buttons has no e�ect when v is in the
empty state.

If naked is TRUE, then the numeric interactor appears as just a type-in �eld,
without plus or minus buttons.

IF v.typein is NIL when v.init(...) is called, then a new Typein will be
allocated and assigned to v.typein. Whether or not it was NIL at the time of
the call, it will be initialized via

v.typein(FALSE, 1.5, 1.5, font, shadow)

9.3 The NumericVBT Interface 73

That is, it will not be expandable, its margins will be 1.5 mm, and font and
shadow will determine its appearance.

The implementation calls

v.callback(event)

when the user clicks the plus/minus buttons, or types Return in the type-
in area. The event parameter reports the details of the event as either an
AnyEvent.Mouse (clicking on the plus/minus buttons) or an AnyEvent.Key

(typing Return in the type-in area). The value in v is changed before
v.callback is invoked.

The value in v is range-checked before the callback is called, and in every
call to Get. If the number is out of range, the nearest number in range will be
written into the type-in area, and that value will be returned to the caller of
Get.

PROCEDURE Put (v: T; n: INTEGER);

<* LL.sup = VBT.mu *>

Change the value in v to be

MIN(GetMax(v), MAX(GetMin(v), n))

and display this value in the type-in area. Note that v.callback is not

invoked.

PROCEDURE PutBounds (v: T; min, max: INTEGER);

<* LL.sup = VBT.mu *>

Change v.min to be min and v.max to be MAX(min, max), and then call

Put(v, Get(v)). The call to Put has the e�ect of projecting the value of

v into the new bounds.

PROCEDURE Get (v: T) : INTEGER; <* LL.sup = VBT.mu *>

Return the current value in v. This value is range-checked, in case the

user typed an out-of-range value without typing Return.

PROCEDURE GetMin (v: T): INTEGER; <* LL.sup = VBT.mu *>

PROCEDURE GetMax (v: T): INTEGER; <* LL.sup = VBT.mu *>

Return the indicated value associated with v.

PROCEDURE SetEmpty (v: T);

<* LL.sup = VBT.mu *>

Set v to the empty state. This is a no-op unless allowEmpty was TRUE

when v was initialized.

PROCEDURE IsEmpty (v: T): BOOLEAN;

74 9 MISCELLANEOUS LEAF VBTS

<* LL.sup = VBT.mu *>

Test whether v is in the empty state. If allowEmpty was not TRUE when

v was initialized, this procedure will always return FALSE.

PROCEDURE TakeFocus (v : T;

time : VBT.TimeStamp;

alsoSelect : BOOLEAN := TRUE):

BOOLEAN;

<* LL = VBT.mu *>

Cause the type-in area to grab the keyboard focus. If the focus could be

grabbed and if alsoSelect is set, the type-in area will make its entire

text the primary selection. Returns whether the keyboard focus could be

acquired.

END NumericVBT.

9.4 The ScrollerVBT Interface

A ScrollerVBT is a scrollbar with an orientation along an axis. For the sake of
brevity in this interface, we'll only talk about vertical scrollers. For horizontal
scrollers, replace phrases like top and bottom edges by left and right edges, and
so on.

Like a NumericVBT, a ScrollerVBT provides a bounded-value abstraction.
That is, a ScrollerVBT has a value associated with it, and that value is
guaranteed to stay within some bounds. Various user gestures change the value
and invoke a callback method on the ScrollerVBT. The callback method can
inquire the value of the scrollbar, and can change the value and bounds.

Visually, a scrollbar contains a stripe that spans some fraction of the height
of the scrollbar and is slightly narrower than the scrollbar. The stripe represents
the value of the scrollbar. Various user-gestures cause the stripe to move.

More speci�cally, the state of a ScrollerVBT consists of �ve integer
quantities: min, max, thumb, step, and value. The value is guaranteed to
stay in the range [min .. max-thumb]. Visually, the value is represented by
the position (top edge) of a stripe in the scroller, and thumb by the length of
the stripe. The amount that value should change when continuous scrolling is
given by step, the stepping amount.

Although each VBT class that uses a ScrollerVBT is free to associate any
meaning with the length of the stripe, the following convention is suggested for
using scrollbars to view an object:

The ratio of the height of the stripe to the height of the scrollbar
should be the same as the ratio of the amount of the object visible
vertically to its entire height. The position of top of the stripe reects
the position of top of the view of the object within the entire object.

9.4 The ScrollerVBT Interface 75

Here is some terminology and the user-interface provided by a ScrollerVBT:

� To scroll means to left-click or right-click in the scrollbar.

� You need to release the button relatively quickly, or else you'll start
continuous scrolling. You stop continuous scrolling by releasing the
button, by chord-cancelling or by moving the mouse.

� When you move the mouse, you are then using proportional scrolling. This
means that the more that you move the mouse vertically, the more the
stripe will be moved in the direction of the mouse movement. You stop
proportional scrolling by upclicking or chord-cancelling.

� The left and right buttons are inverses: the left button moves the stripe
downward and the right button moves the stripe upward.

� You thumb with a middle-click. The top of the stripe moves to the position
of the cursor. Thus, middle-click above the top of the stripe moves the
stripe up, and middle-click below the top moves the stripe down.

� Middle-drag causes continuous thumbing. As you drag to a new position,
the top of the stripe moves to match the current cursor position. You stop
continuous thumbing by middle-upclicking or chord-canceling.

If you want a di�erent user interface, you need to subclass various methods
(e.g., a thumb, scroll, autoscroll) of the scrollbar. These methods are de�ned
in the ScrollerVBTClass interface.

INTERFACE ScrollerVBT;

IMPORT Axis, PaintOp, VBT;

TYPE

T <: Public;

Private <: VBT.T;

Public = Private OBJECT

METHODS

<* LL.sup = VBT.mu *>

init (axis : Axis.T;

min : INTEGER;

max : INTEGER;

colors: PaintOp.ColorQuad;

step : CARDINAL := 1;

thumb : CARDINAL := 0): T;

<* LL = VBT.mu *>

callback (READONLY cd: VBT.MouseRec);

END;

76 9 MISCELLANEOUS LEAF VBTS

The call to v.init(...) initializes v as a ScrollerVBT in the axis orientation.
It is displayed using colors.

The implementation calls v.callback(cd) after v's value has been changed
by the user; it is not called when the value is changed as the result of calls to
Put or PutBounds. The default callback method is a no-op.

PROCEDURE Put (v: T; n: INTEGER);

<* LL.sup = VBT.mu *>

Change the value of v, projected to [min .. max-thumb], and mark v

for redisplay.

PROCEDURE PutBounds (v : T;

min : INTEGER;

max : INTEGER;

thumb: CARDINAL := 0);

<* LL.sup = VBT.mu *>

Set the bounds, project v's value into [min .. max-thumb], and mark

v for redisplay.

PROCEDURE PutStep (v: T; step: CARDINAL);

<* LL.sup = VBT.mu *>

Change the amount that v's value should change while continuous scrolling

to step. If step = 0, scrolling will be disabled.

PROCEDURE Get (v: T): INTEGER; <* LL.sup = VBT.mu *>

PROCEDURE GetMin (v: T): INTEGER; <* LL.sup = VBT.mu *>

PROCEDURE GetMax (v: T): INTEGER; <* LL.sup = VBT.mu *>

PROCEDURE GetThumb (v: T): CARDINAL; <* LL.sup = VBT.mu *>

PROCEDURE GetStep (v: T): CARDINAL; <* LL.sup = VBT.mu *>

Return the current value, min, max, thumb, and step.

END ScrollerVBT.

77

10 Miscellaneous Filters

10.1 The FlexVBT Interface

The FlexVBT.T is a �lter whose shape is based on a natural size with some stretch
and shrink. If a natural amount is left unspeci�ed, the stretch and shrink are
applied relative to the child's size. If a stretch or shrink is left unspeci�ed, 0 is
assumed. All units are speci�ed in millimeters. See Figure 10.1 for examples.

This interface is similar to RigidVBT, but more powerful in that one can
specify a size based on a child's size and can dynamically change the size
speci�cation. Also, it presents a slightly di�erent model to the client: In
RigidVBT, one thinks in terms of the low and high bounds of some range. Here,
one thinks in terms of the amount thed natural size value can be stretched and
shrunk.

INTERFACE FlexVBT;

IMPORT Axis, Filter, VBT;

CONST

Large = 99999.0;

Missing = -Large;

Infinity = Large;

TYPE

SizeRange = RECORD natural, shrink, stretch: REAL END;

Shape = ARRAY Axis.T OF SizeRange;

Some useful shapes are de�ned at the end of this interface.

TYPE

T <: Public;

Public = Filter.T OBJECT

METHODS

<* LL.sup <= VBT.mu *>

init (ch: VBT.T; READONLY sh := Default): T

END;

The call v.init(ch, sh) initializes v as a FlexVBT with child ch and shape
speci�cation sh. The default shape causes v to be a no-op: it will simply return
the shape of its child as its own.

PROCEDURE FromAxis (ch: VBT.T;

ax: Axis.T;

READONLY sh: SizeRange := DefaultRange): T;

<* LL.sup <= VBT.mu *>

78 10 MISCELLANEOUS FILTERS

Return a FlexVBT whose shape speci�cation in the ax dimension is sh

and whose shape in the other dimension is that of ch.

PROCEDURE Set (v: T; READONLY sh: Shape);

<* LL.sup = VBT.mu.v *>

Change the shape of v to sh, and notify v's parent that v's size has

changed.

PROCEDURE Get (v: T): Shape;

<* LL.sup = VBT.mu.v *>

Get the shape of v.

PROCEDURE SetRange (v: T; ax: Axis.T; READONLY sr: SizeRange);

<* LL.sup = VBT.mu.v *>

Change the shape of v to sr along the ax axis, and notify v's parent that

v's size has changed.

The rest of this interface de�nes some useful shapes: Default uses child's size;
Fixed uses child's preferred, removing all shrink and stretch; Stretchy uses
child's preferred and shrink, giving in�nite stretch; and Rigid is a procedure to
set a shape to a speci�ed natural size, with neither stretch nor shrink.

CONST

Default = Shape{DefaultRange, DefaultRange};

DefaultRange =

SizeRange {natural := Missing,

shrink := Missing,

stretch := Missing};

Fixed = Shape{FixedRange, FixedRange};

FixedRange =

SizeRange {natural := Missing,

shrink := 0.0,

stretch := 0.0};

Stretchy = Shape{StretchyRange, StretchyRange};

StretchyRange =

SizeRange {natural := Missing,

shrink := Missing,

stretch := Infinity};

PROCEDURE RigidRange (natural: REAL): SizeRange;

<* LL = arbitrary *>

Return a SizeRange with the speci�ed natural amount and with no

stretch or shrink. Equivalent to

SizeRange {natural, 0.0, 0.0}

10.2 The ReactivityVBT Interface 79

PROCEDURE Rigid (hNat, vNat: REAL): Shape;

<* LL = arbitrary *>

Return a Shape with the speci�ed natural amounts long the horizontal

and vertical axes and with no stretch or shrink. Equivalent to

Shape {SizeRange {hNat, 0.0, 0.0},

SizeRange {vNat, 0.0, 0.0}}

END FlexVBT.

10.2 The ReactivityVBT Interface

A ReactivityVBT is a �lter that can make its child active, passive, dormant,
and invisible. The active state does nothing; mouse and keyboard events are
relayed to child. The passive state doesn't allow mouse or keyboard events to
go to the child. The dormant state doesn't send mouse or keyboard events to
the child; it also grays out the child. The vanish state also doesn't send mouse
or keyboard events to go to the child; in addition, it draws over the child in the
background color, thereby making it invisible.

When the state of a ReactivityVBT is set, the caller also speci�es a cursor
to be used.

