
D E V E L O P M E N T R E C I P E S

107107107107

6. Development Recipes

Assuming that you are familiar with the CM3-IDE environment and the Modula-3
language, this chapter describes a number of recipes for building simple realistic
systems applications.

A handful of complete programs illustrate the use of advanced facilities in CM3-IDE.

You can find the sources for programs in this chapter in the Examples section of
your CM3-IDE environment.

Using a simple automated bank teller scenario, Robust Distributed Applications:
Network Objects on page 108 illustrates how to build distributed applications with
Network Objects.

Client/Server Computing: Safe TCP/IP Interfaces on page 115 describes the safe,
multi-platform, and multi-threaded TCP/IP interfaces. A Finger client and a simple
HTTP server are described.

Taking Persistent Snapshots of Objects: Pickles on page 120 demonstrates how to
transcribe objects onto an I/O stream.

Quick Comparison of Large Data: Fingerprints on page 122 outlines how to take
fingerprints of large data structures, and use the fingerprints to compare the data
structures efficiently.

Portable Operating System Interfaces on page 124 illustrates the use of portable
interfaces for operating system services, such as: file systems access, process
management, thread creation, and environment variables. A complete and portable
command-shell program is used as a demonstration.

Dynamic Web Applications: the Web Server Toolkit on page 135 outlines a simple
contact database program based on the web toolkit.

Interacting with C Programs on page 137 shows how to have your code call C
programs or be called by C programs. Examples illustrate the integration of C source
code and libraries into CM3-IDE.

Chapter

6
Read this chapter

if you know CM3-

IDE well, and

would like to use

CM3-IDE for

system

development.

����
CChhaapptteerr

OOrrggaanniizzaattiioonn

D E V E L O P M E N T R E C I P E S

 108108108108

6.1 Robust Distributed Applications: Network

Objects

Network Objects allows an object to be handed to another process in such a way that
the process receiving the object can operate on it as if it were local. The holder of a
remote object can freely invoke operations on that object just as if it had created that
object locally.

Further, it can pass the object to other processes. Thus, the Network Objects system
allows the development of not just simple client/server applications, but more general
multi-tiered distributed applications.

When a program calls another through Network objects, we refer to the caller as the
client, and the callee as the server. In the context of network objects, the names client and
server signify roles in a particular interaction—a server may in fact be a client of
another server.

The contract between the client and the server is defined by a common interface.

Here we describe a simple automated bank teller program as an example by outlining
each component: the interface, the client and the server.

6.1.1 The Common Interface

The Bank interface defines the common contract between client and server in our
example.

NetObj is the primary interface for building network object applications.
NetObj.Error and Thread.Alerted may be raised by network object
operations. A Bank.T is a network object which supports the operation
findAccount, which returns a Bank.Account object. Type Bank.Account
supports operations deposit, withdraw and get_balance.

Network object operations can raise user-defined exceptions such as BadAmount,
and InsufficientFunds.

D E V E L O P M E N T R E C I P E S

 109109109109

INTERFACE Bank;
IMPORT NetObj;
FROM NetObj IMPORT Error;
FROM Thread IMPORT Alerted;
TYPE
 T = NetObj.T OBJECT METHODS
 findAccount (acct: AcctNum): Account
 RAISES {Alerted, Error};
 END;
TYPE
 Account = NetObj.T OBJECT METHODS
 deposit (amount: REAL)
 RAISES {BadAmount, Alerted, Error};
 withdraw (amount: REAL) RAISES {BadAmount,
 InsufficientFunds, Alerted, Error};
 get_balance (): REAL RAISES {Alerted, Error};
 END;

TYPE
 AcctNum = [1..100];

EXCEPTION
 BadAmount;
 InsufficientFunds;
END Bank.

A simple makefile instructs CM3-IDE that Bank.T and Bank.Account are
network objects. CM3-IDE will generate the required stubs automatically as part of
this library, so a client or a server in this scenario may use netobj-interface.

Import netobj to bring in the network object libraries.

import(“netobj”)

For each network object type I.T you must call netobj(I,T)

interface(“Bank”)
netobj(“Bank”, “T”)
netobj(“Bank”, “Account”)
library(“netobj-interface”)

6.1.2 A Network Object Server

NetObjServer is a sample implementation of a network object server that exports
an implementation of the Bank interface.

MODULE NetObjServer EXPORTS Main;
IMPORT Bank, NetObj, Thread;
IMPORT IO, Fmt;

D E V E L O P M E N T R E C I P E S

 110110110110

BankImpl defines a full representation for the Bank.T network object.

TYPE
 BankImpl = Bank.T OBJECT
 accounts : ARRAY Bank.AcctNum OF Account;
 OVERRIDES
 findAccount := FindAccount;
 END;

Find an account in the table of accounts:

PROCEDURE FindAccount (self: BankImpl;
 acct: Bank.AcctNum
): Bank.Account =
BEGIN
 RETURN self.accounts[acct];
END FindAccount;

For Bank.Account network objects, Bank.Account uses a MUTEX to
synchronize access to its balance. It also implements the operations deposit,
withdraw, and get_balance.

TYPE
 Account = Bank.Account OBJECT
 lock : MUTEX;
 balance : REAL := 0.0;
 OVERRIDES
 deposit := Deposit;
 withdraw := Withdraw; (* not included *)
 get_balance := Balance; (* not included *)
 END;

Deposit the money, making sure to serialize access with others trying to operate on this
account.

PROCEDURE Deposit (self: Account; amount: REAL)
 RAISES {Bank.BadAmount} =
BEGIN
 IF amount < 0.0
 THEN RAISE Bank.BadAmount;
 END;
 LOCK self.lock DO
 self.balance := self.balance + amount;
 END;
END Deposit;

D E V E L O P M E N T R E C I P E S

 111111111111

Withdraw the money, making sure to serialize access with others trying to operate on
this account.

PROCEDURE Withdraw (self: Account; amount: REAL)
 RAISES {Bank.BadAmount,
 Bank.InsufficientFunds} =
BEGIN
 IF amount < 0.0
 THEN RAISE Bank.BadAmount;
 END;
 LOCK self.lock DO
 IF self.balance < amount
 THEN RAISE Bank.InsufficientFunds
 END;
 self.balance := self.balance - amount;
 END;
END Withdraw;

Get the balance, making sure to serialize access with others trying to operate on this
account.

PROCEDURE Balance (self: Account): REAL =
BEGIN
 LOCK self.lock DO
 RETURN self.balance;
 END;
END Balance;

Create a new bank by instantiating all the account objects.

PROCEDURE NewBank () : BankImpl =
VAR b := NEW (BankImpl);
BEGIN
 FOR i := FIRST (b.accounts) TO LAST (b.accounts) DO
 b.accounts[i] :=
 NEW (Account, lock := NEW (MUTEX));
 END;
 RETURN b;
END NewBank;

D E V E L O P M E N T R E C I P E S

 112112112112

Print a summary of all the active accounts, i.e., ones that have a positive balance.