If a VBT-descendant of a ReactivityVBT is painted, it will appear correctly.
For example, if the ReactivityVBT is in the vanished state, the descendant will
not appear until the state changes; if the ReactivityVBT is in a dormant state,
the descendant will be grayed out.

A ReactivityVBT also passes on any miscellaneous events to take the
keyboard focus to the descendant that last acquired the keyboard focus.

INTERFACE ReactivityVBT;

IMPORT Cursor, ETAgent, PaintOp, Rect, VBT;

TYPE

State = {Active, Passive, Dormant, Vanish};

T <: Public;

Public =

ETAgent.T OBJECT

METHODS

<* LL.sup <= VBT.mu *>

init (ch: VBT.T; colors: PaintOp.ColorScheme := NIL): T;

<* LL = VBT.mu.v *>

paintDormant (r: Rect.T; colors: PaintOp.ColorScheme);

END;

80 10 MISCELLANEOUS FILTERS

all missing

<q-p, q, q+r>

A no-op; reports the child's size

size

<size, size, size>

Constrains child's natural size to size, with
no stretch or shrink

- shrink

<q-shrink, q, q+r>

Forces child's shrink to be shrink; doesn't
change child's natural size or stretchability

+ stretch

<q-p, q, q+stretch>

Forces child's stretch to be stretch; doesn't
change child's natural size or shrinkability

- shrink + stretch

<q-shrink, q, q+stretch>

Changes child's shrink to be shrink and its
stretch to be stretch; doesn't change child's
natural size

size - shrink

<size-shrink, size, size>

Changes child's size to be size with no
stretchability and with shrink shrinkability

size + stretch

<size, size, size+stretch>

Changes child's size to be size with no
shrinkability and with stretch stretchability

size - shrink + stretch

<size-shrink, size, size+stretch>

Changes child's size to be size with shrink

shrinkability and with stretch stretchability

This table describes what Shape reports, as a function of its child's size. The
notation < q� p; q; q+ r > refers to the child's size: the natural size is q; it has
p shrinkability, so it can shrink to a minimum of q � p, and it can stretch to a
maximum of q + r.

10.3 The ScaleFilter Interface 81

The call v.init(..) initializes v as a ReactivityVBT with child ch and with
an initial state of Active. If colors is NIL, then PaintOp.bgFg is used instead.
The colors are used to draw the vanished and dormant states.

The implementation calls v.paintDormant(r, colors) to paint the part
of ch bounded by rectangle r when v's state is Dormant. The \current colors"
of v are passed as colors. Initially, the current colors are those that were
speci�ed when the ReactivityVBT was initialized. They can be changed using
the SetColors procedure. The default method paints a Pixmap.Gray texture
using colors.transparentBg.

PROCEDURE Set (v: T; state: State; cursor: Cursor.T);

<* LL.sup = VBT.mu *>

Change v's state and cursor, and mark v for redisplay.

PROCEDURE Get (v: T): State;

<* LL.sup = VBT.mu *>

Retrieve v's current state.

PROCEDURE GetCursor (v: T): Cursor.T;

<* LL.sup = VBT.mu *>

Retrieve v's current cursor.

PROCEDURE SetColors (v: T; colors: PaintOp.ColorScheme);

<* LL.sup = VBT.mu *>

Change the colors that v uses for the Dormant and Vanish states. If v is

currently in the Dormant or Vanish state, mark v for redisplay.

END ReactivityVBT.

10.3 The ScaleFilter Interface

A ScaleFilter is a multi-�lter whose child's screentype is the same as the
parent's except that the resolution is scaled.

INTERFACE ScaleFilter;

IMPORT VBT;

TYPE

<* SUBTYPE T <: MultiFilter.T *>

T <: Public;

Private <: VBT.T;

Public = Private OBJECT

METHODS

82 10 MISCELLANEOUS FILTERS

<* LL.sup <= VBT.mu *>

init (ch: VBT.T): T

END;

The call v.init(ch) initializes v as a ScaleFilter with multi-child ch and
with horizontal and vertical scale factors both equal to 1.0.

There are two ways you can use a ScaleFilter: Procedure Scale allows you to
explicitly set a horizontal and vertical scale factor. Procedure AutoScale looks
at the preferred size of the child and dynamically sets the scale factors such that
the child's preferred size always �lls its domain.

PROCEDURE Scale (v: T; hscale, vscale: REAL);

<* LL.sup = VBT.mu.v *>

Set v's horizontal and vertical scale factors to be hscale and vscale

respectively, and mark v for redisplay.

Thus, if the v has resolution of px and py horizontally and vertically, then the
resolution of v's multi-child will be hscale*px and vscale*py.

Note that the locking level of Scale does not require the full share of VBT.mu.
Therefore, it can be called from v's reshape or rescreen method, for example,
since those methods are called with only v's share of VBT.mu locked. This fact
is useful for the implementation of procedure AutoScale:

PROCEDURE AutoScale (v: T; keepAspectRatio := FALSE);

<* LL.sup = VBT.mu *>

Set v's scale factor such that the preferred size of v's child ch is scaled to

�t into VBT.Domain(ch). If keepAspectRatio is TRUE, then ch is scaled

by the same amount f both horizontally and vertically. The amount f is

chosen so that the preferred size of ch just �ts in the larger direction of v

and �ts �ne in the other direction. In any event, v is marked for redisplay.

The call to AutoScale has the e�ect of causing Scale to be called each time
that v is reshaped. Thus, it is important that Scale have a locking level of
VBT.mu.v rather than simply VBT.mu.

PROCEDURE Get(v: T; VAR (* OUT *) hscale, vscale: REAL);

<* LL.sup = VBT.mu *>

Return v's current horizontal and vertical scale factors.

If Scale was called more recently than AutoScale, then Get returns the values
passed to Scale. On the other hand, if AutoScale was called more recently,
then Get will return values that reect scaling for v's current domain.

END ScaleFilter.

10.4 The ViewportVBT Interface 83

10.4 The ViewportVBT Interface

A ViewportVBT is a multi-�lter that displays multiple views of a child VBT, with
optional horizontal and vertical scrollbars. When the child's preferred size is
larger than the viewport's interior (that is, the screen of the viewport minus the
scrollbars), the child is reformatted to its preferred size. Since only part of the
child is visible, the user can pan the child using the scrollbars. When the child's
preferred size is smaller than the viewport's screen, the child is reformatted to
the size of the viewport interior, and the scrollbars are ine�ective.

Views may be added or deleted under program control or by appropriate
gestures in the scrollbar: Option Left click adds a new view after the view in
which the user clicked. Option Right click removes the view (unless, of course,
it would leave the viewport with zero views!).

INTERFACE ViewportVBT;

IMPORT Axis, HVSplit, Rect, Shadow, VBT;

TYPE

<* SUBTYPE T <: MultiFilter.T *>

T <: Public;

Public = HVSplit.T OBJECT

METHODS

<* LL <= VBT.mu *>

init (ch : VBT.T;

axis : Axis.T := Axis.T.Ver;

shadow : Shadow.T := NIL;

step : CARDINAL := 10;

adjustableViews: BOOLEAN := TRUE;

scrollStyle := ScrollStyle.AlaViewport;

shapeStyle := ShapeStyle.Unrelated): T;

END;

The call to v.init(..) initializes v as a ViewportVBT.T. The axis parameter
says whether the views are arranged vertically or horizontally. step is the
number of pixels to move while auto-scrolling. shadow gives the shadow for
displaying scrollbars, resets and hvbars. When adjustableViews is TRUE, an
HVBar will be inserted between views so the user can adjust the screen allocated
to each view. scrollStyle and shapeStyle are explained below.

The internal structure of a viewport is a rather complex collection of
JoinedVBTs, HVSplits, ScrollerVBTs, and others. It depends on the options
with which the viewport was created. Be sure to use the MultiFilter interface
to get at the child.

TYPE

View = INTEGER;

84 10 MISCELLANEOUS FILTERS

A View is an internal ID for a view. The value is valid for the life of a view (i.e.,
until it is removed by a user gesture or by a call to RemoveView). Thereafter,
the ID may be reused. The initial view created by the init method has a value
of 0.

A viewport can be created with a number of di�erent styles of scrollbars:

TYPE

ScrollStyle =

{HorAndVer,

HorOnly,

VerOnly,

NoScroll,

AlaViewport,

Auto};

The styles are as follows:

� HorAndVer puts a horizontal and vertical scrollbar on every view. In
addition, nestled between the scrollbars in the southwest corner, there's a
little \reset" button that moves the northwest corner of the child to the
northwest corner of the view.

� HorOnly places a scrollbar at the bottom.

� VerOnly places a scrollbar at the left side.

� NoScroll speci�es that views will not have scrollbars.

� AlaViewport speci�es that there is a scrollbar in the same axis as the
viewport. Thus, AlaViewport for a vertical viewport is equivalent to
VerOnly.

� Auto speci�es that scrollbars appear only when the preferred size of the
child exceeds the size of the viewport (in that dimension).

There are two possible shape-relationships between a viewport and its child:

TYPE ShapeStyle = {Unrelated, Related};

Unrelatedmakes the shape of the child equal to its preferred shape|completely
unrelated to the viewport's current shape.

Related makes the child's shape equal to the viewport's shape in the non-
axis direction of the viewport. In the viewport's axis direction, the child's
preferred shape is used. For example, the width of the child in a Vertical

viewport is the width of the viewport.

10.4 The ViewportVBT Interface 85

10.4.1 Panning the contents

PROCEDURE ScrollTo (v : T;

READONLY r : Rect.T;

view : View := 0;

force: BOOLEAN := TRUE);

<* LL = VBT.mu *>

Scroll the viewport v so that rectangle r is visible in view view. Rectangle

r will be roughly centered within v, but if r is too big to be seen entirely,

its northwest corner will be made visible. If force is FALSE and r is

already entirely visible, this procedure is a no-op.

PROCEDURE Normalize (v: T; w: VBT.T; view: View := 0);

<* LL = VBT.mu *>

If the domain of w is non-empty and it's entirely visible, do nothing.

Otherwise, do a ScrollTo to w's domain in view view.

At �rst blush, Normalize seems to be just a call to

ScrollTo(v, VBT.Domain(w), FALSE)

However, if w doesn't have a domain, as is the case when w has been recently
installed and the VBT tree has not been redisplayed, a thread is forked to wait
until it can acquire VBT.mu (recall that Normalize and ScrollTo have LL =

VBT.mu). After the lock is acquired, all pending redisplays are satis�ed, and
then ScrollTo of w's domain is invoked. Since the thread executes outside
event-time, it explicitly causes all marked VBTs to be redisplayed after it calls
ScrollTo.

10.4.2 Multiple views

PROCEDURE AddView (v: T; pred: View := -1; split := TRUE):

View;

<* LL = VBT.mu *>

Add another view after the view pred (-1 means add as the �rst view)

of the child. If split is TRUE, then the new view and the view pred will

occupy the area previously occupied by the view pred. The area of all

other views will be unchanged. The value returned is an internal ID for

the view. This value may be reused after the view has been removed.

PROCEDURE RemoveView (v: T; view: View);

<* LL = VBT.mu *>

Remove the view view from v's child. The ID for the initial view created

by the init method is 0.

END ViewportVBT.

86 11 MISCELLANEOUS SPLITS

11 Miscellaneous Splits

11.1 The SplitterVBT Interface

A SplitterVBT.T is a parent window that partitions its screen into a row or
column of children windows, depending on the axis of the split, with adjusting
bars between all children. The adjusting bars allow the user to adjust the
allocation of screen real estate among the splitter's children, subject to the size
constraints of each child.

A SplitterVBT is subclass of an HVSplit, but through the MultiSpit

interface, only the \interesting" children of the HVSplit are exposed. That is,
adjusting bars are never exposed to the client: they are inserted automatically
when a new child is added, and removed as necessary. To access all children,
including the adjusting bars, use the Split interface instead. The HVSplit

routines Move, Adjust, FeasibleRange, AvailSize, and AxisOf can be used.