PROCEDURE PrintSummary() =
BEGIN
 IO.Put (BankName & “: active account information\n”);
 FOR i := FIRST(bank.accounts) TO LAST(bank.accounts) DO
 IF bank.accounts[i].balance > 0.0 THEN
 IO.Put (Fmt.Int(i) & “.......$” &
 Fmt.Real(bank.accounts[i].balance) & “\n”);
 END;
 END;
END PrintSummary;

Finally, the server’s global variables and main body. The main body prints the
summaries for accounts every 60 seconds. Since the network objects runtime forks and
manages threads to handle incoming calls, the server can simply loop, printing its
summary.

CONST
 BankName = “LastNationalBank”;
VAR
 bank := NewBank();
BEGIN
 IO.Put (“Starting bank server.\n”);
 TRY
 (* Export the bank object under “LastNationalBank”. *)
 NetObj.Export (BankName, bank);
 IO.Put (“Bank server was exported as ” &
 BankName & “\n”);
 LOOP
 Thread.Pause (60.0D0);
 PrintSummary();
 END;
 EXCEPT (* If there is a problem, print an error and exit. *)
 | NetObj.Error =>
 IO.Put (“A network object failure occured.\n”);
 | Thread.Alerted => IO.Put (“Thread was alerted.\n”);
 END;
END NetObjServer.

The makefile for the server is simple. Note that the server must import the library
defining the common interface. In this case, it’s called netobj-interface.

import(“netobj”)
import(“netobj-interface”) % the common interface
implementation(“NetObjServer”)
program(“netobj-server”)

D E V E L O P M E N T R E C I P E S

 113113113113

6.1.3 A Network Object Client

NetObjClient is a sample implementation of a network object client.

MODULE NetObjClient EXPORTS Main;
IMPORT Bank, NetObj, Thread;
IMPORT IO, Fmt, Scan, Text, FloatMode, Lex;
VAR
 bank: Bank.T;
 acctnum: Bank.AcctNum;
 acct: Bank.Account := NIL;
 cmd: TEXT;

Print a prompt on the screen and asks for input from the user. If the current account is
set, it will display the current account and the available balance.

PROCEDURE Prompt(txt: TEXT): TEXT RAISES {IO.Error} =
BEGIN
 TRY
 IF acct # NIL THEN
 IO.Put (“\n[acct:” & Fmt.Int(acctnum) &
 “, balance: $” &
 Fmt.Real (acct.get_balance()) & “] ”);
 END;
 EXCEPT
 ELSE (* since it is only a prompt, we ignore all exceptions *)
 END;
 IO.Put (txt & “ : ”);
 RETURN IO.GetLine();
END Prompt;

EXCEPTION
 InvalidAccount;
 Quit;

This client will take input commands and make calls to network objects. As you can
see, most of the work is in the reading of input from the user!

CONST
 BankName : TEXT = “LastNationalBank”;
BEGIN
 IO.Put (“Welcome to ” & BankName & “\n”);
 IO.Put (“Connecting to bank server...”);
 TRY
 bank := NetObj.Import (BankName);
 EXCEPT
 IO.Put (“done.\n”);
 IO.Put (“Bank Teller Client Started...\n”);
 IO.Put (“Valid commands are: \n” &
 “ account : set a current account for further ” &
 “transactions\n” &
 “ deposit : deposit into current account \n” &
 “ withdraw: withdraw from the current account\n” &
 “ balance : print balance for the current account\n” &
 “ quit : quit bank teller client\n”);
 IO.Put (“\n”);

D E V E L O P M E N T R E C I P E S

 114114114114

 LOOP
 TRY
 cmd := Prompt(“Command: ”);
 IF Text.Equal (cmd, “account”)
 THEN (* new account *)
 WITH input = Scan.Int(Prompt(“account number”)) DO
 IF input < FIRST(Bank.AcctNum) OR
 input > LAST(Bank.AcctNum)
 THEN
 RAISE InvalidAccount;
 END;
 acct := bank.findAccount(input);
 acctnum := input;
 END;
 ELSIF Text.Equal(cmd, “deposit”)
 THEN (* deposit *)
 IF acct = NIL THEN RAISE InvalidAccount END;
 WITH amount = Scan.Real(Prompt(“ amount”)) DO
 acct.deposit(amount);
 END;
 ELSIF Text.Equal(cmd, “withdraw”)
 THEN (* withdraw *)
 IF acct = NIL THEN RAISE InvalidAccount END;
 WITH amount = Scan.Real(Prompt(“ amount”)) DO
 acct.withdraw(amount);
 END;
 ELSIF Text.Equal(cmd, “balance”)
 THEN (* get balance *)
 IF acct = NIL THEN RAISE InvalidAccount END;
 IO.Put (“Balance is ” &
 Fmt.Real(acct.get_balance()) & “\n”);
 ELSIF Text.Equal(cmd, “quit”)
 THEN (* quit by raising the “Quit” exception. *)
 RAISE Quit;
 ELSE (* invalid command *)
 IO.Put (“Valid commands are: account, ” &
 “deposit, withdraw, balance, and quit.\n”);
 END;
 EXCEPT
 | Bank.BadAmount => IO.Put(“Can’t withdraw or ” &
 “deposit negative amounts.\n”);
 | InvalidAccount => IO.Put (“Select an account ” &
 “in the range [” &
 Fmt.Int(FIRST(Bank.AcctNum)) & “..” &
 Fmt.Int(LAST(Bank.AcctNum)) & “] first.\n”);
 | FloatMode.Trap, Lex.Error => IO.Put (“Cannot ” &
 “convert the number as specified.\n”);
 | Bank.InsufficientFunds => IO.Put (“Insufficient ” &
 “funds available to perform this transaction\n”);
 END;
 END;
 EXCEPT
 | NetObj.Error =>
 IO.Put (“A network object error occured\n”);
 | Thread.Alerted => IO.Put (“A thread was alerted\n”);
 | IO.Error, Quit => IO.Put (“Goodbye.\n”);
 END;
END NetObjClient.

D E V E L O P M E N T R E C I P E S

 115115115115

Finally, the makefile for a client:

import(“netobj”)
import(“netobj-interface”) % the common interface
implementation(“NetObjClient”)
program(“netobj-client”)

6.2 Client/Server Computing: Safe TCP/IP

Interfaces

Using CM3-IDE’s safe TCP/IP interfaces, it is easy to program multi-threaded TCP
clients and servers. Two examples, a Finger client and a simple HTTP server illustrate
the use of the TCP interfaces. These same programs will work with Unix sockets or
the Windows Winsock libraries without requiring source changes.

6.2.1 A TCP/IP Client: Finger

Finger is a simple program which introduces TCP client services. It also shows you
how to bind TCP/IP connections to input and output streams.

MODULE Finger EXPORTS Main;
IMPORT TCP, IP, ConnRW;
IMPORT IO, Params;
FROM Text IMPORT FindChar, Sub, Length;
IMPORT Thread; <* FATAL Thread.Alerted *>

Common Constants and Variables.

Port 79 is the internet standard for the finger socket port. Variables user, and host
are used by code in this module.

CONST
 FingerPort = 79;
VAR
 user := “”;
 host := “localhost”;
 addr : IP.Address;

Command Line Parameters.

Exception Problem is used to flag problems with the parameters.

EXCEPTION
 Problem;

Parse the user and host from arguments. Raise Problem if they’re bad.

D E V E L O P M E N T R E C I P E S

 116116116116

PROCEDURE GetUserHost() RAISES {Problem} =
BEGIN
 IF Params.Count # 2 THEN
 IO.Put (“Syntax: finger user@host\n”);
 RAISE Problem;
 END
 IF Params.Count = 2 THEN
 user := Params.Get(1)
 END;
 WITH at = FindChar(user, ‘@’) DO
 IF at = -1 THEN
 host := “localhost”;
 ELSE
 host := Sub (user, at+1, LAST(INTEGER));
 user := Sub (user, 0, at);
 END;
 END;
END GetUserHost;

Main Implementation.

BEGIN
 TRY
 (* Get the values for user and host: *)
 GetUserHost();
 IO.Put (“(Checking for ” & user &
 “ finger information on host” & host & “)\n”);
 (* Lookup host by name: *)
 IF NOT IP.GetHostByName (host, addr) THEN
 IO.Put (“Could not find hostname ” &
 host & “\n”);
 RAISE Problem;
 END;
 (* Connect to the endpoint at port 79 of host.
 Get a reader and a writer to that port. *)
 VAR
 endpoint := IP.Endpoint {addr, FingerPort};
 service := TCP.Connect(endpoint);
 rd := ConnRW.NewRd(service);
 wr := ConnRW.NewWr(service);
 BEGIN
 (* Send the user name to the writer; read the
 whole response until EOF from the reader *)
 IO.Put (user & “\n”, wr);
 WHILE NOT IO.EOF (rd) DO
 IO.Put (IO.GetLine(rd) & “\n”)
 END
 END
 (* Check for possible errors. *)
 EXCEPT
 | IO.Error, IP.Error =>
 IO.Put (“Problem communicating with ” &
 host & “...\n”);
 | Problem => (* Error has already been printed, do
 nothing. *)
 END
END Finger.

D E V E L O P M E N T R E C I P E S

 117117117117

6.2.2 A TCP/IP Server: HTTPD

The program HTTPD implements a simple HTTP server by using the portable
TCP/IP interfaces. The basic outline of the program is simple: After getting a
connector, loop and do the following:

1. Use TCP.Accept to get a new service.

2. Get a reader and a writer to the service via the ConnRW interface.

3. Use Lex.Match to ensure that the requests start with a “GET”.

4. The rest of the input from the reader until the end of the line is the path
requested by the web browser.

5. Given a path requested by a “GET” message, look in the current directory of
your file system for the file in question. So, the URL
 http://localhost:80/welcome.html
maps to the following HTTP request to the server running on port 80 of the
machine “localhost”:
 GET /welcome.html
which maps to the file welcome.html in your file system.

6. Open the file, and read its contents.

7. Write the contents to the writer that is hooked up to the network connection.
Flush the writer upon completion.

8. Make sure to close the reader, the writer, and the server connection at the
bottom of the loop.

Here is the implementation for HTTPD. Review the TCP and IP interfaces for more
information regarding the TCP/IP calls.

MODULE HTTPD EXPORTS Main;
IMPORT TCP, IP, ConnRW;
IMPORT Rd, Wr, IO, Lex, FileRd, RdCopy;
IMPORT Thread, OSError, Text, Params, Process, Pathname;

Use http://hostname:80/ to access this server:

CONST
 HTTP_Port = 80;
PROCEDURE Error (wr: Wr.T; msg: TEXT)
 RAISES {Thread.Alerted, Wr.Failure} =
BEGIN
 Wr.PutText (wr, “400 ” & msg);
 Wr.Flush (wr);
END Error;

D E V E L O P M E N T R E C I P E S

 118118118118

Create an endpoint on the HTTP_Port. Get a connector for the end point, and loop:

• Use TCP.Accept to wait for a new connection that can handle calls.

• Create a reader and a writer to the connection.

• Look for a GET, and then a path for the request. Parse pathname and print it.
If there is a request for root, return a welcome string, otherwise find the file
residing in a subdirectory.

Of course, catch all the possible exceptions.

D E V E L O P M E N T R E C I P E S

 119119119119

VAR
 endpoint := IP.Endpoint {IP.GetHostAddr(), HTTP_Port};
 connector: TCP.Connector;
 server: TCP.T;
 rd: Rd.T; wr: Wr.T;
 path: TEXT;
BEGIN
 TRY
 connector := TCP.NewConnector(endpoint);
 LOOP
 server := TCP.Accept(connector);
 rd := ConnRW.NewRd(server);
 wr := ConnRW.NewWr(server);
 TRY
 TRY
 Lex.Match (rd, “GET ”);
 path := Lex.Scan (rd);
 IO.Put (“path=“ & path & “\n”);
 IO.Put (Rd.GetLine(rd) & “\n”);
 IF Text.Equal (path, “/”) THEN
 Wr.PutText (wr,
 “<H1>Welcome to our web server!” &
 “</H1>Try ” &
 “this link” & “.\n”);
 ELSE
 WITH rd = FileRd.Open (Text.Sub (path,
 1, Text.Length(path))) DO
 TRY
 RdCopy.ToWriter(rd,wr);
 FINALLY
 Rd.Close(rd);
 END;
 END
 END;
 Wr.Flush (wr); (* so the browser can see
 the results. *)
 EXCEPT
 | Lex.Error => Error (wr,
 “Only GET methods are supported\n”);
 | OSError.E => Error (wr,
 “File not found or no permission.\n”);
 | Rd.EndOfFile => Error (wr,
 “Request terminated prematurely.\n”);
 END;
 FINALLY (* clean up on your way out. *)
 Rd.Close (rd);
 Wr.Close (wr);
 TCP.Close (server);
 END;
 END
 EXCEPT
 | Thread.Alerted => IO.Put (“Thread was alerted\n”);
 | IP.Error => IO.Put (“IP error\n”);
 | Rd.Failure, Wr.Failure =>
 IO.Put (“Rd/Wr failure\n”);
 END;
END HTTPD.

D E V E L O P M E N T R E C I P E S

 120120120120

6.3 Taking Persistent Snapshots of Objects:

Pickles

Pickles can be used to load and save the state of objects via I/O streams bound to disk
files, network connections, or in-memory data. To learn more about pickles, browse
the Pickle interface.

This program uses pickles to snapshot a copy of its internal database to disk, and load
it later. The internal database is kept as a list of atoms. An atom is a unique
representation for a text string.

MODULE PickleExample EXPORTS Main;
IMPORT Pickle, Wr, FileWr, Rd, FileRd;
IMPORT Atom, AtomList;
IMPORT Action, AtomActionTbl;
IMPORT Process, IO; <* FATAL IO.Error *>

Import the Pickle interface to take snapshots of objects and turn the snapshots
back into live objects, Wr and FileWr to write snapshots to files, and Rd, and
FileRd to read snapshots from files.