INTERFACE SplitterVBT;

IMPORT Axis, HVSplit, PaintOp, Pixmap;

TYPE

<* SUBTYPE T <: MultiSplit.T *>

T <: Public;

Public = HVSplit.T OBJECT

METHODS

<* LL <= VBT.mu *>

init (hv : Axis.T;

size : REAL := DefaultSize;

op : PaintOp.T := PaintOp.BgFg;

txt : Pixmap.T := Pixmap.Gray;

saveBits: BOOLEAN := FALSE;

parlim : INTEGER := -1): T;

END;

The call v.init(...) initializes v as a SplitterVBT with no children. See the
HVSplit interface for an explanation of parameters saveBits and parlim. See
the HVBar interface for an explanation of the size, op, and txt parameters.

CONST

DefaultSize = 2.0;

END SplitterVBT.

87

12 Installing Top-Level Windows

This section contains interfaces that support the processing of the X11 -display
and -geometry command-line options. If your application is installing a single
top-level window, the XTrestle interface will probably su�ce; otherwise, you'll
need to use the routines in XParam for processing the command-line options,
and use routines in Trestle (not XTrestle) for installing the windows.

12.1 The XTrestle Interface

XTrestle checks for X-style \-display" and \-geometry" command-line
switches and installs a top-level window accordingly. If your application install
more than one top-level window, you may �nd the routines in the XParam

interface helpful.

INTERFACE XTrestle;

IMPORT TrestleComm, VBT;

EXCEPTION Error;

PROCEDURE Install (v : VBT.T;

applName : TEXT := NIL;

inst : TEXT := NIL;

windowTitle: TEXT := NIL;

iconTitle : TEXT := NIL;

bgColorR : REAL := -1.0;

bgColorG : REAL := -1.0;

bgColorB : REAL := -1.0;

iconWindow : VBT.T := NIL)

RAISES {TrestleComm.Failure, Error};

<* LL.sup = VBT.mu *>

This is like Trestle.Install except that the locking level is di�erent and

the command line is parsed for X-style -display and -geometry options.

END XTrestle.

The syntax of these switches is described in the X manpage and in The X
Window System [5].

If there is a -display argument, it will be made the default Trestle
connection for those procedures in the Trestle interface that take a Trestle.T
as a parameter.

The TrestleComm.Failure exception is raised if a call to Trestle raises that
exception. The Error exception is raised if the parameter following -display

or -geometry contains any syntax errors (or is missing).

88 12 INSTALLING TOP-LEVEL WINDOWS

12.2 The XParam Interface

The XParam interface provides utilities for handling X-style -display and
-geometry command-line arguments. If your application installs a single
top-level window, the XTrestle interface may be more appropriate than this
interface.

INTERFACE XParam;

IMPORT Point, Rect, Trestle, TrestleComm;

Here are routines for manipulating the -display argument:

TYPE

Display = RECORD

hostname: TEXT := "";

display : CARDINAL := 0;

screen : CARDINAL := 0;

DECnet : BOOLEAN := FALSE

END;

PROCEDURE ParseDisplay (spec: TEXT): Display RAISES {Error};

<* LL = arbitrary *>

Return a parsed version of the -display argument in spec.

For example, if spec contains the string myrtle.pa.dec.com:0.2, the record
returned would be

Display{hostname := "myrtle.pa.dec.com",

display := 0, screen := 2, DECnet := FALSE}

PROCEDURE UnparseDisplay (READONLY d: Display): TEXT;

<* LL = arbitrary *>

Return the text-version of the -display argument d.

Here are routines for manipulating the -geometry argument:

CONST Missing = Point.T{-1, -1};

TYPE

Geometry =

RECORD

vertex := Rect.Vertex.NW; (* corner for displacement *)

dp := Point.Origin; (* displacement *)

size := Missing; (* width, height *)

END;

PROCEDURE ParseGeometry (spec: TEXT): Geometry RAISES {Error};

12.2 The XParam Interface 89

<* LL = arbitrary *>

Return a parsed version of the -geometry argument in spec.

For example, if spec contains the string 1024x800-0-10, the returned record
would be

Geometry {Rect.Vertex.SE,

Point.T {0, 10},

Point.T {1024, 800}}

The size �eld defaults to Missing. The horizontal and vertical displacements
default to Point.Origin (no displacement). The displacements are always
positive values; use the vertex �eld to �nd out from which corner they are
to be o�set.

PROCEDURE UnparseGeometry (READONLY g: Geometry): TEXT;

<* LL = arbitrary *>

Return the text-version of the -geometry argument g.

PROCEDURE Position (trsl: Trestle.T;

id : Trestle.ScreenID;

READONLY g : Geometry): Point.T

RAISES {TrestleComm.Failure};

<* LL.sup = VBT.mu *>

Return the position speci�ed by g in the screen coordinates for

the screenID id on the window system connected to trsl (cf.

Trestle.GetScreens). The value of g.size must not be Missing,

unless g.vertex is the northwest corner.

Here is the de�nition of the Error exception:

TYPE

Info = OBJECT

spec : TEXT;

index: CARDINAL

END;

GeometryInfo = Info BRANDED OBJECT END;

DisplayInfo = Info BRANDED OBJECT END;

EXCEPTION Error(Info);

Parsing errors are reported with the text (spec) and position (index) of

the �rst illegal character in the text.

END XParam.

90 12 INSTALLING TOP-LEVEL WINDOWS

12.2.1 An example

Here is an example of how to use this interface to install a VBT v as a top level
window, obeying the display and geometry arguments given to the application.
It relies on the Params interface, which provides the number of arguments passed
to the program, Params.Count, and a procedure to retrieve the value of the nth
argument, Params.Get(n).

EXCEPTION Error (TEXT);

VAR

display, geometry: TEXT := NIL;

d: XParam.DisplayRec;

g: XParam.Geometry;

i: CARDINAL := 1;

BEGIN

LOOP

IF i >= Params.Count - 1 THEN EXIT END;

WITH argument = Params.Get (i) DO

IF Text.Equal (argument, "-display") THEN

display := Params.Get (i + 1);

TRY d := XParam.ParseDisplay (display)

EXCEPT XParam.Error (info) =>

RAISE Error ("Illegal -display argument: "

& info.spec)

END;

INC (i, 2)

ELSIF Text.Equal (argument, "-geometry") THEN

geometry := Params.Get (i + 1);

TRY

g := XParam.ParseGeometry (geometry);

IF g.size = XParam.Missing THEN

WITH shapes = VBTClass.GetShapes (v, FALSE) DO

g.size.h := shapes [Axis.T.Hor].pref;

g.size.v := shapes [Axis.T.Ver].pref

END

END

EXCEPT XParam.Error (info) =>

RAISE Error ("Illegal -geometry argument: "

& info.spec);

END;

INC (i, 2)

ELSE INC (i)

END (* IF *)

END (* WITH *)

END; (* LOOP *)

12.2 The XParam Interface 91

At this point, if display is non-NIL, then d contains the information from
the -display argument. Similarly, if geometry is non-NIL, then g contains the
information from the -geometry argument. If the window-size speci�ciation
was missing, the preferred shape of the window is used.

Finally, we now process the display and geometry information:

VAR

trsl := Trestle.Connect (display);

screen: CARDINAL;

BEGIN

TrestleImpl.SetDefault (trsl);

Trestle.Attach (v, trsl);

Trestle.Decorate (v, ...);

IF geometry = NIL THEN

Trestle.MoveNear (v, NIL)

ELSE

StableVBT.SetShape (v, g.size.h, g.size.v)

IF d = NIL THEN

screen := Trestle.ScreenOf (v, Point.Origin).id

ELSE

screen := d.screen

END;

Trestle.Overlap (

v, screen, XParam.Position(trsl, screen, g))

END (* IF *)

END (* BEGIN *)

END; (* BEGIN *)

The call to TrestleImpl.SetDefault establishes the value of the -display

argument as the default Trestle connection. The call to StableVBT.SetShape is
used to control the size of a top-level window. The TrestleImpl and StableVBT

interfaces are part of Trestle.

92 13 UTILITIES

13 Utilities

This section contains a variety of utility interfaces that clients of VBTkit and
implementors of new VBTkit widgets might �nd useful.

13.1 The AnyEvent Interface

An AnyEvent.T is an object that can hold any of the Trestle event-time events.
This object type is useful for VBTmethods that are called in response to multiple
styles of user gestures. For instance, the callback method of a NumericVBT is
invoked either because a user clicked on the plus or minus button or because
the user typed a carriage return in the type-in �eld. The Trestle event is passed
to the callback method as an AnyEvent.T, and the callback method can
then use a TYPECASE to di�erentiate button clicks from carriage returns, and to
retrieve the data speci�c to each type of event.

The locking level is arbitrary for all procedures in this interface.

INTERFACE AnyEvent;

IMPORT VBT;

TYPE

T = BRANDED OBJECT END;

Key = T OBJECT key: VBT.KeyRec END;

Mouse = T OBJECT mouse: VBT.MouseRec END;

Position = T OBJECT position: VBT.PositionRec END;

Misc = T OBJECT misc: VBT.MiscRec END;

The four subtypes of AnyEvent.T correspond to the four event-time

Trestle events: keyboard, mouse, position, and miscellaneous.

PROCEDURE FromKey (

READONLY event: VBT.KeyRec): Key;

PROCEDURE FromMouse (

READONLY event: VBT.MouseRec): Mouse;

PROCEDURE FromPosition (

READONLY event: VBT.PositionRec): Position;

PROCEDURE FromMisc (

READONLY event: VBT.MiscRec): Misc;

Return event as an appropriate subtype of AnyEvent.T.

PROCEDURE TimeStamp (anyevent: T): VBT.TimeStamp;

Return the timestamp of the anyevent. It is a checked runtime error if

anyevent is not a proper subtype of AnyEvent.T.

END AnyEvent.

13.2 The AutoRepeat Interface 93

13.2 The AutoRepeat Interface

The AutoRepeat interface provides support for calling a procedure repetitively.
Auto-repeating typically takes place while a key or mouse button is held down,
although there is no direct relation between AutoRepeat and VBTs.

When an auto-repeat object ar is activated, it forks a timer thread that
calls ar.repeat() after firstWaitmilliseconds, and every period milliseconds
thereafter. However, there is a ow-control mechanism: if the call to
ar.repeat() has not returned by the time the next repetition is scheduled
to take place, the timer thread will wait. That is, repetitions cannot queue up
more than one deep.

An auto-repeat object ar is activated by a call to Start(ar), terminated by
a call to Stop(ar), and resumed by a call to Continue(ar).

All locking is handled within AutoRepeat; calls to Start(ar), Stop(ar), and
Continue(ar) are serialized on a per-ar basis. These procedures may be called
by a repeat method. Clients must not call the repeat method directly; it is
called by the timer thread subject to client-calls to Start, Stop, and Continue.
The AutoRepeat interface will never call a repeat method re-entrantly.

INTERFACE AutoRepeat;

TYPE

Milliseconds = CARDINAL;

CONST

DefaultFirstWait: Milliseconds = 500;

DefaultPeriod : Milliseconds = 66;

TYPE

T <: Public;

Public =

Private OBJECT

METHODS

init (firstWait: Milliseconds := DefaultFirstWait;

period : Milliseconds := DefaultPeriod): T;

repeat ();

canRepeat(): BOOLEAN;

END;

Private <: ROOT;

The call ar.init(firstWait, period) initializes ar as an AutoRepeat.T, and
it returns ar. The firstWait and period parameters are stored internally for
use by the Start and Continue procedures.

The call ar.canRepeat should return FALSE whenever there's reason to
suspect that a client might want to call Stop in the near future. The next
call to ar.repeat will be suspended for period milliseconds. The default for
this method always returns TRUE.