Import Atom and AtomList interfaces. An Atom is unique representation of a
string, you can convert text to Atom and then compare it with other Atoms without
using text operations.

Import the Action interface, defined in this package, and AtomActionTbl, a
table mapping atoms to actions.

Atom List Operations. Contains, Insert and Print are utility functions which
call AtomList operations.

Insert an element into the list.

PROCEDURE Insert (VAR list: AtomList.T; atom: Atom.T) =
BEGIN
 IF NOT AtomList.Member(list, atom) THEN
 list := AtomList.Cons (atom, list);
 END
END Insert;

Print out all elements of the list by iterating over its members.

PROCEDURE Print(x: AtomList.T) =
BEGIN
 WHILE x # NIL DO
 IO.Put (Atom.ToText (x.head) & “ ”);
 x := x.tail;
 END;
END Print;

D E V E L O P M E N T R E C I P E S

 121121121121

Command Operations. Definition of what commands should do. Actions define
initial values for the action table.

TYPE
 Commands = {Show, Quit, Reset, Help, Load, Save};

 Actions = ARRAY OF Action.T {
 Action.T { “show”, Show},
 Action.T { “quit”, Quit},
 Action.T { “reset”, Reset},
 Action.T { “help”, Help}
 Action.T { “load”, Load}
 Action.T { “save”, Save}};

Each procedure defines what each action should do. Note that Actions includes
elements that happen to be procedures. Also that the proc field of Action.T is
defined to be a PROCEDURE(), so we can assign any of Quit, Rest, Help, or
Show to fields of Actions.

PROCEDURE Quit() = BEGIN Process.Exit(0); END Quit;
PROCEDURE Reset() = BEGIN input_set := NIL; END Reset;

PROCEDURE Show() =
BEGIN
 Print(input_set);
 IO.Put (“\n”);
END Show;

PROCEDURE Help() =
BEGIN
 IO.Put(“Commands: show, reset, ” &
 “help, quit, load, save.\n” &
 “Otherwise: insert into the list.\n”);
END Help;

Procedures Save and Load use pickles to save and load the database.

CONST DB = “db”;

PROCEDURE Save() =
 VAR wr := IO.OpenWrite(DB);
BEGIN
 Pickle.Write (wr, input_set);
 Wr.Close (wr);
END Save;

PROCEDURE Load() =
 VAR rd := IO.OpenRead (DB);
BEGIN
 input_set := Pickle.Read (rd);
 Rd.Close (rd);
END Load;

D E V E L O P M E N T R E C I P E S

 122122122122

Main Program. The principal data in this program: command_table is an
atom�action table; input_set is an atom list, containing all the elements that will
be entered.

VAR
 command_table := NEW(AtomActionTbl.Default).init();
 input_set : AtomList.T := NIL;
BEGIN
 (* Initialize Commands. *)
 FOR x := FIRST(Actions) TO LAST(Actions) DO
 EVAL command_table.put(Atom.FromText (x.name), x);
 END;

 IO.Put (“Welcome to the atomic database.\n”);
 IO.Put (“Try any of commands: show quit reset help.\n”);
 IO.Put (“Any other string will be entered into ” &
 “the database.\n\n”);

Loop, get the user response from the command line. If it’s a command, do it.
Otherwise insert the command line into the input_set. If atom is in the
command_table then run the corresponding action. Otherwise, Insert the
atom into the input_set.

 LOOP
 IO.Put (“persistent atom-db > ”);
 IF IO.EOF () THEN EXIT END;
 VAR
 cmd := IO.GetLine();
 atom := Atom.FromText(cmd);
 action: Action.T;
 BEGIN
 IF command_table.get(atom, action)
 THEN action.proc();
 ELSE Insert(input_set, atom);
 END;
 END;
 END;

END PickleExample.

6.4 Quick Comparison of Large Data: Fingerprints

You can use the Fingerprint interface to compare large amounts of data.
Fingerprints can also be used for efficient comparison of complex object graphs.

The program M3Compare takes two file names from the command line and reports
whether the files are the same or different. The program does not crash due to
exceptions.

MODULE M3Compare EXPORTS Main;
IMPORT IO, Process, Fingerprint, Rd, Thread, Params;

D E V E L O P M E N T R E C I P E S

 123123123123

Use Fingerprint.FromText to get a fingerprint of each file, then compare the
finger prints.

PROCEDURE Compare (a, b: TEXT) =
 VAR aa, bb: TEXT;
BEGIN
 aa := Inhale (a);
 bb := Inhale (b);
 IF (aa = NIL) OR (bb = NIL) THEN
 (* already reported an error *)
 ELSIF Fingerprint.FromText(aa) =
 Fingerprint.FromText(bb)
 THEN
 IO.Put (“The files are the same.\n”);
 ELSE
 IO.Put (“The files are different.\n”);
 END;
END Compare;

Read a file and return its contents as text.

PROCEDURE Inhale (file: TEXT): TEXT =
 VAR rd: Rd.T; body: TEXT;
BEGIN
 rd := IO.OpenRead (file);
 IF (rd = NIL) THEN
 IO.Put (“\”” & file & “\” is not a file.\n”);
 RETURN NIL;
 END;
 TRY
 body := Rd.GetText (rd, LAST (CARDINAL));
 Rd.Close (rd);
 EXCEPT Rd.Failure, Thread.Alerted =>
 IO.Put (“Unable to read \”” & file & “\”.\n”);
 RETURN NIL;
 END;
 RETURN body;
END Inhale;

BEGIN
 IF Params.Count # 3 THEN
 IO.Put (“syntax: m3compare <file1> <file2>\n”);
 Process.Exit(2);
 END;
 Compare (Params.Get(1), Params.Get(2));
END M3Compare.

D E V E L O P M E N T R E C I P E S

 124124124124

6.5 Portable Operating System Interfaces

Using the portable operating systems interfaces, you can write programs to get
information about operating system facilities such as the files, directories, processes,
paths, environment variables and command-line parameters. Following the interface
specifications, you can write programs that do not depend on idiosyncrasies of
different versions of Unix and Windows.

The program M3Sh, a simple command-line shell, operates like a normal DOS or
Unix command shell, providing you with simple commands. Of course, m3sh does
not depend on pre-processor macros.

MODULE M3sh EXPORTS Main;

M3sh is a simple shell utility which uses the safe, portable operating system interfaces.
By using the portable interfaces, this program works on both Unix and Win32
platforms.

IMPORT Pathname, FS, IO, OSError;
IMPORT Stdio, RegularFile, Pipe;
IMPORT Process, Thread, Env, Params;
IMPORT FileWr, FileRd, Rd, Lex, Wr, Text, Atom, AtomList;
IMPORT TextRd, TextSeq;

Shell Commands. Command designates a name and an action procedure.

TYPE
 Command = RECORD
 name: TEXT;
 action: PROCEDURE (cmd: TEXT;
 READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E};
 END (* RECORD *);

Commands is an array of pre-defined Command designations for built-in shell
commands. To allow aliasing of actions, multiple names may correspond to the same
action.

CONST
 Commands = ARRAY OF Command {
 Command {“exit”, exit},
 Command {“quit”, exit},
 Command {“bye”, exit},
 Command {“cd”, chdir},
 Command {“chdir”, chdir},
 Command {“dir”, dir},
 Command {“ls”, dir},
 Command {“pwd”, pwd},
 Command {“directory”, dir},
 Command {“type”, type},
 Command {“cat”, type},
 Command {“exec”, exec},

D E V E L O P M E N T R E C I P E S

 125125125125

 Command {“bg”, background},
 Command {“help”, help}};

Execute the shell command cmd with arguments args:

PROCEDURE ShellCommand(cmd: TEXT;
 READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E} =

Check to see if cmd is a built-in. If cmd is not a built-in, then try to execute it.

BEGIN
 FOR i := FIRST(Commands) TO LAST(Commands) DO
 IF Text.Equal (cmd, Commands[i].name) THEN
 RETURN Commands[i].action (cmd, args);
 END;
 END;
 RETURN Execute (cmd, args);
END ShellCommand;

D E V E L O P M E N T R E C I P E S

 126126126126

Run an external command, returning the result as a text string. See the Process
interface for more information.

PROCEDURE Execute(cmd: TEXT;
 READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E} =
 VAR hrChild, hwChild, hrSelf, hwSelf: Pipe.T;
 VAR result: TEXT := “”;
BEGIN
 WITH full = FindExecutable(cmd) DO
 IF full # NIL THEN cmd := full; END;
 END;

 Pipe.Open(hr := hrChild, hw := hwSelf);
 Pipe.Open(hr := hrSelf, hw := hwChild);

 TRY
 WITH p = Process.Create (cmd, args, stdin := hrChild,
 stdout := hwChild, stderr := NIL) DO
 TRY
 TRY hrChild.close(); hwChild.close()
 EXCEPT OSError.E => (* skip *)
 END;
 (* Here is the actual writing and reading,
 conveniently performed using I/O streams. *)
 WITH wr = NEW(FileWr.T).init(hwSelf),
 rd = NEW(FileRd.T).init(hrSelf) DO

 TRY Wr.Close(wr)
 EXCEPT Wr.Failure, Thread.Alerted => (*SKIP*)
 END;

 result := Rd.GetText(rd, LAST(INTEGER));

 TRY Rd.Close(rd)
 EXCEPT Rd.Failure, Thread.Alerted => (*SKIP*)
 END
 END;
 FINALLY EVAL Process.Wait(p);
 END
 END
 EXCEPT
 | Rd.Failure, Thread.Alerted => Error (“exec failed”);
 END;
 RETURN result;
END Execute;

Check the number of arguments and raise OSError.E if the wrong number of
arguments are being passed.

PROCEDURE ArgCount(READONLY args: ARRAY OF TEXT;
 lo: CARDINAL;
 hi: CARDINAL := LAST(INTEGER)
) RAISES {OSError.E} =
BEGIN
 IF NUMBER(args) < lo THEN Error (“Too few args”);
 ELSIF NUMBER(args) > hi THEN Error (“Too many args”);
 END;
END ArgCount;

D E V E L O P M E N T R E C I P E S

 127127127127

Given a string, procedure Error raises OSError.E with that string as a parameter.

PROCEDURE Error (name: TEXT) RAISES {OSError.E} =
VAR
 err := AtomList.List2(Atom.FromText(name),
 Atom.FromText(“m3sh error”));
BEGIN
 RAISE OSError.E(err);
END Error;

Built-in Commands. This section includes all the built-in shell commands, such as
dir or cd.

PROCEDURE pwd(<*UNUSED*>cmd: TEXT;
 READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E} =
BEGIN
 ArgCount(args, 0, 0);
 RETURN Process.GetWorkingDirectory();
END pwd;

PROCEDURE dir(<*UNUSED*>cmd: TEXT;
 READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E} =
VAR
 dir: Pathname.T := “.”;
 result: TEXT := “”;
 name: TEXT;
 iter: FS.Iterator;
BEGIN
 ArgCount(args, lo := 0, hi := 1);
 IF NUMBER(args) > 0 THEN dir := args[0] END;
 IF NOT IsDirectory (dir) THEN
 Error (dir & “ is not a directory”);
 END;

 IO.Put (“Directory listing for ” &
 FS.GetAbsolutePathname(dir) & “\n”);
 iter := FS.Iterate (dir);
 WHILE iter.next (name) DO
 result := result & “ ” & name & “\n”;
 END;
 iter.close();
 RETURN result;
END dir;

PROCEDURE chdir(<*UNUSED*>cmd: TEXT;
 READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E} =
BEGIN
 ArgCount(args, 1, 1);
 IF NOT IsDirectory (args[0]) THEN
 Error (args[0] & “ is not a directory\n”);
 END;
 Process.SetWorkingDirectory(args[0]);
 RETURN NIL;
END chdir;

D E V E L O P M E N T R E C I P E S

 128128128128

Display the contents of a file or directory. If arg[0] is a file, return its contents. If
arg[0] is a directory, prints its directory listing.

PROCEDURE type(cmd: TEXT;
 READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E} =
VAR rd: Rd.T;
BEGIN
 ArgCount(args, 1, 1);
 IF IsDirectory (args[0]) THEN
 Error (args[0] & “ is a directory\n”);
 ELSE
 TRY
 rd := FileRd.Open(args[0]);
 TRY RETURN Rd.GetText(rd, LAST(INTEGER));
 FINALLY Rd.Close(rd);
 END;
 EXCEPT
 | Rd.Failure, Thread.Alerted =>
 Error (“type could not read a file\n”);
 END;
 END;
 <* ASSERT FALSE *>
END type;

PROCEDURE exit(<*UNUSED*>cmd: TEXT;
 READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E} =
BEGIN
 ArgCount(args, 0, 0);
 IO.Put (“Goodbye!\n”);
 Process.Exit(0);
 <* ASSERT FALSE *>
END exit;

PROCEDURE exec(<*UNUSED*>cmd: TEXT;
 READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E} =
BEGIN
 ArgCount(args, 1);
 IO.Put (“The command is ” & args[0] & “\n”);
 RETURN Execute (args[0],
 SUBARRAY(args,1, NUMBER(args)-1));
END exec;

PROCEDURE help(<*UNUSED*>cmd: TEXT;
 READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E} =
BEGIN
 ArgCount (args, 0, 0);
 RETURN HelpfulInfo();
END help;

D E V E L O P M E N T R E C I P E S

 129129129129

Using Threads for the Background Command.