94 13 UTILITIES

The canRepeat method is intended for situations when a repeat method
takes more time than period milliseconds to complete. The problem with slow
repeat methods is that the scheduler might decide to always run the timer
thread (since it will want to call the repeat method as soon as the slow repeat

method completes), thereby blocking another thread from being able to call
Stop.

The default repeat method is a no-op.

PROCEDURE Start (ar: T);

Initiate auto-repeating for ar.

Start(ar) forks a timer thread that will wait ar.firstWait milliseconds
before calling ar.repeat() the �rst time, then ar.periodmilliseconds between
subsequent calls to ar.repeat(). This procedure is a no-op if ar is already
running.

PROCEDURE Stop (ar: T);

Stop auto-repeating as soon as possible.

After calling Stop(ar), the implementation will not call ar.repeat() again
until a call to Start(ar) or Continue(ar) restarts auto-repeating. This
procedure is a no-op if ar is not already running.

It is possible (but unlikely) that ar.repeat() is called one more time after
a call to Stop(ar) returns. This can happen because calls to ar.repeat are
not serialized with respect to the call to Stop(ar). They are not serialized in
order to allow a repeat method to call Stop.

PROCEDURE Continue (ar: T);

Resume auto-repeating immediately.

Continue(ar) is like Start(ar), except rather than waiting ar.firstWait

milliseconds as in the call to Start(ar), the timer thread calls ar.repeat

without waiting at all. Subsequent calls to ar.repeat() happen every period

milliseconds, as usual. This procedure is a no-op if ar is already running.

END AutoRepeat.

13.3 The Rsrc Interface

Resources are arbitrary texts that are associated with applications. Resources
can be bundled into an application using the m3bundle facility. They may also
be found in the �le system.

This interface supports retrieval of resources using a search path. A search
path is a list of elements; each element is either a Pathname.T that refers to a
directory, or a Bundle.T, typically created by m3bundle.

13.3 The Rsrc Interface 95

INTERFACE Rsrc;

IMPORT RefList, Rd, Thread;

TYPE Path = RefList.T; (* of Pathname.T or Bundle.T *)

EXCEPTION NotFound;

PROCEDURE Open (name: TEXT; path: Path): Rd.T

RAISES {NotFound};

If name is an absolute pathname, then look for name in the �le system: A

reader is returned if

FileRd.Open(name)

is successeful; otherwise an exception is raised. If name is not an absolute

pathname, then search each element of path, from front to back, for the

�rst occurrence of the resource called name and return a reader on the

resource. If the path element is a pathname p, then a reader is returned if

FileRd.Open(Pathname.Join (p, name, NIL))

is successful. If the path element is a bundle b, a reader is returned if

TextRd.New(Bundle.Get(b, name))

is successful. The NotFound exception is raised if no element of path

yields a successful reader on name. It is a checked runtime error if path

contains an element that is neither a pathname nor a bundle.

PROCEDURE Get (name: TEXT; path: Path): TEXT

RAISES {NotFound, Rd.Failure, Thread.Alerted};

A convenience procedure to retrieve the contents of the resource name as

a TEXT.

The procedure Get is logically equivalent to

VAR rd := Open(name, path);

BEGIN

TRY

RETURN Rd.GetText(rd, LAST(CARDINAL))

FINALLY

Rd.Close(rd)

END

END;

The implementation is slightly more e�cient, because it takes advantage of
Bundle.Get procedure which returns the contents of the bundle element as a
TEXT. The Rd.Failure exception is raised if Rd.GetText or Rd.Close report a
problem. The Thread.Alerted can be raised by the call to Rd.GetText.

96 13 UTILITIES

PROCEDURE BuildPath (a1, a2, a3, a4: REFANY := NIL): Path;

Build a Path from the non-NIL elements. Each element must be either a

Bundle.T or a TEXT. If it is a TEXT, is assumed to be the pathname of a

directory, unless it starts with a dollar sign, in which case it is assumed to

be environment variable whose value is the name of a directory; the value

is retrieved using Env.Get. It is a checked runtime error of the pathname

is not valid.

END Rsrc.

13.4 The Pts Interface

The Pts interface contains utilities to convert between points and pixels.
VBTkit uses 72 points per inch and 25.4 millimeters per inch.

The locking level is arbitrary for all procedures in this interface.

INTERFACE Pts;

IMPORT Axis, VBT;

PROCEDURE ToScreenPixels (v: VBT.T; pts: REAL; ax: Axis.T):

INTEGER;

Return the number of screen pixels that correspond to pts points on v's

screentype in the axis ax; or return 0 if v's screentype is NIL. Equivalent

to ROUND (ToPixels (v, pts, ax))

PROCEDURE ToPixels (v: VBT.T; pts: REAL; ax: Axis.T): REAL;

Return the number of pixels that correspond to pts points on v's

screentype in the axis ax; or return 0 if v's screentype is NIL.

PROCEDURE FromPixels (v: VBT.T; pixels: REAL; ax: Axis.T): REAL;

Return the number of points that correspond to pixels pixels on v's

screentype in the axis ax; or return 0 if v's screentype is NIL.

CONST

PtsPerInch = 72.0;

MMPerInch = 25.4;

PROCEDURE FromMM (mm: REAL): REAL;

Convert from millimeters to points.

PROCEDURE ToMM (pts: REAL): REAL;

Convert from points to millimeters.

END Pts.

13.5 The VBTColors Interface 97

13.5 The VBTColors Interface

The VBTColors interface provides a way to associate a VBT's background and
foreground colors with the VBT. This information can be retrieved by some other
VBT to compute a related color.

INTERFACE VBTColors;

IMPORT PaintOp, VBT;

PROCEDURE Put (v: VBT.T; colors: PaintOp.ColorScheme);

<* LL.sup < v *>

Store colors with v.

PROCEDURE Get (v: VBT.T): PaintOp.ColorScheme;

<* LL.sup < v *>

Return the colors stored by the most recent call to Put. If Put has never

been called on v, return PaintOp.bgFg.

END VBTColors.

98 14 COLOR UTILITIES

14 Color Utilities

This section describes the utilities that VBTkit provides for specifying colors.
The Color interface de�nes two color models, RGB (Red, Green, Blue) and
HSV (Hue, Saturation, Value), and contains procedures to convert between the
color models. The ColorName interface provides routines to translate a color
name, such as \VeryPaleCornowerBlue," into an RGB triple. The locking level
is arbitrary for all procedures in these interfaces.

14.1 The Color Interface

A Color.T describes a color as a mixture of the three color TV primaries (Red,
Green and Blue), in a linear scale (proportional to luminous power), where 0.0
= black and 1.0 = maximum screen intensity.

The set of all colors with RGB coordinates in the range 0.0{1.0 is the unit
RGB cube. The colors along the main diagonal of the unit cube (from (0,0,0)
to (1,1,1)) contain equal amounts of all three primaries; they represent gray
levels. RGB triples outside the unit cube cannot be displayed on typical color
monitors, but are still legal as far as this interface is concerned, make perfect
physical sense, and are useful in some color computations.

This interface also provides routines to convert colors between the HSV (Hue,
Saturation, Value) and RGB color models.

INTERFACE Color;

TYPE

T = RECORD r, g, b: REAL; END;

CONST

(* The vertices of the unit RGB cube: *)

Black = T{0.0, 0.0, 0.0};

Red = T{1.0, 0.0, 0.0};

Green = T{0.0, 1.0, 0.0};

Blue = T{0.0, 0.0, 1.0};

Cyan = T{0.0, 1.0, 1.0};

Magenta = T{1.0, 0.0, 1.0};

Yellow = T{1.0, 1.0, 0.0};

White = T{1.0, 1.0, 1.0};

The following procedures are useful for converting a color into a shade of gray:

PROCEDURE Brightness (READONLY rgb: T): REAL;

Return the intensity of rgb in a linear scale. The formula used is

0.239 * rgb.r + 0.686 * rgb.g + 0.075 * rgb.b

clipped to the range 0.0{1.0.

14.2 The ColorName Interface 99

An HSV is a color represented as a (Hue, Saturation, Value) triple. The HSV
color model is somewhat more intuitive than the RGB color model. It's based
on mimicking the way that an artist mixes paint: \He chooses a pure hue, or
pigment and lightens it to a tint of that hue by adding white, or darkens it to a
shade of that hue by adding black, or in general obtains a tone of that hue by
adding some mixture of white and black."

So, varying hue corresponds to selecting a pure color along a color wheel
where 0 is red, .167 is yellow, .333 is green, .5 is cyan, .667 is blue, and .833
is magenta, and 1.0 is red again. Decreasing the saturation (from 1 down
to 0) corresponds to adding white. Decreasing the value (from 1 down to 0)
corresponds to adding black.

This interface provides procedures to map between RGB and HSV color
models. Note that white and black have indeterminate hue and saturation. Pure
colors have saturation=1 and value=1, whereas grey levels have saturation=0,
value=brightness, and indeterminate hue.

TYPE

HSV = RECORD h, s, v: REAL END;

The following procedures convert between RGB and HSV color models:

PROCEDURE ToHSV (READONLY rgb: T): HSV;

Convert from RGB to HSV coordinates. By convention, gray colors

(including white and black) get hue=0.0. In addition, black gets

saturation=0.0.

PROCEDURE FromHSV (READONLY hsv: HSV): T;

Convert from HSV to RGB coordinates. If value=0 (black), saturation

and hue are irrelevant. If saturation=0 (gray), hue is irrelevant.

END Color.

14.2 The ColorName Interface

The ColorName interface provides a standard mapping between color names and
linear RGB triples. The implementation recognizes the following names, based
on those found in /usr/lib/X11/rgb.txt:

100 14 COLOR UTILITIES

AliceBlue ForestGreen MintCream SandyBrown

AntiqueWhite y Gainsboro MistyRose y SeaGreen y

Aquamarine y GhostWhite Moccasin Seashell y

Azure y Gold y NavajoWhite y Sienna y

Beige Goldenrod y Navy SkyBlue y

Bisque GoldenrodYellow NavyBlue SlateBlue y

Black Gray z OldLace SlateGray y

BlanchedAlmond Green y OliveDrab y SlateGrey

Blue y GreenYellow OliveGreen y Snow y

BlueViolet Grey z Orange y SpringGreeny

Brown y Honeydew y OrangeRed y SteelBlue y

Burlywood y HotPink y Orchid y Tan y

CadetBlue y IndianRed y PapayaWhip Thistle y

Chartreuse y Ivory y PeachPuff y Tomato y

Chocolate y Khaki y Peru Turquoise y

Coral y Lavender Pink y Violet

CornflowerBlue LavenderBlush y Plum y VioletRed y

Cornsilk y LawnGreen Powderblue Wheat y

Cyan y LemonChiffon y Purple y White

DeepPink y LimeGreen Red y WhiteSmoke

DeepSkyBlue y Linen RosyBrowny Yellow y

DodgerBlue y Magenta y Royalbluey YellowGreen

Firebrick y Maroon y SaddleBrown

FloralWhite MidnightBlue Salmon y

The dagger (y) indicates that the implementation recognizes a name along
with the su�xes 1{4; e.g., Red, Red1, Red2, Red3, and Red4.

The double dagger (z) indicates that the implementation also recognizes the
names with the su�xes 0 through 100. That is, Gray0, Gray1, . . . , Gray100, as
well as Grey0, Grey1, . . . , Grey100.

In addition, the name of a color C from this list can be pre�xed by one or
more of the following modi�ers:

14.2 The ColorName Interface 101

Term Meaning

Light

Pale
1/3 of the way from C to white

Dark

Dim
1/3 of the way from C to black

Drab

Weak

Dull

1/3 of the way from C to the gray
with the same brightness as C

Vivid

Strong

Bright

1/3 of the way from C to the purest color
with the same hue as C

Reddish 1/3 of the way from C to red

Greenish 1/3 of the way from C to green

Bluish 1/3 of the way from C to blue

Yellowish 1/3 of the way from C to yellow

Each of these modi�ers can be modi�ed in turn by the following pre�xes,
which replace \1/3 of the way" by the indicated fraction:

Term Degree % (approx.)