PROCEDURE background(<*UNUSED*>cmd: TEXT;
 READONLY args: ARRAY OF TEXT
): TEXT RAISES {OSError.E} =
VAR background_closure: BgClosure;
BEGIN
 ArgCount(args, 1);
 background_closure := NEW(BgClosure, cmd := args[0],
 args := NEW(REF ARRAY OF TEXT, NUMBER(args)-1));
 background_closure.args^ :=
 SUBARRAY(args, 1, NUMBER(args)-1);
 EVAL Thread.Fork (background_closure);
 RETURN NIL;
END background;

(* Closure for the background thread. *)
TYPE
 BgClosure = Thread.Closure OBJECT
 cmd: TEXT;
 args: REF ARRAY OF TEXT;
 OVERRIDES
 apply := BackgroundApply;
 END;

(* Work of the background thread. *)
PROCEDURE BackgroundApply (cl: BgClosure): REFANY =
BEGIN
 TRY
 RETURN Execute (cl.cmd, cl.args^);
 EXCEPT OSError.E => (* ignore background errors *)
 END;
 RETURN NIL;
END BackgroundApply;

PATH Navigation. Win32 and Unix use the PATH variable to define a list of
directories to search for executables. Here we search for executables using the PATH as
our guide.

Finds an executable program found by searching the directories contained in the PATH
environment variable. PATH variable is looked up using the Env interface. To look up
the separator for PATH, we need to find out what sort of system we are running. To
do so, we check to see if Pathname uses / or \. (See also SearchPath.)

PROCEDURE FindExecutable (file: TEXT): TEXT =
VAR path := Env.Get (“PATH”);
CONST UnixExts = ARRAY OF TEXT { NIL };
CONST WinExts = ARRAY OF TEXT {NIL,“exe”,“com”,“cmd”,“bat”};
VAR on_unix: BOOLEAN :=
 Text.Equal(Pathname.Join(“”,“”,NIL),“/”);
BEGIN
 IF on_unix
 THEN RETURN SearchPath (file, path, ‘:’, UnixExts);
 ELSE RETURN SearchPath (file, path, ‘;’, WinExts);
 END;
END FindExecutable;

D E V E L O P M E N T R E C I P E S

 130130130130

Return TRUE if the name corresponds to a file.

PROCEDURE IsFile (file: TEXT): BOOLEAN =
BEGIN
 TRY
 WITH stat = FS.Status (file) DO
 RETURN stat.type = RegularFile.FileType;
 END
 EXCEPT
 | OSError.E => RETURN FALSE;
 END
END IsFile;

Return TRUE if the name corresponds to a directory.

PROCEDURE IsDirectory (file: TEXT): BOOLEAN =
BEGIN
 TRY
 WITH stat = FS.Status (file) DO
 RETURN stat.type = FS.DirectoryFileType;
 END
 EXCEPT
 | OSError.E => RETURN FALSE;
 END
END IsDirectory;

D E V E L O P M E N T R E C I P E S

 131131131131

Search the items passed in as part of path for the file.

PROCEDURE SearchPath (file, path: TEXT;
 sep: CHAR;
 READONLY exts: ARRAY OF TEXT
): TEXT =
VAR
 dir, fn: TEXT;
 s0, s1, len: INTEGER;
 no_ext: BOOLEAN;
BEGIN
 IF IsFile (file) THEN RETURN file; END;
 no_ext := Text.Equal (file, Pathname.Base (file));

 (* First try the file without looking at the path. *)
 IF no_ext THEN
 FOR i := FIRST (exts) TO LAST (exts) DO
 fn := Pathname.Join (NIL, file, exts[i]);
 IF IsFile (fn) THEN RETURN fn; END;
 END;
 END;

 IF path = NIL THEN RETURN NIL; END;
 IF Pathname.Absolute (file) THEN RETURN NIL; END;

 (* Try the search path *)
 len := Text.Length (path); s0 := 0;
 WHILE (s0 < len) DO
 s1 := Text.FindChar (path, sep, s0);
 IF (s1 < 0) THEN s1 := len; END;
 IF (s0 < s1) THEN
 dir := Text.Sub (path, s0, s1 - s0);
 IF no_ext THEN
 FOR i := FIRST (exts) TO LAST (exts) DO
 fn := Pathname.Join (dir, file, exts[i]);
 IF IsFile (fn) THEN RETURN fn; END;
 END;
 ELSE
 fn := Pathname.Join (dir, file, NIL);
 IF IsFile (fn) THEN RETURN fn; END;
 END;
 END;
 s0 := s1 + 1;
 END;

 (* SearchPath failed. *)
 RETURN NIL;
END SearchPath;

D E V E L O P M E N T R E C I P E S

 132132132132

The main program and utility procedures.

PROCEDURE HelpfulInfo(): TEXT =
CONST
 Msg = “m3sh: a simple portable shell for POSIX and” &
 “Win32 written in Modula-3\n” &
 “syntax: m3sh [-prompt string | -help]\n” &
 “commands:”;
VAR
 result := Msg;
BEGIN
 FOR i := FIRST(Commands) TO LAST(Commands) DO
 result := result & “ “ & Commands[i].name;
 END;
 RETURN result & “\n”;
END HelpfulInfo;

VAR
 prompt: TEXT := “m3sh”;

Echo the prompt. Get a command. If the command is not null, then execute it, and
print its results on the screen.

PROCEDURE ProcessCommand()
 RAISES {OSError.E, Rd.EndOfFile} =
VAR
 cmdname: TEXT; (* name of the command *)
 cmdargs: REF ARRAY OF TEXT; (* arguments of the command *)
 result: TEXT;
BEGIN
 IO.Put(prompt & “> ”);
 GetCommand(cmdname, cmdargs);
 IF cmdname = NIL THEN RETURN END;
 result := ShellCommand (cmdname, cmdargs^);
 IF result # NIL THEN IO.Put (result & “\n”) END;
END ProcessCommand;

D E V E L O P M E N T R E C I P E S

 133133133133

Read a command line; affect variables name and args. Set name and args to NIL
if there is no input in this line. Raise Rd.EndOfFile if the end of file is reached.

PROCEDURE GetCommand (VAR name: TEXT;
 VAR args: REF ARRAY OF TEXT
) RAISES {Rd.EndOfFile} =
VAR
 cmd := NEW(TextSeq.T).init();
 rd: Rd.T;
BEGIN
 name := NIL; args := NIL;
 TRY
 (* Read a line and map it to the reader “rd”. *)
 rd := TextRd.New(Rd.GetLine(Stdio.stdin));

 (* Tokenize the line into a sequence of strings. *)
 TRY WHILE NOT Rd.EOF(rd) DO
 Lex.Skip(rd);
 cmd.addhi(Lex.Scan(rd)); END;
 EXCEPT Rd.Failure => (* do nothing *)
 END;

 (* Turn the sequence into a (command, arguments) pair. *)
 IF cmd.size() = 0 THEN RETURN END;
 name := cmd.get(0);
 args := NEW(REF ARRAY OF TEXT, cmd.size()-1);
 FOR i := FIRST(args^) TO LAST(args^) DO
 args[i] := cmd.get(i+1);
 END;
 EXCEPT
 | Rd.Failure, Thread.Alerted =>
 IO.Put (“Problems in reading from input\n”);
 END;
END GetCommand;

Print arguments to an OSError.E. Used by the main shell loop to print out errors.

PROCEDURE PrintError (al: AtomList.T) =
BEGIN
 WHILE al # NIL DO
 IO.Put (Atom.ToText(al.head) & “. ”);
 al := al.tail;
 END;
 IO.Put (“\n”);
END PrintError;

D E V E L O P M E N T R E C I P E S

 134134134134

Check the command-line parameters.

PROCEDURE ProcessParams() =
BEGIN
 CASE Params.Count OF
 | 1 => RETURN;
 | 2 => IF Text.Equal(Params.Get(1), “-help”) THEN
 IO.Put (HelpfulInfo());
 RETURN
 END;
 | 3 => IF Text.Equal(Params.Get(1), “-prompt”) THEN
 prompt := Params.Get(2);
 RETURN
 END;
 ELSE (* skip *)
 END;
 IO.Put (“Incorrect or bad number of parameters.” &
 “ Try -help to get more info.\n”);
 Process.Exit(10);
END ProcessParams;

The main loop.

BEGIN
 ProcessParams();
 LOOP
 TRY
 ProcessCommand();
 EXCEPT
 | OSError.E (e) => PrintError(e);
 | Rd.EndOfFile => EXIT;
 END;
 END;
END M3sh.

Further Information. To learn more about operating system interfaces see CM3-IDE
Interface Index on page 143, or interface definition for:

• Process interface for process management

• Thread interface for creating threads or “lightweight processes”

• FS interface for access to files and directories

• Pathname interface for manipulating pathnames in a portable fashion

• Env interface for environment variables

• Params interface for command-line parameters

• OSError interface for handling operating system errors

D E V E L O P M E N T R E C I P E S

 135135135135

6.6 Dynamic Web Applications: the Web Server

Toolkit

The web server toolkit defines a framework for building dynamic web servers. The
program WebContact illustrates a simple web-based application of a dynamic
contact database.

MODULE WebContact EXPORTS Main;
IMPORT HTTPApp, HTTPControl, HTTPControlValue, App;
IMPORT Text, TextTextTbl;
FROM IO IMPORT Put;

Create two fields for names and e-mail addresses. Each is displayed on an automatically
generated form, and the call-back procedures are run when the form is submitted.

VAR
 name, email: TEXT := “”;

Define a text control, name_value, and its Get and Set, and Default
operations.

VAR
 name_value := NEW(HTTPControlValue.TextValue,
 leader := “Name: ”,
 id := “name”, set := SetName,
 get := GetName,
 setDefault := Default);

PROCEDURE SetName(<*UNUSED*>self: HTTPControlValue.TextValue;
 val: TEXT;
 <*UNUSED*>log: App.Log) =
BEGIN
 name := val;
 IF NOT db.get(name, email) THEN
 email := “”;
 END;
END SetName;

PROCEDURE GetName(<*UNUSED*>self: HTTPControlValue.TextValue
): TEXT =
BEGIN
 RETURN name;
END GetName;

D E V E L O P M E N T R E C I P E S

 136136136136

Define another text control email_value, and its Get, Set, and Default
operations.

VAR
 email_value := NEW(HTTPControlValue.TextValue,
 leader := “ Email:”,
 id := “email”, set := SetEmail,
 get := GetEmail,
 setDefault := Default);

PROCEDURE GetEmail (self: HTTPControlValue.TextValue
): TEXT =
BEGIN
 RETURN email;
END GetEmail;

PROCEDURE SetEmail (self: HTTPControlValue.TextValue;
 val: TEXT;
 log : App.Log) =
BEGIN
 IF Text.Empty (val) THEN
 IF db.get(name, email) THEN
 email := “”;
 END;
 ELSE
 EVAL db.put(name, val);
 END;
END SetEmail;

PROCEDURE Default (<*UNUSED*>x: HTTPControlValue.TextValue;
 <*UNUSED*>log: App.Log) =
BEGIN
END Default;

The variable root defines the root of the HTTP server. db is a text-to-text table for
mapping names to email addresses.

VAR
 root : HTTPControl.StaticForm := HTTPControl.RootForm();
 db := NEW(TextTextTbl.Default).init();
BEGIN

Initialize root default options.

 root.hasSubmitButton := TRUE;
 root.title := “Contact Database”;

Add a title.

 root.addValue(NEW(HTTPControlValue.MessageValue).init(
 “\n” & “<H2>Contact Database</H2>”));

D E V E L O P M E N T R E C I P E S

 137137137137

Add the two text fields.

 root.addValue(name_value);
 root.addValue(email_value);

Serve at port 80. If there is a problem, report it.

 TRY
 HTTPApp.Serve(80);
 EXCEPT
 App.Error => Put (“A problem occured\n”);
 END;
END WebContact.

6.7 Interacting with C Programs

Most real programs need to interact with an existing body of code. Since CM3-IDE
has provisions for describing unsafe operations, binding programs written using CM3-
IDE with C is straightforward. In this section, we will describe two programs that call
C code on Unix or Win32 platforms, and a Modula-3 program that is called from C.

6.7.1 Calling C: A Unix Example

In this example, we create an interface for accessing the getcwd function from
Modula-3.

We then wrap a safe interface around the unsafe layer that calls C. This example only
works on Unix, but a similar example can be written for Win32 as you will see later. Of
course, if we were to only use Modula-3 facilities, the code could easily be ported.

The basic steps in writing this program are:

1. First, read the Unix man page on “getcwd” to get some information about
its parameter, and what it does.

2. Interface Ulib contains the <*EXTERNAL*> Modula-3 signature for the
“getcwd” function in our project. If we are to call this from client code, we’d
have to make that unsafe, and have to deal with C data structures, which is
probably not a good idea. So, in the next step, we build a safe wrapper around
the C call.

3. Create an interface and an implementation “Lib”. This will be the Modula-3
wrapper for Ulib. The idea here is to create a function, GetCWD() which
returns a TEXT containing your current working directory. Lib.i3 should
be pretty straightforward. All you do is declare the signature of the function.

D E V E L O P M E N T R E C I P E S

 138138138138

4. Lib.m3 is more subtle. What we need to do is allocate some space for the C
buffer, and then pass it to “getcwd”, finally copy the contents of the
getcwd buffer back into a TEXT and return it.

We can either use Cstdlib.malloc for allocating the right buffer, and
Cstdlib.free to dispose it after copying the buffer into a TEXT via
M3toC.CopyStoT.

5. Create a safe main module and call Lib.GetCWD() from it.

The good news is that most of the time, we can program in the safe mode, where the
language takes care of things like garbage collection. This eliminates the need for
separating safe and unsafe code.

Safe interface. Interface Lib provides a safe GetCWD interface. This means its
implementation must have to deal with bridging from unsafe operations to safe
operations.

INTERFACE Lib;
PROCEDURE GetCWD(): TEXT;
END Lib.