VeryVerySlightly 1/16 of the way 6%
VerySlightly 1/8 of the way 13%
Slightly 1/4 of the way 25%
Somewhat 3/8 of the way 38%
Rather 1/2 of the way 50%
Quite 5/8 of the way 63%
Very 3/4 of the way 75%
VeryVery 7/8 of the way 88%
VeryVeryVery 15/16 of the way 94%

The modi�er Medium is also recognized as a shorthand for SlightlyDark. (But
you cannot use VeryMedium.)

INTERFACE ColorName;

IMPORT Color, TextList;

EXCEPTION NotFound;

PROCEDURE ToRGB (name: TEXT): Color.T RAISES {NotFound};

Give the RGB.T value described by name, ignoring case and whitespace. A

cache of unnormalized names is maintained, so this procedure should be

pretty fast for repeated lookups of the same name.

PROCEDURE NameList (): TextList.T;

102 14 COLOR UTILITIES

Return a list of all the \basic" (unmodi�ed) color names known to this

module, as lower-case TEXTs, in alphabetical order.

END ColorName.

103

A Text-editing Interfaces

A.1 Meta, Option, and Compose keys

The editing commands listed in the interfaces for the text-editing models are
described in terms of \control," \meta," and \option" keys. The \control"
modi�er should be familiar to users. \Meta" and \option" are two names that
refer to the same modi�er in VBTkit applications; the Emacs, Mac, and Xterm
models uses the term \meta," and the Ivy model uses \option."

There are two ways to type meta/option characters. The �rst is to hold
down the key that generates the modi�er known as mod1, and then to type
the character. (The notion of a \modi�er" is de�ned by the X-server. Other
modi�ers are shift, lock, control, and mod2{mod5. The utility named
xmodmap(1) can be used to display and alter the relationship between physical
keys and the information that the X-server provides to an application. On
some keyboards, this key is labeled \Alt" or \Compose"; consult your system
manager for more information.)

The second way to type a meta/option character is to type and release the
Escape key, and then type the character. This is implemented only in the Emacs
model.

In the Emacs, Ivy, and Xterm models, the meta/option key can also be
used as a \pre�x" key for composing extended-ASCII (8-bit) characters. If you
type and release the meta/option key, then the next two characters you type
will be \composed" into an extended character. While these two characters are
being read, the cursor-shape will change to two counterclockwise arrows (the
XC_exchange cursor). For example, if you type Meta, then \c", then \o," the
result will be the ISO Latin-1 character for the copyright symbol, c. If the font
you are using does not have this character, you will see an ASCII representation
for the character code, in octal, e.g., \251.

A.2 The TextPortClass interface

The TextPortClass interface reveals more of the representation of a textport,
and it de�nes the object-type (Model) that is used to implement keybindings and
selection-controls. Four subtypes of models are implemented: Ivy, Emacs, Mac,
and Xterm. TextPort.Model is an enumeration type for the four names, but
TextPortClass.Model is the type of the actual object attached to a textport,
to which user-events (keys, mouse clicks, position reports) are sent.

In this interface, the variable v always refers to a textport, and the variable
m always refers to a model.

Unless otherwise noted, the locking level of all procedures in this interface
is v.mu.

INTERFACE TextPortClass;

104 A TEXT-EDITING INTERFACES

IMPORT Font, KeyFilter, PaintOp, Rd, ScrollerVBTClass,

TextPort, Thread, VBT, VTDef, VText;

REVEAL TextPort.T <: T;

TYPE VType = {Focus, Source, Target};

Constants for the three Trestle selections used here.

CONST

Primary = TextPort.SelectionType.Primary;

Secondary = TextPort.SelectionType.Secondary;

Focus = VType.Focus;

Source = VType.Source;

Target = VType.Target;

TYPE

Pixels = CARDINAL;

T =

TextPort.Public OBJECT

mu: MUTEX; (* VBT.mu < mu *)

<* LL = mu *>

m : Model := NIL;

readOnly : BOOLEAN;

vtext : VText.T;

font : Font.T;

fontHeight : Pixels := 0;

charWidth : Pixels := 0;

scrollbar : Scrollbar := NIL;

typeinStart : CARDINAL;

thisCmdKind : CommandKind;

lastCmdKind : CommandKind;

wishCol : CARDINAL;

cur : UndoRec;

owns := ARRAY VType OF BOOLEAN {FALSE, ..};

<* LL.sup = VBT.mu.SELF *>

lastNonEmptyWidth: Pixels := 0;

METHODS

<* LL = SELF.mu *>

getText (begin, end: CARDINAL): TEXT;

index (): CARDINAL;

isReplaceMode (): BOOLEAN;

length (): CARDINAL;

normalize (to := -1);

replace (begin, end: CARDINAL; newText: TEXT):

A.2 The TextPortClass interface 105

TextPort.Extent;

unsafeReplace (begin, end: CARDINAL; newText: TEXT):

TextPort.Extent;

insert (t: TEXT);

unsafeInsert (t: TEXT);

getKFocus (time: VBT.TimeStamp): BOOLEAN;

newlineAndIndent ();

findSource (time : VBT.TimeStamp;

loc := Loc.Next;

ignoreCase := TRUE);

notFound ();

(* All of these call SELF.error. *)

vbterror (msg: TEXT; ec: VBT.ErrorCode);

vterror (msg: TEXT; ec: VTDef.ErrorCode);

rdfailure (msg: TEXT; ec: REFANY);

rdeoferror (msg: TEXT);

(* We release SELF.mu around the following callbacks. *)

ULreturnAction (READONLY cd: VBT.KeyRec);

ULtabAction (READONLY cd: VBT.KeyRec);

ULfocus (gaining: BOOLEAN; time: VBT.TimeStamp);

ULmodified ();

ULerror (msg: TEXT);

END;

v.font is the current font. v.fontHeight is the height of a (maximal) character.
v.charwidth is the width of a (maximal) character. v.scrollbar contains the
scrollbar that is updated when the visible region of text changes, and vice versa.

v.typeinStart is meaningful only for typescripts, where it indicates the
point that divides the \history" part of the transcript, which is read-only, from
the current command line, which is not. See the TypescriptVBT interface. For
non-typescripts, this �eld is always zero.

v.thisCmdKind and v.lastCmdKind allow the interpretation of a command
to depend on the previous command. Currently, the only commands that
depend on context are the \vertical" commands that call UpOneLine and
DownOneLine. The column to which they move is stored in v.wishCol.

v.cur holds the information needed to reverse or reinstate the e�ects of
editing operations that change the text.

v.owns[vtype] is TRUE when v owns the VBT.Selection corresponding to
vtype: keyboard focus, Source selection, or Target selection.

v.lastNonEmptyWidth is used by the shape and reshape methods.
v.replace tests v.readOnly; if that is TRUE, then it returns the constant

TextPort.NotFound. Otherwise it calls v.unsafeReplace, which is the only
routine that actually alters the underlying text. (The \unsafe" methods are
those that do not test v.readOnly.)

106 A TEXT-EDITING INTERFACES

v.insert calls v.replace; i.e., it is safe.
v.notFound is called when a search fails; see FindAndSelect, below. The

default method is a no-op.

TYPE

CommandKind = {VertCommand, OtherCommand};

Scrollbar = ScrollerVBTClass.T OBJECT

textport: T

METHODS

update () <* LL = SELF.textport.mu *>

END;

A.2.1 Models

A TextPortClass.Model is the object that interprets keyboard and mouse
events. The model can be replaced via v.setModel.

Keybindings
Trestle calls v.key(cd), which calls m.keyfilter.apply(v,cd), as de-

scribed on page 52. A key�lter is essentially a linked list of objects, each
of which implements some low-level character translation such as \quoted
insert" or \compose character." The last link calls v.filter(cd), which calls
m.controlChord or m.optionChord for \command-keys", or m.arrowKey for
cursor-keys.

Text-selections
As explained on page 53, the model interprets keyboard and mouse events to

establish the local selections, Primary and Secondary, which are subsequences
of the text, usually highlighted in some way. The model also deals with the
global selections, Source and Target, which may be owned (\acquired") by any
VBT or by an external program such as an Xterm shell. The owner of a global
selection controls its contents; read and write calls are forwarded to the owner.

A particular model may establish an \alias" relationship between a local
selection and a global selection, which means that if the textport owns the global
selection, then its contents are identical with (mapped to) the local selection.
For example, in an Xterm shell, and therefore in the Xterm model, Primary is
an alias for Source, which means that when you click and drag to highlight a
region, that de�nes not only the local Primary selection but the global Source
selection as well. Any program that asks to read the Source selection will be
given a copy of the highlighted text.

In Ivy, Primary is an alias for Target, and Secondary is an alias for Source.
(Ivy users therefore have a hard time understanding the distinction between
local and global selections, since they are wired together.)

A Primary selection in a non-readonly textport may be in \replace mode" (or
\pending-delete mode"). In this mode, insertions replace the entire selection;
Backspace deletes the entire selection.

A.2 The TextPortClass interface 107

Selection-related editing operations
The standard editing operations such as Cut, Copy, and Paste, are de�ned

not merely in terms of the underlying text, but also in terms of the e�ects they
have on the local and global selections. Indeed, they are not functions at all;
Copy does not return a copy of anything.

Copy If the Primary selection is not empty, then acquire Source, and unless
Primary is an alias for Source, make a copy of the Primary selection as the
contents of Source. (If Primary is an alias for Source, no copy is needed.)

Paste If the Primary selection is not empty and is in replace-mode, then replace
the Primary selection with the contents of Source. Otherwise, insert the
contents of Source at the type-in point.

Clear Delete the contents of the Primary selection.

Cut This is de�ned as Copy followed by Clear.

Select All Extend the Primary selection to include the entire text.

TYPE

Model <: PublicModel;

PublicModel =

OBJECT

v: T;

selection := ARRAY TextPort.SelectionType OF

SelectionRecord {NIL, NIL};

dragging := FALSE;

dragType := TextPort.SelectionType.Primary;

approachingFromLeft: BOOLEAN;

keyfilter : KeyFilter.T

METHODS

<* LL = SELF.v.mu *>

init (cs: PaintOp.ColorScheme; keyfilter: KeyFilter.T):

Model;

close ();

seek (position: CARDINAL);

(* Keybindings *)

controlChord (ch: CHAR; READONLY cd: VBT.KeyRec);

optionChord (ch: CHAR; READONLY cd: VBT.KeyRec);

arrowKey (READONLY cd: VBT.KeyRec);

(* Mouse and Selection-controls *)

mouse (READONLY cd: VBT.MouseRec);

position (READONLY cd: VBT.PositionRec);

misc (READONLY cd: VBT.MiscRec);

108 A TEXT-EDITING INTERFACES

read (READONLY s : VBT.Selection;

time: VBT.TimeStamp): TEXT

RAISES {VBT.Error};

write (READONLY s : VBT.Selection;

time: VBT.TimeStamp;

t : TEXT)

RAISES {VBT.Error};

cut (time: VBT.TimeStamp);

copy (time: VBT.TimeStamp);

paste (time: VBT.TimeStamp);

clear ();

select (time : VBT.TimeStamp;

begin: CARDINAL := 0;

end : CARDINAL := LAST (CARDINAL);

sel := Primary;

replaceMode := FALSE;

caretEnd := VText.WhichEnd.Right);

getSelection (sel := Primary): TextPort.Extent;

getSelectedText (sel := Primary): TEXT;

putSelectedText (t: TEXT; sel := Primary);

takeSelection (READONLY sel : VBT.Selection;

type: TextPort.SelectionType;

time: VBT.TimeStamp):

BOOLEAN;

highlight (rec: SelectionRecord; READONLY r: IRange);

extend (rec: SelectionRecord; left, right: CARDINAL)

END;

m.init(...) initializes a Model m. The default method stores keyfilter and
returns m.

m.close() releases the VBT selections (Source, Target, and KBFocus) and
deletes highlighting intervals.

m.seek(position) sets the type-in point.
The type TextPort.T overrides the VBT mouse, position, misc, read, and

write methods with procedures that lock v.mu and call m.mouse, m.position,
etc. Note that the signatures are not identical to their Trestle counterparts.
v.position checks m.dragging and cd.cp.gone before calling m.position.