Unsafe implementation of a safe interface. The implementation of Lib interface
includes the body of GetCWD, which calls malloc to allocate a string, sends it to
getcwd, and converts the result to TEXT while handing memory management.

UNSAFE MODULE Lib;
IMPORT Ulib, M3toC;
FROM Ctypes IMPORT char_star;
FROM Cstdlib IMPORT malloc, free;

PROCEDURE GetCWD(): TEXT =
CONST size = 64;
VAR c_str := malloc (size);
BEGIN
 EVAL Ulib.getcwd(c_str,size);
 WITH result = M3toC.CopyStoT(c_str) DO
 free(c_str);
 RETURN result;
 END;
END GetCWD;

BEGIN
END Lib.

D E V E L O P M E N T R E C I P E S

 139139139139

Unsafe interface to Unix libraries. Interface Ulib defines an external function
getcwd.

INTERFACE Ulib;
FROM Ctypes IMPORT char_star, int;

<*EXTERNAL*>
PROCEDURE getcwd(result: char_star;
 size: int
): char_star;

END Ulib.

The main module. The main body of the code is simple, because Lib takes care of
bridging the safety gap.

MODULE CallingC EXPORTS Main;
IMPORT IO, Lib;
BEGIN
 IO.Put (Lib.GetCWD() & “\n”);
END CallingC.

Makefile. The makefile is quite ordinary.

import(“libm3”)
interface(“Ulib”)
module(“Lib”)
implementation (“CallingC”)
program (“m3pwd”)

6.7.2 Calling C: A Win32 Example

In this example, we create an interface for accessing the MessageBox function from
the Win32 API. To do so, we import the interface WinUser which defines the
signature of the MessageBoxA call. We then call WinUser.MessageBox from
the main module, OK.

This example only works on Win32, since MessageBox is a Win32 call. Since this
call is not available on other platforms your program is not portable. Of course, if you
were to only use the portable interfaces available in Modula-3, you would not have any
portability problems.

WinUser defines basic Win32 API user-level calls. M3toC defines mappings from
Modula-3 to C strings.

D E V E L O P M E N T R E C I P E S

 140140140140

OK.m3.

UNSAFE MODULE OK EXPORTS Main;
IMPORT WinUser, M3toC;
IMPORT Params;
VAR
 message: TEXT := “”;
BEGIN
 FOR i := 1 TO Params.Count-1 DO
 message := message & Params.Get(i) & “ ”;
 END;
 EVAL WinUser.MessageBox(NIL,
 M3toC.TtoS(message),
 M3toC.TtoS(“A CM3-IDE Example”),
 0);
END OK.

Here is the portion of the WinUser interface where MessageBox is defined:

INTERFACE WinUser;
…
PROCEDURE MessageBoxA (hWnd: HWND;
 lpText : LPCSTR;
 lpCaption: LPCSTR;
 uType : UINT
): int;

CONST MessageBox = MessageBoxA;
…
END WinUser.

6.7.3 Calling Modula-3 from C

This example demonstrates how to call Modula-3 procedures from C. The C
procedure in the example takes a single parameter which itself is a parameter-less
procedure that returns an integer. Have the C function call the passed the procedure,
add one to the result and return the new value. The makefile will assume that the C
code is in a file named Cstuff.c.

INTERFACE Cstuff;

TYPE
 IntProc = PROCEDURE (): INTEGER;

<*EXTERNAL*>
PROCEDURE add_one (p: IntProc): INTEGER;
(* Returns “1 + p()”. *)

<*EXTERNAL*>
PROCEDURE add_one_again (): INTEGER;
(* Returns “1 + m3_proc()”. *)

<*EXTERNAL*>
VAR m3_proc: IntProc;

END Cstuff.

D E V E L O P M E N T R E C I P E S

 141141141141

MODULE CcallsM3 EXPORTS Main;
IMPORT IO, Cstuff;
VAR
 x: INTEGER := 33;
 i: INTEGER;

PROCEDURE Foo (): INTEGER =
BEGIN
 INC (x);
 RETURN x;
END Foo;

BEGIN
 IO.Put (“calling add_one.\n”);
 i := Cstuff.add_one (Foo);
 IO.Put (“add_one () => ”);
 IO.PutInt (i);
 IO.Put (“\n”);
 IO.Put (“calling add_one_again.\n”);
 Cstuff.m3_proc := Foo;
 i := Cstuff.add_one_again ();
 IO.Put (“add_one_again () => ”);
 IO.PutInt (i);
 IO.Put (“\n”);
END CcallsM3.

CStuff.c calls (and is called by) the Modula-3 code.

#include <stdio.h>
typedef int (*PROC)();
int add_one (p)
 PROC p;
{
 int i;
 printf (“in add_one, p = 0x%x\n”, p);
 i = p ();
 printf (“ p() => %d\n”, i);
 return i+1;
}

PROC m3_proc;
int add_one_again ()
{
 int i;
 printf (“in add_one_again, m3_proc = 0x%x\n”, m3_proc);
 i = m3_proc ();
 printf (“ m3_proc () => %d\n”, i);
 return i+1;
}

Makefile. The call c_source compiles a C program with your C compiler. See the
Operations Guide for cm3 at /help/cm3/cm3.html or the cm3.cfg file in
your installation for more information.

import (“libm3”)
c_source (“Cstuff”)
interface (“Cstuff”)
implementation (“CcallsM3”)
program (“ccallsm3”)

D E V E L O P M E N T R E C I P E S

 142142142142

6.8 Summary

This chapter described a handful of complete programs to illustrate the use of
advanced programming facilities in CM3-IDE. You can find the sources for the

programs in this chapter in the Examples section of your CM3-IDE environment.

Robust Distributed Applications. Network Objects can be used to build robust
distributed applications. See the NetObj interface for more information (See page
108).

Client/Server Computing. Using the safe TCP/IP interfaces, you can build multi-
threaded client/server applications that use the socket interfaces. TCP/IP interfaces
abstract away the differences between Unix sockets and Winsock implementations. See
the TCP, IP, and ConnRW interfaces for more information (See page 115).

Data Manipulation. Using the Pickle interface, you can take snapshot of complex
object graphs, and later load them into memory. The Fingerprint interface
allows you to compare large data structures efficiently. The IO, Rd, Wr, Lex, Scan,
and Fmt interfaces help you read and write from I/O streams (See page 120).

Portable Operating System Interfaces. CM3-IDE provides interfaces for accessing
operating system services in a platform-neutral manner. See the Process interface
for managing processes, File, FS, FileWr, FileRd for filesystem access,
Thread for creating new threads and concurrency control, Params for command-
line parameters, Env for environment variables, and Time for the system clock. Using
these interfaces, you can write portable programs that access various operating system
facilities (See page 124).

Dynamic Web Applications. You can build dynamic web applications using the web
toolkit. Read the HTTPApp interface as a start (See page 135).

Accessing Legacy C code. Binding unsafe portions of your program to C code is
straightforward, but tedious. To aid portability and robustness of your application, you
should avoid using legacy C code as much as possible (See page 137).