Clients must override the readmethod with a procedure that returns a text if
m owns the selection s; otherwise it should call the default method, which calls
VBT.Read(s, time). time is valid when the caller is a user-event procedure
such as Paste; it will be 0 when called from v.read, but in that case, m owns
the selection, so time is not needed.

Similarly, clients must override the write method. write is called by
v.write, which ensures that v.readOnly is FALSE before calling m.write.

A.2 The TextPortClass interface 109

If there is a non-empty Primary selection, then m.copy(time) arranges for
that text to become the Source selection. Otherwise, it is a no-op; in particular,
if the Primary selection is empty, copy must not acquire the Source selection.
There is no default method for copy; the client must override this method.

The default for m.cut(time) is m.copy(time); m.clear().
The default for m.paste(time) is m.insert(m.read(VBT.Source, time)).
m.clear() deletes the Primary selection. Its default method is

m.putSelectedText ("", TextPort.SelectionType.Primary)

m.insert(t) implements TextPort.Insert. The default method replaces the
Primary selection, if there is one, with t; otherwise, it inserts t at the type-in
point. Clients may wish to override this in order to alter the highlighting.

m.extend(rec,...) extends the highlighting for the given selection.

A.2.2 Selections

TYPE

SelectionRecord = OBJECT

type := TextPort.SelectionType.Primary;

interval : VText.Interval;

cursor : CARDINAL;

mode : VText.SelectionMode;

anchor : TextPort.Extent;

alias : VBT.Selection;

replaceMode := FALSE

END;

Each local selection is represented by a SelectionRecord. type indicates
whether this is a Primary or Secondary selection. interval describes the
range of text and the highlighting. mode indicates whether this selection
includes a character (point), word, line, paragraph, or the entire text. anchor

is the range that stays �xed when we extend a selection. replaceMode

indicates whether the selection was created with a replace-mode gesture or with
TextPort.Select(..., replaceMode := TRUE).

PROCEDURE ChangeIntervalOptions (v: T; rec: SelectionRecord)

RAISES {VTDef.Error};

Change the highlighting according to the conventions speci�ed in the

TextPort interface (see page 54).

TYPE IRange = RECORD left, middle, right: CARDINAL END;

PROCEDURE GetRange (v : T;

READONLY cp : VBT.CursorPosition;

110 A TEXT-EDITING INTERFACES

mode: VText.SelectionMode):

IRange;

<* LL = v.mu *>

Return an IRange indicating the boundaries of the character, word,

paragraph, etc., that contains the position cp. The middle �eld of the

result will be equal to either the left �eld or the right �eld, depending

on which end the cursor was nearer.

A.2.3 Cursor-motion

PROCEDURE ToPrevChar (v: T);

PROCEDURE ToNextChar (v: T);

Move the cursor (type-in point) left or right one char.

PROCEDURE ToStartOfLine (v: T);

PROCEDURE ToEndOfLine (v: T);

Move the cursor to start or end of line.

PROCEDURE UpOneLine (v: T);

PROCEDURE DownOneLine (v: T);

Move the cursor up or down one line.

PROCEDURE ToOtherEnd (v: T);

Move the cursor to other end of the Primary selection.

PROCEDURE FindNextWord (v: T): TextPort.Extent;

PROCEDURE FindPrevWord (v: T): TextPort.Extent;

Locate the \next" or \previous" word.

In FindNextWord, we scan right from the current position until we reach an
alphanumeric character. Then we continue scanning right until we reach the �rst
non-alphanumeric character; that position de�nes the right end of the extent.
Then we scan left until we �nd a non-alphanumeric character. That position,
plus 1, de�nes the left end of the extent.

If the initial position is in the middle of a word, then the extent actually
covers the current word, but on successive calls, it covers each following word
in turn.

FindPrevWord works the same as ToNextWord, except that all the scanning
directions are reversed.

\Alphanumeric characters" include the ISO Latin-1 characters, such as
accented letters.

A.2 The TextPortClass interface 111

A.2.4 Deletion commands

All these procedures return an Extent indicating the range of characters that
were deleted, or TextPort.NotFound if no characters were deleted.

PROCEDURE DeletePrevChar (v: T): TextPort.Extent;

PROCEDURE DeleteNextChar (v: T): TextPort.Extent;

PROCEDURE DeleteToStartOfWord (v: T): TextPort.Extent;

PROCEDURE DeleteToEndOfWord (v: T): TextPort.Extent;

Delete from the current position to the beginning of the previous word

(as de�ned in ToPrevWord) or the end of the \next" word (as de�ned in

ToNextWord).

PROCEDURE DeleteToStartOfLine (v: T): TextPort.Extent;

Delete from the cursor to the beginning of the current line, or delete the

preceding newline if the cursor is already at the beginning of the line.

PROCEDURE DeleteToEndOfLine (v: T): TextPort.Extent;

Delete to the end of line. If the cursor is at the end, delete the newline.

PROCEDURE DeleteCurrentWord (v: T): TextPort.Extent;

Delete the word containing the cursor.

PROCEDURE DeleteCurrentLine (v: T): TextPort.Extent;

Delete line containing the cursor.

A.2.5 Other modi�cation commands

PROCEDURE SwapChars(v: T);

Swap the two characters to the left of the cursor.

PROCEDURE InsertNewline(v: T);

Insert a newline without moving the cursor.

A.2.6 Searching

TYPE Loc = {First, Next, Prev};

PROCEDURE Find (v : T;

pattern : TEXT;

loc := Loc.Next;

ignoreCase := TRUE):

112 A TEXT-EDITING INTERFACES

TextPort.Extent;

Search for pattern in the text of v. The search proceeds either forward

from the beginning of the text (Loc.First), forward from v.index()

(Loc.Next, the default), or backward from v.index() (Loc.Prev). If

ignoreCase is TRUE, the case of letters is not signi�cant in the search.

PROCEDURE FindAndSelect (v : T;

pattern : TEXT;

time: VBT.TimeStamp;

loc := Loc.Next;

ignoreCase := TRUE);

Call Find(v, pattern, loc, ignoreCase). If the search was successful,

then select the found text in replace-mode. Otherwise, call v.notFound().

A.2.7 Scrolling the display

PROCEDURE ScrollOneLineUp (v: T)

RAISES {VTDef.Error, Rd.EndOfFile, Rd.Failure,

Thread.Alerted};

PROCEDURE ScrollOneLineDown (v: T)

RAISES {VTDef.Error, Rd.EndOfFile, Rd.Failure,

Thread.Alerted};

PROCEDURE ScrollOneScreenUp (v: T)

RAISES {VTDef.Error, Rd.EndOfFile, Rd.Failure,

Thread.Alerted};

PROCEDURE ScrollOneScreenDown (v: T)

RAISES {VTDef.Error, Rd.EndOfFile, Rd.Failure,

Thread.Alerted};

Move the displayed text up or down by either a line or screen. This doesn't move
the selections or the cursor, so the TextPortmay not be normalized when done.
A \screen" contains MAX(1, n-2) lines, where n is the number of displayed lines.

A.2.8 Managing the \Undo" stack

The \Undo" stack records all the editing changes made to the TextPort. These
changes can be undone; once undone, they can be redone. There is no built-in
limit to the number of changes that are recorded. A sequence of insertions of
graphic characters (i.e., plain typing) counts as one \edit."

TYPE UndoRec <: ROOT;

PROCEDURE AddToUndo (v: T; begin, end: CARDINAL; newText: TEXT);

<* LL = v.mu *>

This is called by v.unsafeReplace(begin, end, newText) to record a

change to the underlying text.

A.3 The EmacsModel Interface 113

PROCEDURE Undo (v: T); <* LL = v.mu *>

Reverse the e�ect of the last editing command.

PROCEDURE Redo (v: T); <* LL = v.mu *>

Reinstate the e�ect of the last editing command.

PROCEDURE ResetUndo (v: T); <* LL < v.mu *>

Clear the \Undo" stack. (Nothing in the implementation calls this

procedure.)

PROCEDURE UndoCount (v: T): CARDINAL; <* LL < v.mu *>

Return the number of changes that can be undone.

PROCEDURE RedoCount (v: T): CARDINAL; <* LL < v.mu *>

Return the number of undone changes that can be redone.

A.2.9 Compose-character �ltering

TYPE Composer <: KeyFilter.ComposeChar;

This type overrides the feedback method to change the cursor-shape

to XC_exchange during character-composition, and the standard \text

pointer" otherwise.

A.2.10 Miscellany

PROCEDURE TextReverse (t: TEXT): TEXT;

PROCEDURE TextLowerCase (t: TEXT): TEXT;

CONST

VBTErrorCodeTexts = ARRAY VBT.ErrorCode OF

TEXT {

"event not current", "timeout",

"uninstalled", "unreadable",

"unwritable", "unowned selection",

"wrong type"};

END TextPortClass.

A.3 The EmacsModel Interface

INTERFACE EmacsModel;

IMPORT KeyFilter, TextPortClass;

TYPE

114 A TEXT-EDITING INTERFACES

T <: TextPortClass.Model;

EscapeMetaFilter <: KeyFilter.T;

END EmacsModel.

In the Emacs model, there is only a Primary selection. It is not an alias for
either Source or Target.

The model supports a single region, which is delimited by the mark and
the point. Control-space and control-@ set the mark; the point is the same as
the current cursor position, which is changed by mouse-gestures, cursor-keys,
or control-keys. When the region is established by cursor-keys or control-keys,
it is not highlighted. If the region is highlighted, then any gesture that extends
it will extend the highlighting as well.

A single left-click sets the point and ensures that the current selection is
not in replace-mode. If you then drag the mouse, the location of the downclick
becomes the mark, and the point is set to the current position of the mouse.
When the region is de�ned by dragging, it is highlighted. A double left-click
sets both the mark and the point.

The Cut and Copy commands make a copy of the text in the region (i.e., the
Primary selection); it becomes the Source selection. Middle-click and meta-w
call Copy.

Right-click extends and highlights the current selection.
The control- and meta-keys in the Emacs model are not case-sensitive;

control-shift-a, for example, has the same e�ect as control-a. The Emacs model
supports \Escape + character" as an alternate way to type \meta-character,"
and ISO Latin-1 character composition. See Section A.1 for an explanation of
\meta" keys and composition.)

control-space set the mark
control-a move to the beginning of the line
control-b move to the previous character
meta-b move to the previous word
control-d delete the next character
meta-d delete the next word
control-e move to the end of the line
control-f move to the next character
meta-f move to the next word
control-h delete the previous character, and move left
meta-h delete to the start of the current word
control-i invoke the tabAction callback
control-j insert a newline
control-k delete to the end of the line, and make that

the source selection
control-m invoke the returnAction callback
control-n move down one line

A.4 The IvyModel Interface 115

control-o insert a newline without moving the cursor
control-p move up one line
control-q insert the next character (\quoted insert")
control-r search backward for the current source selection
control-s search forward for the current source selection
control-t swap the current and previous characters
control-v scroll up one screen
meta-v scroll down one screen
control-w Cut

meta-w Copy

control-y Paste

control-z scroll up one line
meta-z scroll down one line
control- Undo

meta- Redo

meta-< move to the beginning of the bu�er
meta-> move to the end of the bu�er
meta-leftArrow move to the previous word (like meta-b)
meta-rightArrow move to the next word (like meta-f)

A.4 The IvyModel Interface

INTERFACE IvyModel;

IMPORT TextPortClass;

TYPE T <: TextPortClass.Model;

END IvyModel.

TextPort was originally designed after an editor called Ivy [6] that was
developed at SRC. Ivy was written in Modula-2 and included a wealth of
features; the Ivy model, documented here, implements only a small subset of
them.

The Ivy model supports both local text-selections, Primary and Secondary.
Primary is an alias for Target, and Secondary is an alias for Source.

There are two ways of acquiring the Source selection. The usual way is to
make a Secondary selection (since Secondary is an alias for Source) by shift- or
control-clicking to select a point, word, line, paragraph, or bu�er. The second
way is to use the Copy command (option-C) or the Cut command (option-X).
These commands make a copy of the Primary selection; the copy becomes the
Source selection, but it is not displayed.

The following list shows the Ivy keybindings. The Ivy model also supports
ISO Latin-1 character composition. See Section A.1 for an explanation of
\option" keys and composition.

116 A TEXT-EDITING INTERFACES

Return invoke the returnAction method
shift-Return call Newline
option-Return insert a newline after the cursor
Backspace delete primary selection or the previous character
option-Backspace swap the two previous characters
control-A delete previous character
control-B delete whole line
control-C delete to start of line
option-C Copy

control-D delete to the start of the current word
control-E Move: replace target with source, and clear source
control-F delete to the end of the current word
control-G delete whole word
control-H swap the selection boundaries
control-I move to the next word
control-J move to previous character
control-K move to next character
control-L move to �rst non-blank and select line
control-M �nd previous occurrence
option-M �nd previous occurrence of primary
control-N �nd next occurrence of primary
option-N �nd �rst occurrence of primary
control-O move up 1 row in the current column
control-P move down 1 row in the current column
control-Q Clear (delete the Primary selection)
control-R Swap: exchange the selected text
control-S delete the next character
control-U move to the previous word
control-V delete to end of line
option-V Paste

control-W Paste

option-X Cut

control-Y move to opposite end of selection
control-Z Undo

control-shift-Z Redo

control-, �nd next occurrence
control-; move to end of line and select line
control-Space normalize

A.4.1 The Ivy selection model

The following table shows the mouse-gestures that establish the Primary
selection; if the Shift or Control key is held down, these same gestures establish
the Secondary selection.

A.5 The MacModel Interface 117

click Left to select a point between characters
double-click Left to select a single line
triple-click Left to select the entire bu�er
drag Left to change the selected point
click Middle to select a single word
double-click Middle to select a single paragraph
triple-click Middle to select the entire bu�er
drag Middle to change the selected word or paragraph
click Right to extend the current selection
double-click Right to reduce the selection-unit
drag Right to extend the current selection

A selection is a sequence of \units"; a unit is a point, a word, a line, a
paragraph, or the entire bu�er. Double-clicking the right mouse-button reduces
the unit of the current selection from bu�er to paragraph, from paragraph to
line, from line to word, and from word to point.

A single left-click selects the point (zero-length interval) between two
characters. If you move the mouse and then right-click, the selection is extended
to include all the characters between that point and the new position of the
mouse. If you do not move the mouse, then a right-click extends the selection
to include the character nearest that point.

A \word" is a maximal non-empty character sequence containing (1) only
letters and digits, or (2) one or more space and tab characters, or (3) a single
character that is not a letter, a digit, a space, or a tab.

A \line" is a non-empty character sequence containing at most one newline,
whose �rst character either is the �rst character of the bu�er or immediately
follows a newline, and whose �nal character is either a newline or the last
character in the bu�er.

A \paragraph" is a sequence of lines|either a maximal sequence of non-
blank lines or a maximal sequence of blank lines. (A blank line contains only
spaces, tabs, and at most one newline.)

A.4.2 Replace-mode selection

When a Primary selection in a non-readonly bu�er is extended, the selection
becomes what is called a replace-mode selection, and its highlighting changes
from a red underline to a pale red background. If you type after making a
replace-mode selection, the �rst character you type will replace the selection. If
you use the Copy or Move commands, the Secondary selection will replace the
Primary selection.

A.5 The MacModel Interface

INTERFACE MacModel;

118 A TEXT-EDITING INTERFACES

IMPORT TextPortClass;

TYPE T <: TextPortClass.Model;

END MacModel.

The Mac model supports only a single selection, Primary. Is it not an alias
for either Source or Target. A Primary selection in a non-readonly textport is
always in replace-mode.

The conventions for the Mac model are taken from Apple's Human Interface
Guidelines [1, pages 106-114].

The �rst unmodi�ed downclick establishes the anchor point. If the user then
drags the mouse, the upclick establishes the active end; the range between the
anchor point and the active end is the Primary selection, and it is highlighted.
If the user releases the mouse without dragging, that establishes the type-in
point, and there is no selection or highlighting.

Shift-downclick extends (or reduces) the primary selection and establishes
the new active end.

Double-clicking selects a word; dragging after a double-click extends the
selection in word-size increments.

The Mac model implements the following Apple guidelines:

When a Shift-arrow key combination is pressed, the active end of the
selection moves and the range over which it moves becomes selected.
... Option-Shift-Left Arrow selects the whole word that contains the
character to the left of the insertion point (just like double-clicking
on a word).

In a text application, pressing Shift and either Left Arrow or Right
Arrow selects a single character. Assuming that the Left Arrow key
was used, the anchor point of the selection is on the right side of
the selection, the active end on the left. Each subsequent Shift-Left
Arrow adds another character to the left side of the selection. A
Shift-Right Arrow at this point shrinks the selection.

Pressing Option-Shift and either Left Arrow or Right Arrow ...
selects the entire word containing the character to the left of the
insertion point. Assuming Left Arrow was pressed, the anchor point
is at the right end of the word, the active end at the left. Each
subsequent Option-Shift-Left Arrow adds another word to the left
end of the selection...

When a block of text is selected, either with a pointing device or with
cursor keys, pressing either Left Arrow or Right Arrow deselects the
range. If Left Arrow is pressed, the insertion point goes to the
beginning of what had been the selection. If Right Arrow is pressed,
the insertion point goes to the end of what had been the selection.

A.6 The XtermModel Interface 119

[From page 83] When the user chooses Cut, ... the place where the
selection used to be becomes the new selection. ... In text, the new
selection is an insertion point [and the highlighting is removed].

Paste ... inserts the contents of the Clipboard [Source] into the
document, replacing the current selection [i.e., Primary selections are
always replace-mode]. If there is no current selection, it's inserted
at the insertion point.... After a Paste, the new selection is ... an
insertion point immediately after the pasted text. [In either case,
there is no highlighting.]

In documentation from Apple, Mac keybindings are typically described in
terms of \command" and \option" modi�ers. DEC keyboards and the X server
do not use those terms, but a correspondence can be established. The Mac
model uses the value of environment variable MacCommandModifier to name
the X-modi�er that the user would like to behave as if it were the \command"
key. The choices are:

lock, control, mod1, mod2, mod3, mod4, and mod5

(Case is not signi�cant in these names.) The default is control. Consult the
manpage for xmodmap(1) for more information on these modi�ers.

Similarly, the Mac model uses the environment variable MacOptionModifier
to name the X-modi�er that the user would like to behave as if it were the
\option" key. The choices are the same as in the list above. The default is
mod1.

The following commands are implemented in the Mac model:

command-c Copy

command-v Paste

command-x Cut

command-z Undo

command-shift-z Redo

The Mac model supports the Apple standards for typing extended charac-
ters, insofar as the resulting characters are de�ned for ISO Latin-1. For example,
option-g produces the copyright symbol, c, but option-shift-7, which produces
a double dagger, z, on the Macintosh, produces no key in the Mac model, since
the double-dagger is not in ISO Latin-1. The Mac model supports all the two-
character sequences, such as option-e followed by \a" to produce \a" with an
acute accent, �a. The complete table appears on page ??.

A.6 The XtermModel Interface

INTERFACE XtermModel;

120 A TEXT-EDITING INTERFACES

IMPORT TextPortClass;

TYPE T <: TextPortClass.Model;

END XtermModel.

The Xterm model, patterned after xterm(1), supports a single selection,
Primary, which is an alias for Source. The Primary selection is never in
replace-mode. The Xterm model is not inuenced by commands in the user's
.Xdefaults �le.

A single-left-click establishes the keyboard focus and insertion point, but it
does not change (acquire) the selection. A double-left-click selects the current
word; a triple-left-click selects the current line. More clicks rotate among these
three options.

Single-left-click and drag selects a range of characters. Double-left-click and
drag selects a range of words, and triple-left-click and drag selects a range of
lines.

Middle-click pastes the current source selection at the insertion point, which
need not be at the end of the text (as it would be for a \typescript").

Right-click extends the current selection, re-highlighting it if needed.
The shift key has no e�ect on the mouse; it is ignored, so that shift-left-click,

for example, has the same e�ect as left-click. The control and meta (\option")
keys, however, are not ignored; they cause the mouse-clicks to be no-ops, and
they have di�erent keybindings. Control-left-click, for example, has no e�ect.

The only keybindings that are supported are these:

control-u delete everything from the current position
to the beginning of the line

control-z Undo

control-shift-z Redo

meta-x Cut

meta-c Copy

meta-v Paste

Note that Copy does very little; since Primary is an alias for Source, nothing
is actually copied.

A.7 The KeyFilter Interface

INTERFACE KeyFilter;

IMPORT VBT;

TYPE

T = OBJECT

next: T

A.7 The KeyFilter Interface 121

METHODS

apply (v: VBT.T; cd: VBT.KeyRec)

END;

Composer <: T OBJECT

METHODS

feedback (v: VBT.T; composing: BOOLEAN)

END;

ComposeChar <: Composer;

Diacritical <: Composer;

PROCEDURE IsModifier (c: VBT.KeySym): BOOLEAN;

Test whether c is a \modi�er" key, such as Shift, Control, or Meta. Such

keys are usually ignored by Composers. Equivalent to:

KeyboardKey.Shift_L <= c AND c <= KeyboardKey.Hyper_R

END KeyFilter.

A KeyFilter's apply method takes a VBT.T and a VBT.KeyRec and may
pass them on to the KeyFilter in its next �eld, possibly having altered the
KeyRec in the process. For example, a \transparent" �lter would simply call
SELF.next.apply(v,cd). An \upper-case �lter" (transducer) would convert
lower-case characters to upper-case before passing them on.

A KeyFilter may also maintain an internal state, and it is not required
to call SELF.next.apply on every call. Various \character composition"
schemes, for example, involve typing one character (e.g., a key labeled \Compose
Character") followed by two others, which are all \composed" to produce a single
character. That is, they e�ectively implement a \look-ahead" reader.

A Composer is a subtype that provides a feedback method; the intention
is that the apply method calls SELF.feedback(v, TRUE) when it sees a key
that begins a multi-character sequence, and SELF.feedback(v, FALSE) when
it sees a key that ends a sequence. The default feedback method is a no-op,
but a client may wish to override that in order to provide a visual cue to the
user that key-composition is in e�ect (e.g., changing the cursor). Otherwise, the
user might not understand why typed character are not being \echoed."

Two types of Composers are provided, ComposeChar and Diacritical.
ComposeChar produces the ISO Latin-1 (8-bit, extended ASCII) characters,
using the VT220 style of composition: when the �lter sees a Keyrec whose
whatChanged �eld is KeyboardKey.MultiKey, it calls SELF.feedback(v,TRUE);
after two more KeyRecs have been passed to it, it looks for those two keys in
an internal table. If it �nds a character, then it passes it to SELF.next.apply.
For example, on many keyboards, there is a key labeled Compose or Compose
Character, which produces the MultiKey code. When you type that key,
followed by \c" and \o", the �lter passes the character for the copyright symbol,
c, to the next �lter. If there is no entry in the table, the �lter does not pass
anything to the next �lter. In any case, it always returns to its initial state.

122 A TEXT-EDITING INTERFACES

For some users, the \Compose" key is also the \meta" or \option" key.
Holding this key down and typing \a", for example, produces a KeyRec with
the mod1 modi�er (which Trestle represents as VBT.Modifier.Option). When
the ComposeChar �lter sees a KeyRec with this modi�er, it assumes that the
user is not composing an 8-bit character, so it calls SELF.feedback(v,FALSE)
and SELF.next.apply(v,cd), and it returns to its initial state.

A Diacritical �lter also produces 8-bit characters. The �lter looks at
2-character sequences; comma followed by \c", for example, produces an \c"
with a cedilla, �c. If the sequence is not de�ned, such as comma followed by
space, then �lter passes both characters to the next �lter; i.e., when it receives
the second KeyRec, it makes two calls to SELF.next.apply. (This is why the
KeyFilter uses a next �eld instead of merely returning a KeyRec.)

Here is an example showing the intended use of this interface. Assume that
TextEditingVBT is a subtype of VBT used for typing text, such as TypeinVBT.T
or TextPort.T. A client would override the key method in order to �lter the
keys delivered to the supertype's key method.

TYPE

MyTextEditor =

TextEditingVBT.T OBJECT

comp: KeyFilter.ComposeChar

OVERRIDES

key := Key

END;

Parent = Keyfilter.T OBJECT

OVERRIDES

apply := ApplyParent

END;

PROCEDURE Key (v: MyTextEditor; READONLY cd; VBT.KeyRec) =

BEGIN

IF cd.wentDown AND cd.whatChanged # VBT.NoKey THEN

v.comp.apply (v, cd)

END

END Key;

PROCEDURE ApplyParent (self : MyParent;

v : VBT.T;

cd : VBT.KeyRec) =

BEGIN

TextEditingVBT.T.key (v, cd)

END ApplyMyParent;

VAR editor := NEW (MyTextEditor,

A.7 The KeyFilter Interface 123

comp := NEW (KeyFilter.ComposeChar,

next := NEW (Parent)));

A ComposeChar object is not case-sensitive where there is no ambiguity. For
example, c and o can be combined to produce the copyright symbol, c; so can
C and O, c and O, or C and o. By contrast, e and ` can be combined to produce
a lower-case e with a grave accent, �e, but E and ` produce an upper-case E with
a grave accent, �E.

Unless both of the characters are alphanumeric, they can be combined in
either order. So ` and e have the same e�ect as e and `, but o and c do not
combine to form the copyright symbol.

A.7.1 Composed Characters

The following table shows the two-character combinations (in the left column)
that are \composed" by a KeyFilter.ComposeChar object to produce an
\extended ASCII", ISO-Latin-1 character. Where possible, that character is
shown in the middle column, and a description of the character appears in the
right column.

124 A TEXT-EDITING INTERFACES

two spaces non-breaking space
!! < inverted exclamation point
?? > inverted question mark

C/ or C$ cent sign
L- or L$ $ pound sign
XO or G$ currency sign
Y- or Y$ Yen sign

|| broken bar
SO x section sign
"" � diaeresis
CO c copyright sign

A_ or SA a feminine ordinal indicator
O_ or S0 o masculine ordinal indicator

<< � left angle-quotation mark
>> � right angle-quotation mark

-, or NO : not sign
-- { hyphen
RO registered trademark sign

-^ or __ � macron
O^ or DE 0 ring above, degree sign

+- � plus-minus sign
++ # number-sign

1^ or S1 1 superscript 1
2^ or S2 2 superscript 2
3^ or S3 3 superscript 3

'' � acute accent
'<space> ' apostrophe
/U or *M � Greek small letter mu
P| or PG { paragraph
.^ or .. � middle dot

,, � cedilla
14 1

4
one quarter

12 1

2
one half

34 3

4
three quarters

A.7 The KeyFilter Interface 125

A` �A A with grave accent

A' �A A with acute accent

A^ Â A with circumex

A~ ~A A with tilde

A" �A A with diaeresis
a` �a a with grave accent
a' �a a with acute accent
a^ â a with circumex
a~ ~a a with tilde
a" �a a with diaeresis

A* or oA �A A with ring above
a* or oa �a a with ring above

AE � capital diphthong AE
ae � small diphthong ae
C, C� C with cedilla
c, �c c with cedilla

E` �E E with grave accent

E' �E E with acute accent

E^ Ê E with circumex

E" �E E with diaeresis
e` �e e with grave accent
e' �e e with acute accent
e^ ê e with circumex
e" �e e with diaeresis

I` �I I with grave accent

I' �I I with acute accent

I^ Î I with circumex

I" �I I with diaeresis

i` �i i with grave accent

i' �i i with acute accent

i^ î i with circumex

i" �i i with diaeresis

N~ ~N N with tilde
n~ ~n n with tilde

126 A TEXT-EDITING INTERFACES

O` �O O with grave accent

O' �O O with acute accent

O^ Ô O with circumex

O~ ~O O with tilde

O" �O O with diaeresis
O/ � O with oblique stroke
o/ � o with oblique stroke
o` �o o with grave accent
o' �o o with acute accent
o^ ô o with circumex
o~ ~o o with tilde
o" �o o with diaeresis

U` �U U with grave accent

U' �U U with acute accent

U^ Û U with circumex

U" �U U with diaeresis
u` �u u with grave accent
u' �u u with acute accent
u^ û u with circumex
u" �u u with diaeresis

Y' �Y Y with acute accent
y' �y y with acute accent
y" �y y with diaeresis
ss � small German letter sharp s

xx or mu [sic] � multiplication sign
-: � division sign
D- capital Icelandic letter ETH
d- small Icelandic letter ETH

TH or |P capital Icelandic letter thorn
th or |p small Icelandic letter thorn

A.7.2 Extended characters in the Mac model

The Mac model does not use the character-compositions described in the
previous section. Instead, it composes characters according to the following
tables.

A.7 The KeyFilter Interface 127

key plain shift option option key plain shift option option
cap shift cap shift

a a A �a �A 1 1 ! < /
b b B 2 2 @ currency
c c C �c C� 3 3 # $ <

d d D Î 4 4 $ cents >

e e E � 5 5 %

f f F �I 6 6 ^ x

g g G c 7 7 & {

h h H �O 8 8 *
i i I ^ 9 9 (a �

j j J Ô 0 0) o ,
k k K 0 ` � ~ �

l l L : �O - -

m m M � Â = = + �

n n N ~ [[f

o o O � �]] g

p p P \ \ | << >>

q q Q ; ; : �U
r r R ' ' " � �

s s S � �I , , <

t t T . . >

u u U / / ? � >
v v V
w w W
x x X

y y Y �A
z z Z

option- plain shift option- plain shift
E I

a �a �A a â Â

e �e �E e ê ê

i �i �I i î Î

o �o �O o ô Ô

u �u �U u û Û
space � � space ^ ^

128 A TEXT-EDITING INTERFACES

option- plain shift option- plain shift option- plain shift
N U `

a ~a ~A a �a �A a �a �A

n ~n ~N e �e �E e �e �e

o ~o ~O i �i �I i �i �I

space ~ ~ o �o �O o �o �O

u �u �U u �u �U

y �y �Y space � �
space � �

A.7 The KeyFilter Interface 129

A.7.3 Diacritical marks

A KeyFilter.Diacritical object uses a simpler scheme for producing a subset
of the extended ASCII characters. The following table shows the 2-character
sequence that you type, and the resulting character. If you type a character in
the �rst column, such as comma, and then a character that is not in the second
column, such as space, the key-�lter will produce the two characters you typed.

` a �a ` A �A

` e �e ` E �E

` i �i ` I �I

` o �o ` O �O

` u �u ` U �U
` ` �

' a �a ' A �A

' e �e ' E �E

' i �i ' I �I

' o �o ' O �O

' u �u ' U �U

' y �y ' Y �Y
' ' �

^ a â ^ A Â

^ e ê ^ E Ê

^ i î ^ I Î

^ o ô ^ O Ô

^ u û ^ U Û
^ ^ ^

" a �a " A �A

" e �e " E �E

" i �i " I �I

" o �o " O �O

" u �u " U �U
" y �y
" " �

~ a ~a ~ A ~A

~ n ~n ~ N ~N

~ o ~o ~ O ~O
~ ~ ~
, c �c , C C�
, , �

130 REFERENCES

References

[1] Apple Computer Co. Human Interface Guidelines: The Apple Desktop
Interface. Apple Computer Co., 1987.

[2] Shiz Kobara. Visual Design with OSF/Motif. Addison Wesley, 1991.

[3] Mark S. Manasse and Greg Nelson. Trestle reference manual. Technical
Report 68, DEC Systems Research Center, December, 1991.

[4] Mark S. Manasse and Greg Nelson. Trestle tutorial. Technical Report 69,
DEC Systems Research Center, May, 1992.

[5] Robert W. Scheier, James Gettys, and Ron Newman. X Window System,
2nd edition. Digital Press, 1990.

[6] Mary-Claire van Leunen, Mark R. Brown, and Patrick Chan. Ivy reference
manual. Technical report, DEC Systems Research Center, forthcoming.

INDEX 131

Index

SUBTYPE pragma, 5

alias, 54
AnchorSplit interface, 25
AnyEvent interface, 92
AutoRepeat interface, 93

BiFeedbackVBT interface, 21
BooleanVBT interface, 30

ChoiceVBT interface, 31
chord, 75
Clear, 107
Color interface, 98
ColorName interface, 101
Compose Character, 103
Copy, 54, 107
Cut, 107

EmacsModel interface, 113

FBDirMenu, 67
FBHelper, 67
FeedbackVBT interface, 18
FileBrowserVBT interface, 67
FlexVBT interface, 77

GuardedBtnVBT interface, 27

Image interface, 42
IvyModel interface, 115

KeyFilter interface, 120

ListVBT interface, 61

MacCommandModi�er, 119
MacModel interface, 117
MacOptionModi�er, 119
MarginFeedbackVBT interface, 20
MenuSwitchVBT interface, 24
Meta key, 103
Model, 52, 106

multi, 4
multi-�lter, 4
multi-split, 4
MultiClass interface, 9
MultiFilter interface, 8
MultiSplit interface, 5

NumericVBT interface, 72

Option key, 103

Paste, 107
PixmapVBT interface, 41
Pts interface, 96

QuickSwitchVBT interface, 24

ReactivityVBT interface, 79
Rsrc interface, 95

ScaleFilter interface, 81
ScrollerVBT interface, 75
scrolling, 75
Select All, 107
Shadow interface, 14
ShadowedBarVBT interface, 16
ShadowedFeedbackVBT interface, 19
ShadowedVBT interface, 15
SourceVBT interface, 27
SplitterVBT interface, 86
SwitchVBT interface, 23

TextEditVBT interface, 57
TextPort interface, 49
TextPortClass interface, 103
TEXTPORTDEBUG, 50
TextPortHighlighting, 54
TEXTPORTMODEL, 52
thumb, 75
TrillSwitchVBT interface, 26
TypeinVBT interface, 56
TypescriptVBT interface, 59

132 INDEX

VBTColors interface, 97
ViewportVBT interface, 83

XParam interface, 88
XtermModel interface, 119
XTrestle interface, 87

ZBackgroundVBT interface, 38
ZChassisVBT interface, 36
ZChildVBT interface, 34
ZGrowVBT interface, 39
ZMoveVBT interface, 38
ZSplitUtils interface, 39
ZTilps interface, 40

